User’s Guide for TWPBVP:
A Code for Solving Two-Point Boundary Value Problems

J. R. Cash
Department of Mathematics
Imperial College
London, England
e-mail: j.cash@ic.ac.uk

Margaret H. Wright
AT&T Bell Laboratories
Murray Hill, New Jersey
USA
e-mail: mhw@research.att.com

1 Introduction

The code TWPBVP (written in Fortran 77) is designed for the numerical solution of the two-point boundary value problem

\[
\frac{du}{dx} = f(x, u), \quad a \leq x \leq b,
\]
\[
g_i(u(a)) = 0, \quad i = 1, \ldots, p; \quad g_i(u(b)) = 0, \quad i = p + 1, \ldots, n,
\]

where \(x \in \mathbb{R} \), \(u \in \mathbb{R}^n \), \(g_i \in \mathbb{R} \) for \(1 \leq i \leq n \), and \(0 \leq p \leq n \). The functions \(f \) and \(\{g_i\} \) are assumed to be differentiable. The method used in TWPBVP is a deferred correction method based on mono-implicit Runge-Kutta formulas and adaptive mesh refinement. For details about the method, see [Cash86, Cash88, CW90, CW91].

Two aspects of the formulation (1)–(2) should be noted:

1. The problem must be posed as a first-order system. This requirement is not unduly restrictive, however, since standard techniques can be used to convert an \(n \)th-order equation to a system of \(n \) first-order equations. For example, the second-order problem

\[
y'' = f(x, y, y'), \quad 0 \leq x \leq 1, \quad y(0) = \alpha, \quad y(1) = \beta,
\]

can be converted to the following first-order system:

\[
\begin{align*}
 u' &= z \quad u(0) = \alpha \\
 z' &= f(x, u, z) \quad u(1) = \beta.
\end{align*}
\]

2. The boundary conditions must be separated. TWPBVP allows all the boundary conditions to be imposed at one end of the interval \([a, b]\), so that initial value problems are handled as a special case. It is hoped to extend TWPBVP to handle non-separated boundary conditions; see [AMR88] for a discussion of techniques that allow some non-separated boundary conditions to be converted to the separated form needed here.

2 Formal parameters

The calling sequence for TWPBVP is
subroutine twpbvp(ncomp, nlbc, nucol, aleft, aright,
 * nfxpnt, fixpnt, ntol, ltol, tol,
 * linear, givmsh, giveu, nmsh,
 * xx, nudim, u, nmax,
 * lwrkfl, wrk, lwrkin, iwrk,
 * fsub, dfsub, gsub, dgsub, iflbvp)

We now describe the formal parameters.

ncomp - Integer, input. ncomp is the number of first-order differential equations (n in (1)), and is the number of components of u at each mesh point. ncomp must be positive.

nlbc - Integer, input. nlbc is the number of boundary conditions at the left endpoint (p in (2)). nlbc must be nonnegative and must not exceed ncomp. If nlbc = ncomp, all the boundary conditions occur at the left endpoint, so the problem is an initial value problem. If nlbc is zero, all the boundary conditions occur at the right endpoint.

nucol - Integer, input. nucol is the declared column dimension of the two-dimensional array u used to store the computed solution (see the discussion below of the parameter u). nucol must be positive, and is an upper bound on nmax, the maximum allowed number of mesh points. In the specification of nmax, below, the actual formula for computing nmax is given. In order to make full use of the floating-point workspace, the user should select nucol equal to nmax.

aleft - Floating-point, input. The left endpoint of the interval of interest (the quantity a in (1)).

aright - Floating-point, input. The right endpoint of the interval of interest (the value b in (1)). aright must strictly exceed aleft.

nfxpnt - Integer, input. The number of “fixed points”, i.e., points that must be included in every mesh in addition to the endpoints a and b. nfxpnt must be nonnegative, and may be zero. If nfxpnt = 0, only the two endpoints are required to appear in every mesh.

fixpnt - Floating-point array of size at least nfxpnt, input. If nfxpnt = 0, the fixpnt array must still be declared, say as dimension fixpnt(1), but is never accessed. If nfxpnt > 0, the fixpnt array contains nfxpnt fixed points that the user wishes to be included in every mesh. fixpnt(1) must strictly exceed aleft; for 1 ≤ i ≤ nfxpnt − 1, fixpnt(i + 1) must strictly exceed fixpnt(i); and fixpnt(nfxpnt) must be strictly less than aright.

ntol - Integer, input. The number of tolerances used to determine termination of twpbvp, i.e., the number of components whose estimated accuracy is to be tested. ntol must be positive.

ltol - Integer array of size ntol, input. For each i, ltol(i) gives the index of the component of the computed solution u controlled by the ith tolerance. For example, if ntol = 2, ltol(1) = 2 and ltol(2) = 3, then component 2 of u is controlled by tol(1) and component 3 is controlled by tol(2); see below for a description of tol. Each element of ltol must be an integer between 1 and ncomp.

tol - Floating-point array of size ntol, input. For each i, tol(i) gives the ith error tolerance used in performing termination tests. For each i = 1,...,ntol, the code attempts at each mesh point x_k to approximate the true (unknown) solution u(x_k) by a quantity u_k such that

\[
\frac{|u_k^j - u^j(x_k)|}{\max(1,|u_k^j|)} < \text{tol}(i)
\]

for each i = 1,...,ntol and j = ltol(i), where u_k^j denotes component j of u_k. Relation (3) is a mixed relative/absolute error criterion of the type normally used for solving differential equations.
linear - Logical, input. If linear is .true., the problem is treated as linear. If linear is
.false., the problem is solved as nonlinear. Note that different algorithmic strategies are used
for linear and nonlinear problems; hence, if one solves the same linear problem twice, with
linear set to .true. and then to .false., the computed solutions and meshes may well be
different, although both solutions should satisfy the same overall error criterion.

givmsh - Logical, input. If givmsh is .true., the user must define two parameters: nmsh and
the xx array; see below. If givmsh is true., nmsh must contain a positive number of initial
mesh points, and xx must contain these mesh points. If givmsh is .false., the user need not
specify nmsh or xx, which are chosen by default; see the explanations below of nmsh and xx.

giveu - Logical, input. If giveu is .false, the code sets the initial trial solution at all mesh
points to the constant value uval0, which is contained in the labeled common area algprs;
the default value of uval0, set in a block data routine, is zero. To change uval0, the user
should include the labeled common area algprs in the calling routine and set uval0 to the
desired value; see Section 3.

If giveu is .true., giveu must also be set to .true. When giveu is .true., the user must
set nmsh to the initial number of mesh points, xx to the initial array of mesh points, and
u(i,j), i = 1,...,ncomp and j = 1,...,nmsh, to the initial trial solution at these mesh points.
However, if the first Newton procedure fails with these values for xx and u, the code reverts
to setting all components of the initial trial solution to uval0 for the next mesh.

nmsh - Integer, optional input and output. If the parameter givmsh is .true., the user must set
nmsh to the positive initial number of mesh points (including the two endpoints). If givmsh
is .false., the user need not set nmsh. If givmsh is .false., the initial value of nmsh is
set to the greater of nfxpnt+2 and nminit, an integer in the labeled common area algprs.
(The default value of nminit is set in a block data routine to 7; see Section 3.) To specify
another initial value for nmsh without specifying the initial mesh points, the user can include
the labeled common algprs in the calling routine and set nminit to the desired value; see Section 3.

On output, nmsh contains the final number of mesh points.

xx - Floating-point array, of size nmax (see below; nmax cannot exceed nucol), optional input
and output. When givmsh is .false., the initial mesh xx is defined as follows. If nfxpnt = 0,
the initial mesh contains nmsh points equally spaced in [aleft, aright]. If nfxpnt > 0, the
initial mesh contains (if possible) a total of nmsh points. These points are equally spaced
in each subinterval [aleft, fixpnt(1)], [fixpnt(1), fixpnt(2)], ..., [fixpnt(nfxpnt), aright].

If givmsh is .true., the user must define the xx array on input as an initial mesh of strictly
increasing values, with xx(1) = aleft and xx(nmsh) = aright. If nfxpnt > 0 and the user
sets the initial mesh, the desired fixed points must be included in the xx array, since the
code performs no tests to check for their inclusion! If givmsh is .false., nmsh is set to the
maximum of nfxpnt+2 and nminit as defined in the labeled common area algprs.

On output, xx contains the final array of nmsh mesh points.

nudim - Integer, input. nudim is the declared row dimension of the array u. nudim must be
greater than or equal to ncomp.

u - Floating-point array, of declared size (nudim, nucol), and of conceptual size (ncomp, nmsh),
where ncomp is the number of components and nmsh is the number of mesh points. The u array
is an optional input parameter, and an output parameter. If giveu (see above) is .false.,
the u array need not be set by the user.

If giveu is .true., the user must provide an initial array u(i,j), i = 1,...,ncomp and j =
1,...,nmsh, corresponding to the desired initial trial solution, where nmsh is the user-specified
number of initial mesh points. In this case, \(u(\ast,1) \) corresponds to the estimated solution at \(a_{\text{left}} \), and \(u(\ast,n_{\text{msh}}) \) corresponds to the estimated solution at \(a_{\text{right}} \).

nmax - Integer, output. \(n_{\text{max}} \) is the maximum number of mesh points possible with the given values of \(n_{\text{comp}}, n_{\text{tol}}, lwrkfl \) (size of floating-point workspace), \(lwrkin \) (size of integer workspace) and \(nucol \). (See below for the descriptions of \(lwrkfl \) and \(lwrkin \).) \(n_{\text{max}} \) can be no larger than the input parameter \(nucol \). When the value of \(lwrkfl \) is much greater than \(n_{\text{comp}}^2 \), the maximum number of mesh points allowed by the floating-point workspace limit is

\[
\frac{lwrkfl - 5(n_{\text{comp}} + n_{\text{comp}}^2) - 2n_{\text{tol}} - 9n_{\text{comp}}}{4(n_{\text{comp}} + n_{\text{comp}}^2) + 12n_{\text{comp}} + 3}
\]

When \(lwrkin \) is much greater than \(n_{\text{comp}} \), the maximum number of mesh points allowed by the integer workspace limit is \(\frac{lwrkin - n_{\text{comp}}}{n_{\text{comp}} + 2} \).

The value of \(n_{\text{max}} \) is calculated in \texttt{twpbvp}, and is not allowed to exceed \(nucol \). The user can determine the exact maximum number of mesh points corresponding to specified values of \(n_{\text{comp}}, lwrkfl \) and \(lwrkin \) by calling \texttt{twpbvp} with \(nucol = 1 \) and the parameter \(iprint \) set to 0 (its default value) or 1; see below for a discussion of \(iprint \).

lwrkfl - Integer, input. The size of the user-provided floating-point workspace array \(wrk \).

wrk - Floating-point array of size \(lwrkfl \), input. User-provided floating-point workspace, used to store intermediate values.

lwrkin - Integer, input. The size of the user-provided integer workspace array \(iwrk \).

iwrk - Integer array of size \(lwrkin \), input. User-provided integer workspace, used to store intermediate values.

fsub - Name of user-provided subroutine. \(fsub \) must be declared \texttt{external} in the calling routine. \(fsub \) defines the function \(f \) in the formulation (1) of the system of first-order differential equations. \(fsub \) must have the following declaration:

\[
\text{subroutine fsub(ncomp, x, u, f)}
\]

\(n_{\text{comp}} \) (input to \(fsub \)) is the number of components of \(u \);

\(x \) (input to \(fsub \)) is a floating-point scalar;

\(u \) (input to \(fsub \)) is a floating-point array of size \(n_{\text{comp}} \);

\(f \) (output from \(fsub \)) is a floating-point array of dimension \(n_{\text{comp}} \). On exit from \(fsub \), the array \(f \) must contain the \(n_{\text{comp}} \)-dimensional vector \(f \) whose \(i \)th component is the value of the \(i \)th component of the vector \(f \) of (1) evaluated at \(x \) and \(u \).

dfsib - Name of user-provided subroutine. \(dfsib \) must be declared \texttt{external} in the calling routine. \(dfsib \) calculates the Jacobian matrix of \(f \) as defined by the subroutine \(fsub \). \(dfsib \) must have the following declaration:

\[
\text{subroutine dfsib(ncomp, x, u, df)}
\]

\(n_{\text{comp}} \) (input to \(dfsib \)) is the number of components of \(u \);

\(x \) (input to \(dfsib \)) is a floating-point scalar;

\(u \) (input to \(dfsib \)) is a floating-point array of dimension \(n_{\text{comp}} \);

\(df \) (output from \(dfsib \)) is an \(n_{\text{comp}} \) by \(n_{\text{comp}} \) floating-point array whose declared row dimension in the routine \(dfsib \) must be \(n_{\text{comp}} \). On exit from \(dfsib \), the array \(df \) must contain the \(n_{\text{comp}} \) by \(n_{\text{comp}} \) Jacobian matrix of \(f \) from (1) (\(f \) of \(fsub \)) with respect to \(u \), namely \(df(i,j) \) is the partial derivative of the \(i \)th function \(f_i \) with respect to the \(j \)th component of \(u \).
gsub - Name of user-provided subroutine. *gsub* must be declared *external* in the calling routine.
gsub is called *ncomp* times each time the boundary conditions are calculated; the *i*th call to
gsub defines the *i*th function \(g_i(\cdot) \) in the boundary conditions of (2). *gsub* must have the
following declaration:

```fortran
subroutine gsub(i, ncomp, u, g)
  i (input to gsub) is an integer ranging from 1 to ncomp;
  ncomp (input to gsub) is the number of components of \( u \);
  u (input to gsub) is a floating-point array of dimension \( ncomp \);
  g (output from gsub) is a floating-point scalar. On exit from the
  \( i \)th call to gsub, the value
  of \( g \) must contain the value of the function \( g_i \) from (2) that defines the
  \( i \)th boundary condition evaluated at \( u \).
```

dgsub - Name of user-provided subroutine. *dgsub* must be declared *external* in the calling
routine. *dgsub* calculates the Jacobian matrices corresponding to the functions \(g_i \) of (2) and
gsub that define the boundary conditions. *dgsub* must have the following declaration:

```fortran
subroutine dgsub(i, ncomp, u, dg)
  i (input to dgsub) is an integer ranging from 1 to ncomp;
  ncomp (input to dgsub) is the number of components of \( u \);
  u (input to dgsub) is a floating-point array of dimension \( ncomp \);
  dg (output from dgsub) is a floating-point array of dimension \( ncomp \). On exit from the
  \( i \)th call of dgsub, the vector \( dg \) must contain the \( ncomp \) partial derivatives of the \( i \)th function
  \( g_i \) of (2) with respect to \( u \).
```

iflbvp - Integer, output. *iflbvp* indicates the result of *twpbvp*. If the routine has terminated
with apparent success, *iflbvp* = 0. If one of the input parameters is invalid, *iflbvp* = −1. If
the number of mesh points needed for the next iteration would exceed \(nmax \), then *iflbvp* = 1.

3 Related parameters

Some other parameters that may be of interest to the user, but do not occur in the formal declaration
of *twpbvp*, are stored in the labeled common area *algprs*, whose declaration is

```fortran
logical pdebug
common/algprs/ ninit, pdebug, iprint, idum, uval0
```

Any of the parameters in *algprs* may be changed by the user by including this labeled common
in the calling routine and setting the value as desired.

The value of the integer *ninit* is discussed above under the formal parameter *nmsh*. *ninit*
specifies the default initial number of mesh points, and, if not altered, is set to 7.

pdebug is a logical variable whose default value is .false.; if *pdebug* is set to .true., an
extensive debug printout will occur during execution of *twpbvp*.

iprint is an integer variable controlling the amount of non-debug printout. Its default value is
zero, which means that some intermediate printing occurs (each Newton iteration, each change of
mesh, and so on; see the example output in Section 5.3). If *iprint* is set to 1, more printing occurs.
If *iprint* is set to −1, no printing at all occurs in *twpbvp*. Values of *iprint* other than 0, 1 and −1
are invalid.

idum is a dummy integer value needed only for common alignment. It serves no purpose in the
algorithm.

uval0 is a floating-point value that defines the initial value of the trial solution when *giveu* is
.false., or in some instances when an intermediate Newton process fails. Unless changed by the
user, the default value of $uval0$ is zero. The user may wish to change $uval0$ if $u = 0$ is inappropriate for some reason—for example, the function f in (1) is undefined for $u = 0$.

The user should also look at the routine d1mach (which is provided automatically via netlib). The variables specified in this routine describe machine precision and may need to be changed depending on which machine is being used.

4 Suggestions for difficult problems

For difficult, nonlinear singular perturbation problems, the code TWPBVP may experience severe difficulties in obtaining convergence for the Newton iteration scheme. In such circumstances two approaches may be helpful. The first is to experiment with different initial meshes. This can involve using a different number of equally spaced points (by changing the default value of the parameter nminit; see Section 3), or, alternatively, trying a graded mesh in which extra mesh points are placed in regions of known or suspected difficulty.

A second possibility is to use continuation, which is particularly appropriate if a small parameter is associated with the given problem. For example, a large class of important singular perturbation problems appear in the form

$$
\epsilon y'' = f(x, y, y'),
$$

where ϵ is a very small parameter. An often-successful strategy for solving such problems is to begin with a relatively large value of ϵ, and then to solve a sequence of problems with ϵ steadily decreasing to the required value. The power of this approach comes from the fact that information regarding meshes and solution values can be passed from one problem to the next. Continuation is fully described in [AMR88]. J. R. Cash, one of the authors of TWPBVP, and R. W. Wright have developed an automatic continuation code that can be made available (with no guarantees) to interested users. For a copy of this continuation code e-mail either j.cash or r.wright@ic.ac.uk.

5 A sample problem

5.1 Mathematical formulation

Consider a second-order boundary value problem parameterized in terms of ϵ:

$$
\begin{align*}
\epsilon u'' &= -e^u u' + \frac{1}{2} \pi \sin(\frac{1}{2} \pi x) e^{2u}, \quad 0 \leq x \leq 1, \\
u(0) &= 0, \quad u(1) = 0.
\end{align*}
$$

(As ϵ decreases toward zero, (4) becomes more difficult to solve numerically.) In order to apply TWPBVP to (4), it must be converted to a system of two first-order equations:

$$
\begin{align*}
u' &= z, \\
z' &= \frac{1}{\epsilon} \left(-e^u z + \frac{1}{2} \pi \sin(\frac{1}{2} \pi x) e^{2u} \right),
\end{align*}
$$

with $u(0) = 0$ and $u(1) = 0$.

Suppose now that we wish to solve (5) with $\epsilon = 10^{-2}$, and to achieve an accuracy of approximately 10^{-6} in the value of u only. We shall provide neither an initial mesh nor an initial guess for the solution. The problem is to be solved on a machine with IEEE arithmetic, and hence double precision is used (approximately 16 decimal digits).

5.2 Sample Fortran routines

The following Fortran 77 main program calls twpbvp with the user-specified parameters given above. The subroutines fsub, dfsub, gsub and dgsu define the function f and the boundary conditions g_1 and g_2 for problem (5).
5.2 Sample Fortran routines

implicit double precision (a-h,o-z)
dimension fixpnt(2), ltol(2), tol(2)
dimension u(2, 1000), xx(1000)
dimension wrk(10000), iwrk(6000)
character*30 pname

logical linear, giveu, givmsh
external fsub, dfsub, gsub, dgsub

* The value of eps represents the parameter epsilon appearing in the test problem.
common/probs/eps, pi

logical pdebug
common/algprs/ nminit, pdebug, iprint, idum, uval0

* blas: dload
* double precision datan

parameter (one = 1.0d+0, zero = 0.0d+0, ten = 10.0d+0)
pi = 4.0d+0*datan(one)
pname = 'Test problem with eps = .01'
eps = 1.0d-2
nudim = 2
lwrkfl = 10000
lwrkin = 6000
nucol = 1000

ncomp = 2
nlbc = 1
ntol = 1
ltol(1) = 1
tol(1) = 1.0d-2
nfxpnt = 0

aleft = zero
aright = one

linear = .false.
giveu = .false.
givmsh = .false.

call twpbvp(ncomp, nlbc, nucol, aleft, aright,
* nfxpnt, fixpnt, ntol, ltol, tol,
* linear, givmsh, giveu, nmsh,
* xx, nudim, u, nmax,
* lwrkfl, wrk, lwrkin, iwrk,
* fsub, dfsub, gsub, dgsub, iflbvp)
write(6,771) pname
write(6,772) ncomp, nlbc, ntol
write(6,773) aleft, aright
if (linear) write (6,774)
if (.not. linear) write(6,775)
if (nfxpnt > 0) write(6,776) nfxpnt
write(6,777) (ltol(i), i=1,ntol)
write(6,778) (tol(i), i=1,ntol)
if (iflbvp .eq. 0) then
 write(6,901) nmsh
 if (nmsh < 25) then
 iminc = 1
 elseif (nmsh < 75) then
 iminc = 5
 elseif (nmsh < 200) then
 iminc = 10
 elseif (nmsh < 1000) then
 iminc = 20
 else
 iminc = 50
 endif
 do 100 i = 1, nmsh-1, iminc
 write(6,900) i, xx(i), (u(j,i), j=1,ncomp)
 100 continue
write(6,900) nmsh, xx(nmsh), (u(j,nmsh), j=1,ncomp)
endif
stop
771 format(1h ,a30)
772 format(1h ,'ncomp=',i5,5x,'nlbc=',i5,5x,'ntol=',i5)
773 format(1h ,'aleft =',1pe11.3,5x,'aright=',1pe11.3)
774 format(1h ,'solved as a linear problem')
775 format(1h ,'solved as a nonlinear problem')
776 format(1h ,'nfxpnt =',i5)
777 format(1h ,'tol =',5x,5i5)
778 format(1h ,'tolerances',5(1pe11.3))
900 format(1h ,14,5(1pe14.6))
901 format(1h ,'final solution, nmsh =',i8)
end

subroutine fsub(ncomp, x, u, f)
implicit double precision (a-h,o-z)
dimension u(*), f(*)
common/probs/eps, pi
double precision dexp, dsin
nonlinear problem 1
f(1) = u(2)
f(2) = (-dexp(u(1))*u(2) +
 half*pi*dsin(half*pi*x)*dexp(two*u(1)))/eps
5.3 Sample output

The complete output produced by running this example on an SGI 4D/240S with 25 MHz MIPS R3000 cpu chip, under IRIX System V release 3.3.1, with binary IEEE arithmetic, is given next.
REFERENCES

<table>
<thead>
<tr>
<th>iter</th>
<th>alfa</th>
<th>merit</th>
<th>rnsq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.404E-01</td>
<td>5.077E+01</td>
<td>4.582E+03</td>
</tr>
<tr>
<td>1</td>
<td>4.809E-01</td>
<td>1.320E+02</td>
<td>1.488E+03</td>
</tr>
<tr>
<td>2</td>
<td>9.617E-01</td>
<td>7.193E+02</td>
<td>1.743E+02</td>
</tr>
<tr>
<td>3</td>
<td>1.000E+00</td>
<td>8.279E+04</td>
<td>1.722E+02</td>
</tr>
<tr>
<td>4</td>
<td>3.271E-03</td>
<td>4.623E+05</td>
<td>1.719E+02</td>
</tr>
</tbody>
</table>

<p>| smpmsh, new nmsh = | 40 |</p>
<table>
<thead>
<tr>
<th>iter</th>
<th>alfa</th>
<th>merit</th>
<th>rnsq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000E+00</td>
<td>1.506E+02</td>
<td>6.596E+01</td>
</tr>
<tr>
<td>1</td>
<td>1.000E+00</td>
<td>5.433E+00</td>
<td>4.495E+00</td>
</tr>
<tr>
<td>2</td>
<td>1.000E+00</td>
<td>2.004E-03</td>
<td>8.292E-04</td>
</tr>
<tr>
<td>3</td>
<td>1.000E+00</td>
<td>1.627E-10</td>
<td>6.306E-11</td>
</tr>
</tbody>
</table>

Convergence, iter = 4, rnsq = 6.306E-11
fixed Jacobian convergence 1 1.187E-10

final solution, nmsh = 40

<table>
<thead>
<tr>
<th>i mesh point</th>
<th>u(1)</th>
<th>u(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000000E+00</td>
<td>0.000000E+00</td>
</tr>
<tr>
<td>6</td>
<td>4.166667E-02</td>
<td>-6.130136E-01</td>
</tr>
<tr>
<td>11</td>
<td>8.333333E-02</td>
<td>-6.638966E-01</td>
</tr>
<tr>
<td>16</td>
<td>1.250000E-01</td>
<td>-6.655629E-01</td>
</tr>
<tr>
<td>21</td>
<td>1.666667E-01</td>
<td>-6.596432E-01</td>
</tr>
<tr>
<td>26</td>
<td>2.083333E-01</td>
<td>-6.508858E-01</td>
</tr>
<tr>
<td>31</td>
<td>2.500000E-01</td>
<td>-6.398296E-01</td>
</tr>
<tr>
<td>36</td>
<td>6.666667E-01</td>
<td>-3.986648E-01</td>
</tr>
<tr>
<td>40</td>
<td>1.000000E+00</td>
<td>-2.509872E-30</td>
</tr>
</tbody>
</table>

References

