THE CHAIN RULE IN PARTIAL DIFFERENTIATION

1 Simple chain rule

If $u=u(x, y)$ and the two independent variables x and y are each a function of just one other variable t so that $x=x(t)$ and $y=y(t)$, then to find $d u / d t$ we write down the differential of u

$$
\begin{equation*}
\delta u=\frac{\partial u}{\partial x} \delta x+\frac{\partial u}{\partial y} \delta y+\ldots \tag{1}
\end{equation*}
$$

Then taking limits $\delta x \rightarrow 0, \delta y \rightarrow 0$ and $\delta t \rightarrow 0$ in the usual way we have

$$
\begin{equation*}
\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t} \tag{2}
\end{equation*}
$$

Note we only need straight ' d 's' in $d x / d t$ and $d y / d t$ because x and y are function of one variable t whereas u is a function of both x and y.

2 Chain rule for two sets of independent variables

If $u=u(x, y)$ and the two independent variables x, y are each a function of two new independent variables s, t then we want relations between their partial derivatives.

1. When $u=u(x, y)$, for guidance in working out the chain rule, write down the differential

$$
\begin{equation*}
\delta u=\frac{\partial u}{\partial x} \delta x+\frac{\partial u}{\partial y} \delta y+\ldots \tag{3}
\end{equation*}
$$

then when $x=x(s, t)$ and $y=y(s, t)$ (which are known functions of s and t), the chain rule for u_{s} and u_{t} in terms of u_{x} and u_{y} is

$$
\begin{align*}
\frac{\partial u}{\partial s} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s} \tag{4}\\
\frac{\partial u}{\partial t} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t} \tag{5}
\end{align*}
$$

2. Conversely, when $u=u(s, t)$, for guidance in working out the chain rule write down the differential

$$
\begin{equation*}
\delta u=\frac{\partial u}{\partial s} \delta s+\frac{\partial u}{\partial t} \delta t+\ldots \tag{6}
\end{equation*}
$$

then when $s=s(x, y)$ and $t=t(x, y)$ (which are known functions of x and y) the chain rule for u_{x} and u_{y} in terms of u_{s} and u_{t} is

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial s} \frac{\partial s}{\partial x}+\frac{\partial u}{\partial t} \frac{\partial t}{\partial x} \tag{7}\\
\frac{\partial u}{\partial y} & =\frac{\partial u}{\partial s} \frac{\partial s}{\partial y}+\frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \tag{8}
\end{align*}
$$

3. It is important to note that: $\frac{\partial s}{\partial x} \neq\left(\frac{\partial x}{\partial s}\right)^{-1}$ etc. Why? Because $\frac{\partial s}{\partial x}$ means differentiating s w.r.t x holding y constant whereas $\frac{\partial x}{\partial s}$ means differentiating x w.r.t s holding t constant. This is the most commonly made mistake.

3 Polar co-ordinates

We want to transform from Cartesian co-ordinates in the two independent variables (x, y) to two new independent variables (r, θ) which are polar co-ordinates. The pair (r, θ) therefore play the role of (s, t) in (4), (5), (7) and (8). The relation between these two sets of variables with x and y expressed in terms of r and θ is

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{9}
\end{equation*}
$$

whereas the other way round we have

$$
\begin{equation*}
r^{2}=x^{2}+y^{2}, \quad \theta=\tan ^{-1} \frac{y}{x} \tag{10}
\end{equation*}
$$

From (9) we have

$$
\begin{equation*}
\frac{\partial x}{\partial r}=\cos \theta, \quad \frac{\partial y}{\partial r}=\sin \theta, \quad \frac{\partial x}{\partial \theta}=-r \sin \theta, \quad \frac{\partial y}{\partial \theta}=r \cos \theta \tag{11}
\end{equation*}
$$

From (10) we have

$$
\begin{equation*}
\frac{\partial r}{\partial x}=\frac{x}{r}=\cos \theta, \quad \frac{\partial r}{\partial y}=\frac{y}{r}=\sin \theta \tag{12}
\end{equation*}
$$

and ${ }^{1}$

$$
\begin{equation*}
\frac{\partial \theta}{\partial x}=\frac{-y}{x^{2}+y^{2}}=-\frac{\sin \theta}{r}, \quad \frac{\partial \theta}{\partial y}=\frac{x}{x^{2}+y^{2}}=\frac{\cos \theta}{r} . \tag{13}
\end{equation*}
$$

Now we are ready to use the chain rule as in (3) and (4):

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial u}{\partial x} \cos \theta+\frac{\partial u}{\partial y} \sin \theta \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}=-\frac{\partial u}{\partial x}(r \sin \theta)+\frac{\partial u}{\partial y}(r \cos \theta) . \tag{15}
\end{equation*}
$$

Conversely

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x}=\frac{\partial u}{\partial r} \cos \theta-\frac{\partial u}{\partial \theta}\left(\frac{\sin \theta}{r}\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial y}=\frac{\partial u}{\partial r} \sin \theta+\frac{\partial u}{\partial \theta}\left(\frac{\cos \theta}{r}\right) \tag{17}
\end{equation*}
$$

Exercise: From (16) and (17) we can write the derivative operations $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ as

$$
\begin{equation*}
\frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\left(\frac{\sin \theta}{r}\right) \frac{\partial}{\partial \theta} \quad \frac{\partial}{\partial y}=\sin \theta \frac{\partial}{\partial r}+\left(\frac{\cos \theta}{r}\right) \frac{\partial}{\partial \theta} \tag{18}
\end{equation*}
$$

Use the expression for $\frac{\partial}{\partial x}$ on $\frac{\partial u}{\partial x}$ in (16) to find $u_{x x}$ in terms of $u_{r r}, u_{r \theta}, u_{\theta \theta}$ and u_{r} and u_{θ}. Do the same to find $u_{y y}$. Then show

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} \tag{19}
\end{equation*}
$$

[^0]
4 Laplace's equation: changing from Cartesian to polar coordinates

Laplace's equation (a partial differential equation or PDE) in Cartesian co-ordinates is

$$
\begin{equation*}
u_{x x}+u_{y y}=0 . \tag{20}
\end{equation*}
$$

We would like to transform to polar co-ordinates. In the handout on the chain rule (side 2) we found that the x and y-derivatives of u transform into polar co-ordinates in the following way:

$$
\begin{equation*}
u_{x}=(\cos \theta) u_{r}-\left(\frac{\sin \theta}{r}\right) u_{\theta} \quad \quad u_{y}=(\sin \theta) u_{r}+\left(\frac{\cos \theta}{r}\right) u_{\theta} . \tag{21}
\end{equation*}
$$

Likewise the operation $\frac{\partial}{\partial x}$ becomes

$$
\begin{equation*}
\frac{\partial}{\partial x}=(\cos \theta) \frac{\partial}{\partial r}-\left(\frac{\sin \theta}{r}\right) \frac{\partial}{\partial \theta} \tag{22}
\end{equation*}
$$

and the operation $\frac{\partial}{\partial y}$ becomes

$$
\begin{equation*}
\frac{\partial}{\partial y}=(\sin \theta) \frac{\partial}{\partial r}+\left(\frac{\cos \theta}{r}\right) \frac{\partial}{\partial \theta} . \tag{23}
\end{equation*}
$$

Hence

$$
\begin{equation*}
u_{x x}=\frac{\partial u_{x}}{\partial x}=\underbrace{\left[(\cos \theta) \frac{\partial}{\partial r}-\left(\frac{\sin \theta}{r}\right) \frac{\partial}{\partial \theta}\right]}_{\frac{\partial}{\partial x} \text { from }(22)} \underbrace{\left[(\cos \theta) u_{r}-\frac{\sin \theta}{r} u_{\theta}\right]}_{u_{x} \text { from }(21)} . \tag{24}
\end{equation*}
$$

Now we work this out using the product rule. Remember that u_{r} and u_{θ} are functions of both r and θ. We get

$$
\begin{equation*}
u_{x x}=\left(\cos ^{2} \theta\right) u_{r r}+\left(\frac{\sin ^{2} \theta}{r}\right) u_{r}+2\left(\frac{\cos \theta \sin \theta}{r^{2}}\right) u_{\theta}-2\left(\frac{\cos \theta \sin \theta}{r}\right) u_{r \theta}+\left(\frac{\sin ^{2} \theta}{r^{2}}\right) u_{\theta \theta} . \tag{25}
\end{equation*}
$$

Now we do the same for $u_{y y}$ to get

$$
\begin{equation*}
u_{y y}=\frac{\partial u_{y}}{\partial y}=\underbrace{\left[(\sin \theta) \frac{\partial}{\partial r}+\left(\frac{\cos \theta}{r}\right) \frac{\partial}{\partial \theta}\right]}_{\frac{\partial}{\partial y} \text { from }(23)} \underbrace{\left[(\sin \theta) u_{r}+\frac{\cos \theta}{r} u_{\theta}\right]}_{u_{y} \text { from }(21)} \tag{26}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
u_{y y}=\left(\sin ^{2} \theta\right) u_{r r}+\left(\frac{\cos ^{2} \theta}{r}\right) u_{r}-2\left(\frac{\cos \theta \sin \theta}{r^{2}}\right) u_{\theta}+2\left(\frac{\cos \theta \sin \theta}{r}\right) u_{r \theta}+\left(\frac{\cos ^{2} \theta}{r^{2}}\right) u_{\theta \theta} . \tag{27}
\end{equation*}
$$

Summing (25) and (27) and remembering that $\cos ^{2} \theta+\sin ^{2} \theta=1$, we find that

$$
\begin{equation*}
u_{x x}+u_{y y}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} \tag{28}
\end{equation*}
$$

and so Laplace's equation converts to

$$
\begin{equation*}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 . \tag{29}
\end{equation*}
$$

[^0]: ${ }^{1}$ Note that $\frac{\partial r}{\partial x}=\cos \theta$ whereas $\frac{\partial x}{\partial r}=\cos \theta$, illustrating Item 3 at the bottom of the previous page.

