MARTINGALES OF WIENER AND POISSON PROCESSES

M. H. A. DAVIS

ABSTRACT

Using the Hilbert space theory of square integrable martingales it is shown that each such martingale with respect to the family of σ-fields generated by independent Wiener and Poisson processes is a sum of stochastic integrals of the generating processes.

The fact that all martingales of a Brownian motion are stochastic integrals has received several proofs, a spectacularly short one, which also works for the Poisson case, being due to Dellacherie [1]. There is, however, a small defect in Dellacherie’s proof, and in circumventing this we arrive at an argument which can be applied to the combined case of σ-fields generated by independent Wiener and Poisson processes. This gives a very quick proof of a special case of Elliott’s “double martingales” [3].

It should be pointed out that since this note was written the succeeding volume of the Strasbourg Séminaire de Probabilités [2] has appeared, in which Dellacherie gives, in a correction, very much the argument of the proof of Theorem 2 below. But the Poisson case has, as will be seen, some additional features.

The situation is most easily described in the framework of Kunita and Watanabe [4]. Let (Ω, ℱ, P) be a probability space carrying a standard Brownian motion b, (continuous paths, b₀ = 0) and an independent standard Poisson process p, (right-continuous paths, p₀ = 0, Epᵩ = t). Let (ℱᵦ) and (ℱₚ) be the generated σ-fields of (bᵦ) and (pᵦ) respectively, completed with all subsets of null sets of ℱ, and let ℱᵦ = ℱᵦ ∨ ℱᵦ. For convenience, assume that ℱᵦ = ℱ. Let ℳ be the set of square-integrable martingales of ℱᵦ, i.e. M ∈ ℳ if and only if M is a martingale, M₀ = 0 and sup₀<∞EMᵦ² < ∞. It is no restriction to assume that each M ∈ ℳ is right-continuous.

ℳ is a Hilbert space under the inner product (M, N) = EMᵦNᵦ. A subspace ℒ of ℳ is stable if it is closed under the formation of stochastic integrals, i.e. M ∈ ℒ ⇒ ∫₀¹ φ dM ∈ ℒ where φ is any ℱᵦ-predictable process such that

\[E ∫₀¹ φᵦ² d⟨M⟩ᵦ < ∞. \]

In particular, it is closed under stopping. The orthogonal complement ℒ¹ of a stable subspace is itself stable. Let ℒ(b, p) denote the stable subspace generated by bᵦ and pᵦ, i.e.

\[ℒ(b, p) = \left\{ ∫₀¹ ϕ dp + ∫ ψ(dpᵦ−dt) : φ and ψ predictable, E ∫₀¹ (φᵦ² + ψᵦ²)ds < ∞ \right\}. \]

Then the martingale representation result can be stated simply as follows:

THEOREM 1. ℒ¹(b, p) = {0}.

Received 11 August, 1975; revised 20 October, 1975.

[J. LONDON MATH. SOC. (2), 13 (1976), 336–338]
To prove this we have first to consider \((b_t)\) and \((p_t)\) separately. Let \(\mathcal{M}_b\) be the set of square integrable martingales of \(\mathcal{B}_t\), and \(\mathcal{L}_b\) the stable subspace of \(\mathcal{M}_b\) generated by \((b_t)\).

Theorem 2. \(\mathcal{L}_b^\perp = \{0\}\).

Proof. First, all stopping times of \(\mathcal{B}_t\) are predictable, as the following argument shows. Let \(T\) be any stopping time of \(\mathcal{B}_t\) and define

\[x_t = I_{t \geq T}. \]

\(x_t\) is a submartingale with the Meyer decomposition

\[x_t = y_t + q_t, \]

where \(q_t\) is a martingale and \(y_t\) a predictable integrable increasing process whose jumps are bounded by 1. Now let \(q_t^n = q_{t \wedge \tau_n}\), where

\[\tau_n = \inf\{t : y_t \geq n\} \]

and define

\[L = 1 - \frac{1}{2} q_\infty^n. \]

Then \(L \geq \frac{1}{2}\) and \(EL = 1\) so that a probability measure \(Q\) on \((\Omega, \mathcal{B}_\infty)\) is defined by the formula

\[dQ = L \, dP \]

and \(Q\) is mutually absolutely continuous with respect to \(P\). Now \(q^n \in \mathcal{M}_b\) and in fact \(q^n \in \mathcal{L}_b^\perp\) since it has no continuous component. Thus \(q^n \cdot b_t\) and \(q^n \cdot (b_t^2 - t)\) are martingales, which implies that \(b_t\) and \(b_t^2 - t\) are martingales of \((\Omega, \mathcal{B}_t, \mathcal{Q})\). According to the Lévy-Doob characterization of Brownian motion, this implies that \(b_t\) is Brownian under measure \(Q\) as well as under measure \(P\), so that \(Q\) and \(P\) coincide on \(\mathcal{B}_\infty\) and \(q_\infty^n = 0\) a.s. It follows that \(x_t = y_t\) a.s., i.e. \(x_t\) is a predictable process and \(T\) is a predictable stopping time.

Since all stopping times, and in particular all accessible stopping times, are predictable, we have from [5; III, T51] that the family \((\mathcal{B}_t)\) is quasi-left-continuous: \(\mathcal{B}_{T'} = \mathcal{B}_T\) for any predictable time. But according to [5; V, T10], for any \(M \in \mathcal{M}_b\) and predictable time \(T\)

\[M_{T'} = E[M_T | \mathcal{B}_{T'}] = E[M_T | \mathcal{B}_T] = M_T. \]

Since all stopping times are predictable this shows that each \(M \in \mathcal{M}_b\) has continuous paths. Suppose \(M \in \mathcal{L}_b^\perp\) and define

\[\sigma_n = \inf\{t: |M_t| \geq n\} \]

and

\[M_t^n = \frac{1}{2n} M_{t \wedge \sigma_n}; \]

then \(|M_t^n| \leq \frac{1}{n}\) and \(M^n \in \mathcal{L}_b^\perp\) since \(\mathcal{L}_b^\perp\) is closed under stopping. Defining \(L = 1 + M_\infty^n\), we can apply an exactly similar argument to the above to show that \(M_\infty^n = 0\) a.s. This completes the proof.

Similar arguments apply also to the Poisson component. Let \((T_i)_{i=1,2,...}\) be the jump times of the Poisson process and denote by \([T]\) the graph of a stopping time \(T\).
Suppose T is an accessible stopping time of \mathcal{P}. Then since each T_i is totally inaccessible, T must have the property that $[T] \cap (\bigcup_i [T_i])$ is evanescent (a (t, ω)-set A is evanescent if the process $z_t(\omega) = I_A(t, \omega)$ has almost all sample functions zero); see [5; III D39]. Hence $x_t = I_{t \geq T}$ has no discontinuities in common with p_t, and neither has its compensating process since this is predictable. The same argument as above now shows that T is predictable, so that \mathcal{P} is quasi-left-continuous. If $Z \in \mathcal{L}_p^\perp$ and T is a \mathcal{P}-stopping time such that $P[Z_T \neq Z_T-] > 0$ then T must have the property mentioned above. But this means that Z must be sample-continuous, and the remaining argument is exactly as before.

Proof of Theorem 1. Let T be a stopping time of \mathcal{F} such that $[T] \cap (\bigcup_i [T_i])$ is evanescent and let $x_t = I_{t \geq T}$ as before, with the Meyer decomposition

$$x_t = y_t + q_t$$

but note that this is now relative to the σ-fields \mathcal{F}_t. Now $q^n_t \in \mathcal{L}_p^\perp(b, p)$ since q^n and p have no common discontinuities. Carrying through the argument of Theorem 2, one concludes that b_t and p_t are still Wiener and Poisson processes respectively under the new measure Q. We want to show they are still independent.

Fix $r > 0$ and let X_r, Y_r be bounded zero-mean \mathcal{B}_r- and \mathcal{P}_r-measurable random variables respectively. For $t \in \mathbb{R}^+$ let $X_t = E(X_r | \mathcal{B}_t)$ and $Y_t = E(Y_r | \mathcal{P}_t)$. In view of Theorem 2, $X = (X_t) \in \mathcal{L}_p$ and $Y = (Y_t) \in \mathcal{L}_p$. Since \mathcal{B}_∞ and \mathcal{P}_∞ are independent, X and Y are also \mathcal{F}_r-martingales, i.e. $X, Y \in \mathcal{M}$ and $X \perp Y$. Since $X, Y \in \mathcal{L}(p, b)$, and $q^n \in \mathcal{L}_p^\perp(p, b)$, we have, using the change of variables formula [6],

$$q^n_t X_r = \int_0^r q^n_s \, dX_s + \int_0^r X_s- \, dq^n_s.$$

Because of the boundedness, each term on the right is a martingale on $[0, r]$, so that $E q^n_t X_r = 0$. Denoting expectation with respect to measure Q by E_Q, this means that $E_Q X_r = 0$. Similarly $E_Q Y_r = 0$, and since $X, Y \in \mathcal{L}(p, b)$ by orthogonality, $E_Q X_r Y_r = 0$ too. Taking $X_r = I_{B-PB}, Y_r = I_{A-PA}$ where $B \in \mathcal{B}$, and $A \in \mathcal{P}$, this shows that $Q(A \cap B) = QA \cdot QB$. Hence \mathcal{B}_∞ and \mathcal{P}_∞ are independent under measure Q. Thus P and Q coincide on \mathcal{F}, so that $q^n_t = 0$ a.s. and T is predictable. The proof is completed using once more the argument of Theorem 2.

References

Department of Computing and Control,
Imperial College, London SW7 2BZ.