Jordan's Lemma

Jordan's Lemma deals with the problem of how a contour integral behaves on the semicircular arc H_R^+ of a closed contour C.

Lemma 1 (Jordan) If the only singularities of F(z) are poles, then

$$\lim_{R \to \infty} \int_{H_R} e^{imz} F(z) \, dz = 0 \tag{1}$$

provided that m > 0 and $|F(z)| \to 0$ as $R \to \infty$.

Proof: Since H_R is the semi-circle $z = Re^{i\theta} = R(\cos\theta + i\sin\theta)$ and $dz = iRe^{i\theta}d\theta$

$$\lim_{R \to \infty} \left| \int_{H_R} e^{imz} F(z) \, dz \right| = \lim_{R \to \infty} \left| \int_{H_R} e^{imR\cos\theta - mR\sin\theta} F(z) R \, e^{i\theta} d\theta \right| \\ \leq \lim_{R \to \infty} \int_{H_R} e^{-mR\sin\theta} |F(z)| R \, d\theta$$
(2)

having recalled that $|e^{i\alpha}| = 1$ for any real α and $|\int f(z) dz| \leq \int |f(z)| dz$. Note that in the exponential term on the RHS of (2), $\sin \theta > 0$ in the upper half plane. Hence, provided m > 0, the exponential ensures that the RHS is zero in the limit $R \to \infty$ (see remarks below). \Box

Remarks:

a) When m > 0 forms of F(z) such as $F(z) = \frac{1}{z}$, $F(z) = \frac{1}{z+a}$ or rational functions of z such as $F(z) = \frac{z^p \dots}{z^q + \dots}$ (for $0 \le p < q$ and p and q integers) will all work as these all have simple poles and $|F(z)| \to 0$ as $R \to \infty$.

b) If, however, m = 0 then a modification is needed: e.g. if $F(z) = \frac{1}{z}$ then $|F(z)| \to 0$ but the R|F(z)| = 1. We need to alter the restriction on the integers p and q to $0 \le p < q-1$ which excludes cases like $F(z) = \frac{1}{z}$, $F(z) = \frac{1}{z+a}$.

c) What about m < 0? To ensure that the exponential is decreasing for $R \to \infty$ we need $\sin \theta < 0$. This is true in the *lower* half plane. Hence in this case we take our contour in the *lower* half plane (call this H_R^- as opposed to H_R^+ in the upper) but still in an anti-clockwise direction.

A contour in the lower $\frac{1}{2}$ -plane with semi-circle H_R^- .