Numerical Continuation of Bifurcations — An Introduction, Part I

given at the London Dynamical Systems Group Graduate School 2005

Thomas Wagenknecht, Jan Sieber

Bristol Centre for Applied Nonlinear Mathematics
funded by the EPSRC

Department of Engineering Mathematics
University of Bristol

24 Oct 2005
Outline

- Continuation — motivation
- pseudo-arclength continuation
- Boundary value problems
- Periodic orbits
- Detection of bifurcations (later)
- Continuation of bifurcations (later)
- Further reading/software
Motivation for Using Continuation Techniques

(see Krauskopf/Lenstra: *Fundamental Issues of Nonlinear Laser Dynamics*, 2000)

- Problem: discover UK mainland, classify into England, Wales, Schottland

- Alternative A: ‘Simulation’, test on a fine grid of points

- Alternative B: ‘Continuation’,
 - start in point you know (L),
 - go ahead, always checking were you are
 - detect borders
 - go along borders
 - detect cross points
 - branch off at cross points

→ flip through animation on next slide
Newton iteration

▶ Solve nonlinear system of equations

\[f(x) = 0, \quad f : \mathbb{R}^n \mapsto \mathbb{R}^n, \quad x \in \mathbb{R}^n, \quad p \in \mathbb{R} \]

▶ Initial guess \(x_0 \in \mathbb{R}^n \) → iteration

\[x_{k+1} = x_k - [\partial f(x_k)]^{-1} f(x_k) \]

▶ Assumption: Solution \(x_* \) exists, is regular

\[\iff \det \partial f(x_*) \neq 0 \]

▶ Pro: good convergence

▶ Con: \(x_0 \approx x_* \) required
Parameter Continuation

- Find \(x \in \mathbb{R}^n \) s.t.
 \[
f(x, p) = 0, \quad f : \mathbb{R}^n \times \mathbb{R} \mapsto \mathbb{R}^n, \quad p \in \mathbb{R}
 \]

- Assumption:
 solution for \(p_0 \) known: \(f(x_0, p_0) = 0, \partial_1 f(x_0, p_0) \) regular

- Implicit Function Theorem \(\implies \)
 solution curve \(x(p) \) for \(f(x(p), p) = 0 \)

- Iterate:
 1. choose \(p_{k+1} \approx p_k \)
 2. old solution \(x_k \) initial guess for \(f(x, p_{k+1}) = 0 \)
 3. solve \(f(x, p_{k+1}) = 0 \) with Newton iteration \(\implies x_{k+1} \)

- points \((x_k, p_k) \) on solution curve \(x(p) \)

- fails if \(\partial_1 f(x_0, p_0) \) not regular
Pseudo-arclength continuation

Find $y \in \mathbb{R}^{n+1}$ s.t.

$$f(y) = 0, \quad f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$$

Assumption: $y_0, z_0 \in \mathbb{R}^{n+1}$ s.t.

$$f(y_0) = 0, \quad \dim \text{rg } \partial f(y_0) = n, \quad \partial f(y_0)z_0 = 0.$$

Implicit function theorem \implies solution curve $y(s)$ ($s \in (-\delta, \delta)$), s.t.

$$f(y(s)) = 0, \quad y(0) = y_0, \quad y'(0) = z_0.$$
Iteration

1. **predictor step**
 \[y_{k+1}^P = y_k + h z_k \]

2. **corrector step**

 Newton iteration for \(y_{k+1} \)

 \[
 \begin{align*}
 0 &= f(y_{k+1}) \\
 0 &= z_k^T (y_{k+1} - y_{k+1}^P)
 \end{align*}
 \]

 with initial guess \(y_{k+1} = y_{k+1}^P \)

3. **new tangent**

 \[
 \begin{align*}
 0 &= \partial f(y_{k+1}) z_{k+1} \\
 1 &= z_k^T z_{k+1}
 \end{align*}
 \]

if \(y_k \) **is on solution curve**

\(\implies \) Jacobian \(\in \mathbb{R}^{(n+1) \times (n+1)} \)

regular

\[
\begin{bmatrix}
\partial f(y_k) \\
\vdots \\
\partial f(y_k) \cdot z_k^T
\end{bmatrix}
\]
Geometric illustration

\[y = (x, p) \]
\[0 = f(y) \]
\[= x^2 + p^2 - 1 \]
Geometric illustration

\[y = (x, p) \]
\[0 = f(y) = x^2 + p^2 - 1 \]
Geometric illustration

\[y = (x, p) \]
\[0 = f(y) = x^2 + p^2 - 1 \]

stepsize \(h \ll 1 \)

corrector step
Newton iteration
orthogonal to tangent
$y = (x, p)$
$0 = f(y) = x^2 + p^2 - 1$

Corrector step
Newton iteration
Orthogonal to tangent
Stepsize $h \ll 1$
Geometric illustration

\[y = (x, p) \]

\[0 = f(y) = x^2 + p^2 - 1 \]

Corrector step
Newton iteration
Orthogonal to tangent
Stepsize \(h \ll 1 \)
$y = (x, p) \quad 0 = f(y) = x^2 + p^2 - 1$

stepsize $h \ll 1$

corrector step
Newton iteration
orthogonal to tangent
Geometric illustration

\[y = (x, p) \]
\[0 = f(y) = x^2 + p^2 - 1 \]

corrector step
Newton iteration
orthogonal to tangent

stepsize \(h \ll 1 \)
Boundary Value Problems (BVP)

- solution \(u(\cdot) \in \mathbb{R}^{n_{\text{dim}}} \) of dimension \(n_{\text{dim}} \)
- parameter \(p \in \mathbb{R}^{n_{\text{cp}}} \) of dimension \(n_{\text{cp}} \)
- \(u \) solves differential equation (ODE) on interval \([0, 1]\)

\[
\dot{u}(t) = f(u(t), p)
\]

- with \(n_{\text{bc}} \) boundary conditions

\[
g(u(0), u(1), p) = 0, \quad g : \mathbb{R}^{2n_{\text{dim}} + n_{\text{cp}}} \rightarrow \mathbb{R}^{n_{\text{bc}}}
\]

- and \(n_{\text{int}} \) integral conditions

\[
\int_0^1 h(u(t), p) \, dt = 0, \quad h : \mathbb{R}^{n_{\text{dim}} + n_{\text{cp}}} \rightarrow \mathbb{R}^{n_{\text{int}}}
\]
initial value problem generates flow map Φ

$$\dot{u}(t) = f(u(t), p), \quad u(0) = x$$

$$\implies u(t) = \Phi(t; x) \quad (\Phi(0; x) = x)$$

BVP is nonlinear system with $n_{\text{dim}} + n_{\text{cp}}$ variables (x, p) and $n_{\text{bc}} + n_{\text{int}}$ equations

$$0 = g(x, \Phi(1; x), p)$$

$$0 = \int_{0}^{1} h(\Phi(t; x), p) \, dt$$

pseudo-arclength continuation for $y = (x, p)$ possible if $n_{\text{dim}} + n_{\text{cp}} = n_{\text{bc}} + n_{\text{int}} + 1$
Discretization

- subdivide interval $[0, 1]$ into N subintervals I_k

 $0 = t_0 < t_1 < \ldots t_N = 1$

- in each subinterval $I_k = [t_{k-1}, t_k]$: approximate solution $u(t)$ by polynomial of order m:

 \[u(t) \approx q_k(t) \quad \text{for} \quad t \in I_k \]

- q_k satisfies ODE at m points in I_k: $t^j_k, j = 1 \ldots m$
 Gauss points (orthogonal collocation)
 \[\implies \text{error of order } N^{-2m}. \]

- + continuity conditions, boundary conditions, integral conditions
Equations and Variables

▶ Variables:
\[N \cdot (m + 1) \cdot n_{\text{dim}} \] coefficients of polynomials \(q_k \),
\[n_{\text{cp}} \] parameters

▶ Equations:

▶ ODE: \[\frac{\text{d}}{\text{d}t} q_k(t_k^j) = f(q_k(t_k^j), p) \] for \(j = 1 \ldots m, k = 1 \ldots N \)
\[\implies N \cdot m \cdot n_{\text{dim}} \] equations

▶ Continuity: \[q_k(t_k) = q_{k+1}(t_k) \] for \(k = 1 \ldots N - 1 \)
\[\implies (N - 1) \cdot n_{\text{dim}} \] equations

▶ Boundary conditions: \[g(q_1(0), q_N(1), p) = 0 \]
\[\implies n_{\text{bc}} \] equations

▶ Integral conditions: \[\sum_{k=1}^{N} \int_{I_k} h(q_k(t), p) \, dt = 0 \]
\[\implies n_{\text{int}} \] equations

\[\implies N \cdot (m + 1) \cdot n_{\text{dim}} + n_{\text{cp}} \] variables,
\[\implies N \cdot (m + 1) \cdot n_{\text{dim}} - n_{\text{dim}} + n_{\text{bc}} + n_{\text{int}} \] equations
Continuation of Periodic Orbits

- $u(t)$ is periodic orbit of
 \[\dot{u}(t) = f(u(t), p) \]
 if it satisfies for some period T the boundary condition
 \[u(0) - u(T) = 0 \]

- Period T is unknown
- **Phase invariance** $\implies u$ is not unique:
 if $u(t)$ is periodic then $u(t + \delta)$ is periodic
- How to set up a regular BVP?
rescale time:
\[\dot{u}(t) = T_f(u(t), p) \quad \Leftarrow \text{ODE} \]
\[0 = u(0) - u(1) \quad \Leftarrow \text{boundary c.} \]

- \(T \) additional free parameter \(\implies \)
 one additional condition to fix phase
- for example: Poincaré section:
 \(u_k(0) = \text{fixed} \) for some \(k \leq n_{\text{dim}} \)
- computationally optimal for mesh-adaption during continuation

\[
0 = \int_0^1 \dot{u}_{\text{old}}(t)^T u(t) \, dt
\]

where \(u_{\text{old}} \) is the previous solution along the branch
This guarantees

\[
\int_0^1 \| u_{\text{old}}(t) - u(t) \|^2 \, dt \rightarrow \min
\]
Continuation of Periodic Orbits

final form

\[\dot{u}(t) = T f(u(t), p) \quad \Longleftrightarrow \text{ODE} \]

\[0 = u(0) - u(1) \quad \Longleftrightarrow \text{boundary c.} \]

\[0 = \int_0^1 \dot{u}_{\text{old}}(t)^T u(t) \, dt \quad \Longleftrightarrow \text{integral c.} \]

- \(n_{\text{bc}} = n_{\text{dim}}, \, n_{\text{int}} = 1 \)
 \(\Longleftrightarrow \) continuation needs \(n_{\text{cp}} = 2 \) parameters:
 \(p \) (one-dimensional) and period \(T \)

- continuation variable \(y \) consists of \((u(\cdot), p, T)\)
Bifurcation detection — equilibria

Special functions (as used by AUTO) for continuation of equilibria

\[0 = f(y) = f(x, p) \]

- **Fold (turning point, saddle-node):** \[z_{k,n+1}/\|z_k\| \]
 (last component of tangent vector)
- **Hopf (equilibria):** imaginary part of complex eigenvalues of \(\partial_1 f(x_k, p_k) \)
- **Branching point:**

\[
\det \begin{bmatrix}
\partial f(y_k) \\
Z_k^T
\end{bmatrix}
\]
Bifurcation detection — periodic orbits

Continuation variable
\[y = (u([t^j_k, t_k]), p, T) \text{ for } k = 1 \ldots N, \; j = 1 \ldots m \]

overall dimension \(n = N \cdot m \cdot n_{\text{dim}} + n_{\text{cp}} \)

- Fold (for general BVP) \(z_{k,n-n_{\text{cp}}+1}/\|z_k\| \)
 - for periodic orbits \(z_{k,n-1}/\|z_k\| \)

- Branching points: determinant of reduced linearization

- Period doubling, Torus bifurcation: magnitude of Floquet multipliers (excluding one trivial Floquet multiplier 1)

- see Kuznetsov ’04: *Elements of Applied Bifurcation Theory* for alternatives
Continuation of Bifurcations — Equilibria

Fully extended systems (see Kuznetsov ’04 for alternatives):
Fold:

► variables $x, \nu \in \mathbb{R}^n, p \in \mathbb{R}^2$,

► ν nullvector of linearization

► equations:

\[
\begin{align*}
0 &= f(x, p) \\
0 &= \partial_1 f(x, p) \cdot \nu \\
1 &= \nu^T \nu
\end{align*}
\]

► $\implies 2n + 2$ variables, $2n + 1$ equations
Continuation of Bifurcations — Equilibria

Hopf:

- variables $x, q_r, q_i \in \mathbb{R}^n$, $r_\omega \in \mathbb{R}$, $p \in \mathbb{R}^2$
- $q_r + iq_i$ eigenvector for imaginary eigenvalue ir_ω^{-1}
- equations:

\[
\begin{align*}
0 &= f(x, p) \\
0 &= \begin{bmatrix} r_\omega \partial_1 f(x, p) & I \\ -I & r_\omega \partial_1 f(x, p) \end{bmatrix} \begin{bmatrix} q_r \\ q_i \end{bmatrix} \\
1 &= q_r^T q_r + q_i^T q_i \\
0 &= q_{i,old}^T (q_r - q_{r,old}) - q_{r,old}^T (q_i - q_{i,old})
\end{align*}
\]

- $\implies 3n + 3$ variables, $3n + 2$ equations
- period of periodic solution branch will be $2\pi r_\omega$
Continuation of Bifurcations — Periodic Orbits

Fold (for other bifurcations see AUTO or Kuznetsov):

- variables: \(u(\cdot), v(\cdot) \in \mathbb{R}^n \) on \([0, 1] \), \(p \in \mathbb{R}^2 \), \(T, \beta \in \mathbb{R} \)
- \(v \) generalized eigenvector of Floquet multiplier \(1 \), \(T \) period
- equations:

\[
\begin{align*}
\dot{u} &= Tf(u, p) & \Leftarrow & \text{ODE} \\
\dot{v} &= T \partial_1 f(u, p) v + \beta f(u, p) & \Leftarrow & \text{ODE} \\
0 &= u(0) - u(1) & \Leftarrow & \text{boundary c.} \\
0 &= v(0) - v(1) & \Leftarrow & \text{boundary c.} \\
0 &= \int_0^1 \dot{u}_{\text{old}}(t)^T u(t) \, dt & \Leftarrow & \text{integral c.} \\
0 &= \int_0^1 \dot{u}_{\text{old}}(t)^T v(t) \, dt & \Leftarrow & \text{integral c.} \\
c &= \int_0^1 v(t)^T v(t) \, dt + \beta^2 & \Leftarrow & \text{integral c.}
\end{align*}
\]
Further software

- **AUTO**
 - current versions: **AUTO97** (fortran), **AUTO2000** (C, python)
 - help for AUTO2000 (and 97): Bart Oldeman

- software performing similar tasks:
 - **MATCONT** (implemented in Matlab), currently maintained at Gent (Belgium), http://www.matcont.ugent.be
 - **XPPAUT** (simulation package has interface for AUTO) http://www.math.pitt.edu/~bard/xpp/xpp.html

- Delay-differential equations: DDE-BIFTOOL, PDDECONT

- invariant manifolds:
 - invariant tori (**Torcont**)
 - 1D stable/unstable manifolds of periodic orbits (part of **DsTool**)

- see http://www.dynamicalsystems.org/sw/sw/ for more