## Jordan's Lemma



Jordan's Lemma deals with the problem of how a contour integral behaves on the semicircular arc $H_{R}^{+}$of a closed contour $C$.

Lemma 1 (Jordan) If the only singularities of $F(z)$ are poles, then

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{H_{R}} e^{i m z} F(z) d z=0 \tag{1}
\end{equation*}
$$

provided that $m>0$ and $|F(z)| \rightarrow 0$ as $R \rightarrow \infty$.
Proof: Since $H_{R}$ is the semi-circle $z=R e^{i \theta}=R(\cos \theta+i \sin \theta)$ and $d z=i R e^{i \theta} d \theta$

$$
\begin{align*}
\lim _{R \rightarrow \infty}\left|\int_{H_{R}} e^{i m z} F(z) d z\right| & =\lim _{R \rightarrow \infty}\left|\int_{H_{R}} e^{i m R \cos \theta-m R \sin \theta} F(z) R e^{i \theta} d \theta\right| \\
& \leq \lim _{R \rightarrow \infty} \int_{H_{R}} e^{-m R \sin \theta}|F(z)| R d \theta \tag{2}
\end{align*}
$$

having recalled that $\left|e^{i \alpha}\right|=1$ for any real $\alpha$ and $\left|\int f(z) d z\right| \leq \int|f(z)| d z$. Note that in the exponential term on the RHS of $(2), \sin \theta>0$ in the upper half plane. Hence, provided $m>0$, the exponential ensures that the RHS is zero in the limit $R \rightarrow \infty$ (see remarks below).

## Remarks:

a) When $m>0$ forms of $F(z)$ such as $F(z)=\frac{1}{z}, F(z)=\frac{1}{z+a}$ or rational functions of $z$ such as $F(z)=\frac{z^{p} \ldots}{z^{q}+\ldots}$ (for $0 \leq p<q$ and $p$ and $q$ integers) will all work as these all have simple poles and $|F(z)| \rightarrow 0$ as $R \rightarrow \infty$.
b) If, however, $m=0$ then a modification is needed: e.g. if $F(z)=\frac{1}{z}$ then $|F(z)| \rightarrow 0$ but the $R|F(z)|=1$. We need to alter the restriction on the integers $p$ and $q$ to $0 \leq p<q-1$ which excludes cases like $F(z)=\frac{1}{z}, F(z)=\frac{1}{z+a}$.
c) What about $m<0$ ? To ensure that the exponential is decreasing for $R \rightarrow \infty$ we need $\sin \theta<0$. This is true in the lower half plane. Hence in this case we take our contour in the lower half plane (call this $H_{R}^{-}$as opposed to $H_{R}^{+}$in the upper) but still in an anti-clockwise direction.


A contour in the lower $\frac{1}{2}$-plane with semi-circle $H_{R}^{-}$.

