Some mathematical models in neuroscience

María J. Cáceres
Mathematical models to describe the membrane potential

• **Synapse**: Specialized junctions through which neurons signal to each other and to non-neuronal cells such as those in muscles or glands

• **Crucial** to the biological computations that underlie perception and thought

• A **huge number** in human brain:
 ◦ 10^{16} in young children
 ◦ $10^{15} - 5 \times 10^{15}$ for adults

• It happens at the level of the **membranes of the cells**
Mathematical models to describe the membrane potential

How to model membrane potential?

• Membrane potential is the electric potential difference across a cell’s plasma membrane
• Membrane is polarized due to different charges inside and outside of the cell
• Influences in the membrane potential:
 ◦ Permeability of the different ions
 ◦ Different concentrations of the different ions
 ◦ Ion pumps

Membrane potential can be modeled as an electric circuit
Mathematical models to describe the membrane potential

Different scales

- **Microscopic** (Particle Description): Is a very huge number
- **Mesoscopic** (Kinetic Description): $f(t, x, \nu)$ Particle density at time t in variables (x, ν) (in kinetic theory: position x with velocity ν)
- **Macroscopic** (Hydrodynamic Description): System for the macroscopic quantities: momentum of f (in kinetic theory: density, momentum and temperature)
Outline

• Background

• Mesoscopic models

 ◆ Nonlinear Noisy Leaky Integrate and Fire (NNLIF)
 ○ Blow-up
 ○ Steady states
 ○ Delay
 ○ Refractory state
 ○ Spontaneous activity
 ○ Excitatory-inhibitory populations

• Conclusion
How to model membrane potential?

Membrane potential can be modeled as an electric circuit.
How to model membrane potential?

Neuronal model of L. Lapicque (1907)

\[V = RI \]

- **V**: Potential difference (Volts)
- **R**: Electrical Resistance (Ohms)
- **I**: Electric Current (Amperes)
How to model membrane potential?

Neuronal model of L. Lapicque (1907)

\[V = RI \]

- \(V \) Potential difference (Volts)
- \(R \) Electrical Resistance (Ohms)
- \(I \) Electric Current (Amperes)

Rewritten as:

\[CV = I \quad C = \frac{1}{R} \]

- \(C \) Electrical Conductance (Siemens)
How to model membrane potential?

Neuronal model of L. Lapicque (1907)

\[V = RI \]

- \(V \): Potential difference (Volts)
- \(R \): Electrical Resistance (Ohms)
- \(I \): Electric Current (Amperes)

Rewritten as:

\[CV = I \quad C = \frac{1}{R} \]

- \(C \): Electrical Conductance (Siemens)

Therefore, the evolution in time:

\[C \frac{dV}{dt} = \frac{dI}{dt} \]
How to model membrane potential?

Neuronal model of L. Lapicque (1907)

\[V = RI \]

- \(V \) Potential difference (Volts)
- \(R \) Electrical Resistance (Ohms)
- \(I \) Electric Current (Amperes)

Rewritten as:

\[CV = I \]

\[C = \frac{1}{R} \]

- \(C \) Electrical Conductance (Siemens)

Therefore, the evolution in time:

\[C \frac{dV}{dt} = \frac{dI}{dt} \]

equivalently

\[C_m \frac{dV}{dt} = I_{\text{apply}} \]

\[C_m \]

- \(C_m \) Capacitance (Faraday)

\[I_{\text{apply}} \]

- \(I_{\text{apply}} \) Applied Current (Amperes)
How to model membrane potential?

\[C_m \frac{dV}{dt} = I_{\text{apply}} \]

Who is \(I_{\text{apply}} \)?
Microscopic level: different models

• Integrate-and-Fire model
 ◦ Simple case: 1 neuron
 ◦ A set of neurons

• Conductance-Integrate-and-fire model

Other models: Hodgkin-Huxley, FitzHugh-Nagumo, Morris-Lecar
...
Recall the equation for the membrane potential

\[C_m \frac{dV}{dt} = I_{\text{apply}} \]

considering \(I_{\text{apply}} = -I_L + I \)

\[I_L = g_L(V - V_L) \]

- \(g_L \) leak conductance
- \(V_L \) resting potential
Noisy Leaky Integrate-and-fire model

\[C_m \frac{dV}{dt} = -g_L(V - V_L) + I \]

Calling \[\tau_m = C_m/g_L \approx 2ms \]
Noisy Leaky Integrate-and-fire model

\[\tau_m \frac{dV}{dt} = -(V - V_L) + \frac{I}{g_L} \]
Noisy Leaky Integrate-and-fire model

\[\tau_m \frac{dV}{dt} = -(V - V_L) + \frac{I}{g_L} \]

- There are firing times \(t_{\text{spike}} \): \(V(t_{\text{spike}}) = V_{\text{threshold}} \)
- Immediately after \(t_{\text{spike}} \) the potential is reset: \(V(t_{\text{spike}}^+) = V_{\text{reset}} \)
- \(V_L < V_{\text{reset}} < V_{\text{threshold}} \)
- Typically \(V_L \approx -70\,\text{mV} \), \(V_{\text{reset}} \approx -60\,\text{mV} \) and \(V_{\text{threshold}} \approx -50\,\text{mV} \)
Noisy Leaky Integrate-and-fire model

\[
\tau_m \frac{dV}{dt} = -(V - V_L) + \frac{I}{g_L}
\]

- There are firing times \(t_{spike} \): \(V(t_{spike}) = V_{\text{threshold}} \)
- Immediately after \(t_{spike} \) the potential is reset: \(V(t_{spike}^+) = V_{\text{reset}} \)
- \(V_L < V_{\text{reset}} < V_{\text{threshold}} \)
- Typically \(V_L \approx -70\,\text{mV} \), \(V_{\text{reset}} \approx -60\,\text{mV} \) and \(V_{\text{threshold}} \approx -50\,\text{mV} \)
Noisy Leaky Integrate-and-fire model

\[\tau_m \frac{dV}{dt} = -(V - V_L) + \frac{I}{g_L} \]

- There are firing times \(t_{\text{spike}} \): \(V(t_{\text{spike}}) = V_{\text{threshold}} \)
- Immediately after \(t_{\text{spike}} \) the potential is reset: \(V(t_{\text{spike}}^+) = V_{\text{reset}} \)
- \(V_L < V_{\text{reset}} < V_{\text{threshold}} \)
- Typically \(V_L \approx -70\, \text{mV} \), \(V_{\text{reset}} \approx -60\, \text{mV} \) and \(V_{\text{threshold}} \approx -50\, \text{mV} \)

How is \(I(t) \) modelled?

- \(I(t) \): Interactions of the neuron with the network (synapse)
- Each neuron spikes \(\sim \) spike trains (stochastic process)
Statistical Description

- **Microscopic (Particle Description):** Is a very huge number
- **Mesoscopic (Kinetic Description):** $f(t, x, v)$ Particle density at time t in variables (x, v)
- **Macroscopic (Hydrodynamic Description):** System for the macroscopic quantities: momentum of f
Some mesoscopic models: PDE models

The unknown, p, is the probability of finding a neuron at time t

- If spike trains follow Poisson processes \leadsto Nonlinear Fokker-Planck equations
 - $p(v, t)$ is the probability of finding a neuron at time t with voltage v
Some mesoscopic models: PDE models

The unknown, p, is the probability of finding a neuron at time t

- If spike trains follow Poisson processes \leadsto Nonlinear Fokker-Planck equations
 - $p(v, t)$ is the probability of finding a neuron at time t with voltage v

Some mesoscopic models: PDE models

The unknown, p, is the probability of finding a neuron at time t

- If spike trains follow Poisson processes \sim Nonlinear Fokker-Planck equations
 - $p(v, t)$ is the probability of finding a neuron at time t with voltage v

- If spike trains follow point processes \sim age-structured partial differential equations
 - (Pakdaman-Perthame-Salort)
 - $p(s, t)$ is the probability of finding a neuron at time t with ‘state’ s. ‘state’ is the time elapsed since last spike
Some mesoscopic models: PDE models

The unknown, p, is the probability of finding a neuron at time t

- If spike trains follow Poisson processes \leadsto Nonlinear Fokker-Planck equations
 - $p(v, t)$ is the probability of finding a neuron at time t with voltage v

- If spike trains follow point processes \leadsto age-structured partial differential equations (Pakdaman-Perthame-Salort)
 - $p(s, t)$ is the probability of finding a neuron at time t with ’state’ s. ’state’ is the time elapsed since last spike

Chevallier, preprint
Some mesoscopic models: PDE models

The unknown, p, is the probability of finding a neuron at time t

- If spike trains follow Poisson processes \leadsto Nonlinear Fokker-Planck equations
 - $p(v, t)$ is the probability of finding a neuron at time t with voltage v

- If spike trains follow point processes \leadsto age-structured partial differential equations
 (Pakdaman-Perthame-Salort)
 - $p(s, t)$ is the probability of finding a neuron at time t with 'state' s. 'state' is the time elapsed since last spike

Recently:
Dumont, Henry and Tarniceriu give some relations between both mesoscopic models

Nonlinear Noisy Leaky Integrate and Fire (NNLIF)
(Nonlinear Fokker-Planck equations)
Nonlinear Fokker-Planck equation

\[
\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} [h(v, N(t))p(v, t)] - a(N(t)) \frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t)
\]
Nonlinear Fokker-Planck equation

\[
\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} \left[h(v, N(t))p(v, t) \right] - a(N(t))\frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t)
\]

- \(v \in (-\infty, V_F] \)
- \(h(v, N(t)) = -v + bN \)
- \(a(N) = a_0 + a_1N \quad a_0 > 0, \ a_1 \geq 0 \)
- \(V_{\text{reset}} = V_R \)
Nonlinear Fokker-Planck equation

\[
\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} [h(v, N(t))p(v, t)] - a(N(t)) \frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t)
\]

- \(v \in (-\infty, V_F]\)
- \(h(v, N(t)) = -v + bN\) excitatory/inhibitory network
- \(a(N) = a_0 + a_1N\) \(a_0 > 0, a_1 \geq 0\)
- \(V_{reset} = V_R\)
Nonlinear Fokker-Planck equation

\[\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} \left[h(v, N(t))p(v, t) \right] - a(N(t)) \frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t) \]

- \(v \in (-\infty, V_F] \)
- \(h(v, N(t)) = -v + b N \) excitatory/inhibitory network
- \(a(N) = a_0 + a_1 N \) \(a_0 > 0, a_1 \geq 0 \)
- \(V_{\text{reset}} = V_R \) Boundary conditions
- \(p(V_F, t) = 0 \)
- \(p(-\infty, t) = 0 \)
Nonlinear Fokker-Planck equation

\[
\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} \left[h(v, N(t))p(v, t) \right] - a(N(t)) \frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t)
\]

\begin{itemize}
 \item \(v \in (-\infty, V_F] \)
 \item \(h(v, N(t)) = -v + b N \) excitatory/inhibitory network
 \item \(a(N) = a_0 + a_1 N \quad a_0 > 0, a_1 \geq 0 \)
 \item \(V_{\text{reset}} = V_R \) \underline{Boundary conditions}
 \item \(p(V_F, t) = 0 \)
 \item \(p(-\infty, t) = 0 \)
\end{itemize}

Since \(\int_{-\infty}^{V_F} p(v, t) \, dv = \int_{-\infty}^{V_F} p(0, v) \, dv = 1 \) for all \(t \geq 0 \)

\[
N(t) := -a(N(t)) \frac{\partial p}{\partial v}(V_F, t) \geq 0 \quad V_F = V_{\text{threshold}}
\]
Blow up
Blow up

Theorem (C-Carrillo-Perthame) Assuming:

- $h(v, N) + v \geq bN$, $0 < a_m \leq a(N)$ ($-\infty < v \leq V_F$ and $N \geq 0$)
- $b > 0$ average-excitatory network

If the initial data is concentrated enough around $v = V_F$ there are no global-in-time weak solutions
Blow up

Theorem (C-Carrillo-Perthame) **Assuming:**

- \(h(v, N) + v \geq bN, \ 0 < a_m \leq a(N) \) \((-\infty < v \leq V_F \text{ and } N \geq 0)\)
- \(b > 0 \) average-excitatory network

If the initial data is concentrated enough around \(v = V_F \) there are no global-in-time weak solutions

The solutions blow up when ...

- the initial condition is concentrated enough around \(V_F \), for \(b \) fixed
- \(b \), the connectivity parameter, is large enough, for \(p^0 \) fixed

\[
\int_{-\infty}^{V_F} e^{\mu v} p^0(v) \, dv \geq \frac{e^{\mu V_F} - e^{\mu V_R}}{b \mu} =: \lambda
\]

Choosing \(\mu > \max\left(\frac{V_F}{a_m}, \frac{1}{b}\right) \)
Blow up

Carrillo-González-Gualdani-Schonbek* analyze the global existence of classical solutions

- For inhibitory networks: Global classical solutions
- For excitatory networks: Local well-posedness of classical solutions
- Blow up criterium:

\[T^* = \sup \{ t > 0 : N(t) < \infty \} \]

\(T^* \): maximal existence time
- For inhibitory networks: \(T^* = \infty \)
- For excitatory networks: there exist classical solutions which blow up at finite time \(T^* \) and \(N \) diverges

Blow up

Blow-up

Distribution functions $p(v, t)$ for $a \equiv 1$ and $b = 0.5$ at different times

Case: a unique steady state [video]
Delay avoids blow-up

\[\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} \left[h(v, N(t))p(v, t) \right] - a(N(t)) \frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t)\]

- \(v \in (-\infty, V_F]\)
- \(h(v, N(t)) = -v + bN\)
- \(a(N) = a_0 + a_1N \quad a_0 > 0, a_1 \geq 0\)

Work in progress in collaboration with Ricarda Schneider
Delay avoids blow-up

\[
\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} \left[h(v, N(t-D))p(v, t) \right] - a(N(t-D)) \frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t)
\]

- \(v \in (-\infty, V_F] \)
- \(h(v, N(t-D)) = -v + bN(t-D) \)
- \(a(N(t-D)) = a_0 + a_1 N(t-D) \quad a_0 > 0, a_1 \geq 0 \)

\(D \geq 0 \) is the transmission delay

video

Work in progress in collaboration with Ricarda Schneider
Delay avoids blow-up

Distribution functions $p(v, t)$ and firing rate for $a \equiv 1$ and $b = 0.5$ with different delays

Work in progress in collaboration with Ricarda Schneider
Delay avoids blow-up

Firing rate for $a \equiv 1$ and $b = 1.5$ with $D = 0.1$

Work in progress in collaboration with Ricarda Schneider
Steady states
Steady states

A steady state satisfies

\[
\frac{\partial}{\partial v} \left[(v - V_0(N)) p + a(N) \frac{\partial}{\partial v} p(v) + NH(v - V_R) \right] = 0
\]

in the sense of distributions, with \(H \) being the Heaviside function and \(V_0(N) = bN \).
Steady states

\[p(v) = \frac{N}{a(N)} e^{-\frac{(v-V_0(N))^2}{2a(N)}} \int_{\max(v,V_R)}^{V_F} e^{-\frac{(w-V_0(N))^2}{2a(N)}} \, dw \]
Steady states

\[p(v) = \frac{N}{a(N)} e^{-\frac{(v-V_0(N))^2}{2a(N)}} \int_{\max(v,V_R)}^{V_F} e^{\frac{(w-V_0(N))^2}{2a(N)}} \, dw \]

\[\frac{a(N)}{N} = \int_{-\infty}^{V_F} \left[e^{-\frac{(v-V_0(N))^2}{2a(N)}} \int_{\max(v,V_R)}^{V_F} e^{\frac{(w-V_0(N))^2}{2a(N)}} \, dw \right] \, dv \]
Steady states

\[
p(v) = \frac{N}{a(N)} e^{-\frac{(v-V_0(N))^2}{2a(N)}} \int_{\text{max}(v,V_R)}^{V_F} e^{-\frac{(w-V_0(N))^2}{2a(N)}} \, dw
\]

\[
a(N) = \frac{1}{N} \int_{-\infty}^{V_F} \left[e^{-\frac{(v-V_0(N))^2}{2a(N)}} \int_{\text{max}(v,V_R)}^{V_F} e^{-\frac{(w-V_0(N))^2}{2a(N)}} \, dw \right] \, dv
\]

Linear case: unique stationary state \(p_\infty \) given by

\[
p_\infty(v) = \frac{N_\infty}{a_0} e^{-\frac{v^2}{2a_0}} \int_{\text{max}(v,V_R)}^{V_F} e^{\frac{w^2}{2a_0}} \, dw
\]
Question: Number of solutions for

\[a(N) = \int_{-\infty}^{V_F} \left[e^{-\frac{(v-V_0(N))^2}{2a(N)}} \int_{\max(v,V_R)}^{V_F} e^{\frac{(w-V_0(N))^2}{2a(N)}} \, dw \right] \, dv \]
Steady states

Change of variables:

\[z = \frac{v - V_0}{\sqrt{a}}, \quad u = \frac{w - V_0}{\sqrt{a}}, \quad w_F = \frac{V_F - V_0}{\sqrt{a}}, \quad w_R = \frac{V_R - V_0}{\sqrt{a}} \]

\[
\begin{cases}
 \frac{1}{N} = I(N), \\
 I(N) := \int_{-\infty}^{w_F} \left[e^{-\frac{z^2}{2}} \int_{\max(z,w_R)}^{w_F} e^{\frac{u^2}{2}} du \right] dz
\end{cases}
\]

In the case \(h(v, N) = bN - v, \quad a(N) = a_0 \) and \(V_0(N) = bN \), we can rewrite \(I(N) \) as

\[
I(N) = \int_{0}^{\infty} e^{-s^2/2} e^{-\frac{sbN}{\sqrt{a_0}}} e^{\frac{s V_F}{\sqrt{a_0}}} - e^{\frac{s V_R}{\sqrt{a_0}}} ds
\]
Steady states

Number of steady states in terms of connectivity parameter b

(C-Carrillo-Perthame):

- **Average-inhibitory network** ($b < 0$): there is a unique steady state

- **Average-excitatory network** ($b > 0$):
 - High connectivity: there is no steady state
 - Small connectivity: there is a unique steady state
 - Between small and high connectivity: at least one or at least two steady states
Steady states

Function $I(N)$ is plotted against the function $1/N$

$a \equiv 1, \ V_R = 1, \ V_F = 2$
Steady states

Function $NI(N)$ is plotted against the function 1

$a \equiv 1$, $V_R = 1$, $V_F = 2$
Are the steady states stable?
Case linear $b=0$

For any smooth convex function $G : \mathbb{R}^+ \longrightarrow \mathbb{R}$

$$-\frac{d}{dt} \int_{-\infty}^{V_F} p_\infty(v) G \left(\frac{p(v,t)}{p_\infty(v)} \right) dv =$$

$$N_\infty \left[G \left(\frac{N(t)}{N_\infty} \right) - G \left(\frac{p(v,t)}{p_\infty(v)} \right) \right] + a_0 \int_{-\infty}^{V_F} p_\infty(v) G'' \left(\frac{p(v,t)}{p_\infty(v)} \right) \left[\frac{\partial}{\partial v} \left(\frac{p(v,t)}{p_\infty(v)} \right) \right]^2 dv \geq 0$$
Case linear $b=0$

Theorem [Exponential decay] (C-Carrillo-Perthame)

Fast-decaying solutions verifying $p^0(v) \leq C^0 p_\infty(v)$ for some $C^0 > 0$, satisfy

$$\int_{-\infty}^{V_F} p_\infty(v) \left(\frac{p(v, t) - p_\infty(v)}{p_\infty(v)} \right)^2 dv \leq e^{-2a_0 vt} \int_{-\infty}^{V_F} p_\infty(v) \left(\frac{p^0(v) - p_\infty(v)}{p_\infty(v)} \right)^2 dv.$$
Case non linear \(b \neq 0 \)

- C-Carrillo-Perthame: Numerical analysis
- Carrillo-Perthame-Salort-Smets*: Local asymptotic stability for stationary states for \(|b|\) small

Numerical results
Firing rates $N(t)$ for $a \equiv 1$

Top left: $b = 0.5$ Top right: $b = 3$
Bottom left: $b = 1.5$ Bottom right: $b = -1.5
Extensions of NNLIF

- Refractory state
- Randomness on the discharge potential
- Network consisting of excitatory and inhibitory neurons, as different populations
Extension: NNLIF with refractory

We include a **refractory state**

\[
\begin{aligned}
\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} \left[\left(-v + bN(t) \right) p(v, t) \right] - a(N(t)) \frac{\partial^2 p}{\partial v^2}(v, t) &= \frac{R(t)}{\tau} \delta(v - V_R) \\
\frac{dR(t)}{dt} &= N(t) - \frac{R(t)}{\tau} \\
N(t) &:= -a(N(t)) \frac{\partial p}{\partial v}(V_F, t) \geq 0 \\
p(V_F, t) &= 0, \ p(-\infty, t) = 0, \ p(v, 0) = p^0(v) \geq 0, \ R(0) = R^0 > 0
\end{aligned}
\]

- \(p(v, t) \): density of active neurons at potential \(v \in (-\infty, V_F) \)
- \(R(t) \): density of neurons in the refractory state
- \(\tau \): mean time of the refractory period
- \(N(t) \): flux of firing neurons.

Conservation of the total number of neurones:

\[
R(t) + \int_{-\infty}^{V_F} p(v, t) \, dv = R^0 + \int_{-\infty}^{V_F} p^0(v) \, dv = 1
\]
Extension: NNLIF with refractory

Results (C-Perthame)

- Finite time blow-up: weak solution is not global in time:
 - For any $b > 0$: appropriate initial data (concentrated enough near V_F) produce blow-up
 - For any initial data: values $b > 0$ large enough produce blow-up
Extension: NNLIF with refractory

Results (C-Perthame)

- Stationary solutions:
 - Inhibitory case ($b < 0$): there is a unique steady state
 - Excitatory case ($b > 0$): there is an odd number of steady states (considering multiplicity)

\[V_F = 2, \; V_R = 1, \; b = 1.5, \; a = 1, \; \tau = 0.025 \]
Extension: NNLIF with refractory

Long time behaviour for the linear case (C-Perthame):

\[E(t) \leq E(0)e^{-\nu t} \]

where:

- the energy

\[
E(t) := \int_{-\infty}^{V_F} \frac{(p(v, t) - p_\infty(v))^2}{p_\infty(v)} dv + \frac{(R(t) - R_\infty)^2}{R_\infty}
\]

for the unique steady state \((p_\infty, R_\infty)\)

- \(\nu > 0\) only depends of the model parameters

\((volver)\)
Extension: NNLIF with spontaneous activity

- Randomness on the discharge potential
- Avoids the blow-up phenomena and generates bounded oscillations
- Spontaneous activity of the network
- Strong controls on the total activity $N(t)$
Extension: NNLIF with spontaneous activity

Without refractory state

\[
\frac{d}{dt} p + \frac{d}{dv} \left[(-v + bN)p \right] - \frac{d^2}{dv^2} (a(N)p) + \phi_\epsilon(v)p = N(t)\delta(v - V_R), \quad v \in \mathbb{R}
\]

\[
N(t) = \int_{-\infty}^{+\infty} \phi_\epsilon(v)p(v, t) \, dv
\]

- \(\phi_\epsilon(v) \) represents the discharge rate at potential \(v \)
- \(\phi_\epsilon(v) = \frac{1}{\epsilon} (v - V_F)_+ \)
- \(\phi_\epsilon(v) = \frac{1}{\epsilon} \mathbf{1}_{\{v > V_F\}} \)
Extension: NNLIF with spontaneous activity

With refractory state

\[
\frac{\partial p}{\partial t} + \frac{\partial}{\partial v} [(-v + bN)p] - a(N) \frac{\partial^2 p}{\partial v^2} + \phi_\varepsilon(v)p = \frac{R(t)}{\tau} \delta(v - V_R), \quad v \in \mathbb{R},
\]

\[
\frac{dR(t)}{dt} = N(t) - \frac{R(t)}{\tau},
\]

\[
N(t) = \int_{-\infty}^{+\infty} \phi_\varepsilon(v)p(v, t) \, dv
\]
Extension: NNLIF with spontaneous activity

\[V_F = 2, \, a = 1, \, b = 1.5, \, \tau = 0.025, \, \epsilon = 1/14000 \]

\[V_R = 1, \, V_F = 2, \, a = 1, \, b = 1.5, \, \tau = 0.025 \]
Extension: NNLIF excitatory-inhibitory

\[\frac{\partial p}{\partial t}(v, t) + \frac{\partial}{\partial v} \left[h(v, N(t))p(v, t) \right] - a(N(t)) \frac{\partial^2 p}{\partial v^2}(v, t) = \delta(v - V_R)N(t) \]

- \(v \in (-\infty, V_F] \)
- \(h(v, N(t)) = -v + bN \) excitatory/inhibitory network
- \(a(N) = a_0 + a_1 N \quad a_0 > 0, a_1 \geq 0 \)

Extension: NNLIF excitatory-inhibitory

\[
\frac{\partial \rho_I}{\partial t}(v, t) + \frac{\partial}{\partial v} [h^I(v, N_E, N_I) \rho_I(v, t)] - a_I(N_E, N_I) \frac{\partial^2 \rho_I}{\partial v^2}(v, t) = N_I(t) \delta(v - V_R)
\]

\[
\frac{\partial \rho_E}{\partial t}(v, t) + \frac{\partial}{\partial v} [h^E(v, N_E, N_I) \rho_E(v, t)] - a_E(N_E, N_I) \frac{\partial^2 \rho_E}{\partial v^2}(v, t) = N_E(t) \delta(v - V_R)
\]

For \(\alpha = I, E \):

- \(h^\alpha(v, N_E, N_I) = -v + b^\alpha_E N_E - b^\alpha_I N_I + (b^\alpha_E - b^\alpha_E) v_{E, ext} \)
- \(a^\alpha(N_E, N_I) = d^\alpha_E v_{E, ext} + d^\alpha_E N_E - d^\alpha_I N_I \)
- \(N^\alpha(t) = -a^\alpha(N_E(t), N_I(t)) \frac{\partial \rho^\alpha}{\partial v}(V_F, t) \)
- \(b^\alpha_i > 0, i = E, I, \) is the connectivity of the network \(\alpha \),

Extension: NNLIF excitatory-inhibitory

Blow-up

The system can blow-up in finite time in two cases:

- for $\rho^0_E \neq 0$ fixed and $b_E^E > 0$ large enough
- for $b_E^E > 0$ fixed, when ρ^0_F is concentrated enough around V_F

\[V_F = 2, \ V_R = 1, \ b_E^E = 0.5, \ b_I^E = 0.25, \ b_I^I = 0.25, \ b_I^I = 1, \ a_E = a_I = 1, \ v_{E,ext} = 0 \]
Extension: NNLIF excitatory-inhibitory

Steady states

- \(\rho_\alpha = \frac{N_\alpha}{a_\alpha(N_E,N_I)} e^{-\frac{(v-V_0^\alpha(N_E,N_I))^2}{2a_\alpha(N_E,N_I)}} \int_{V_F}^{\max(v,V_R)} e^{\frac{(w-V_0^\alpha(N_E,N_I))^2}{2a_\alpha(N_E,N_I)}} dw \) where \(V_0^\alpha(N_E,N_I) := b_\alpha^E N_E - b_\alpha^I N_I + b_\alpha^E v_{E,ext} \)

- The steady states analysis is more complicated than the case with only one population

- The problem is equivalent to find the solutions of the system

\[
\begin{align*}
\frac{1}{N_E} &= I_E(N_E,N_I), \\
\frac{1}{N_I} &= I_I(N_E,N_I),
\end{align*}
\]

where \(I_\alpha(N_E,N_I) = \int_{-\infty}^{\infty} e^{-\frac{w_\alpha^E}{2}} \int_{\max(z_\alpha,w_\alpha^E)}^{w_\alpha^E} e^{-\frac{w_\alpha^E}{2}} du_\alpha \, dz_\alpha, \quad \alpha = E, I \)

Extension: NNLIF excitatory-inhibitory

- For every fixed N_E there is a unique solution, $N_I(N_E)$, such that $N_I(N_E) I_I(N_E, N_I(N_E)) = 1$. Thus, the steady state analysis is reduced to determine the number of solutions to $F(N_E) = 1$, where $F(N_E) = N_E I_E(N_E, N_I(N_E))$

$$F(N_E) \text{ for } b^E_I = 0.5, b^I_I = 0.25, V_F = 2, V_R = 1, v_{E,\text{ext}} = 0, a_E = a_I = 1$$

Left: $b^E_I = 0.75$ and different values for b^E_E. Right: $b^E_E = 3$ and different values for b^E_I

- For small connectivity parameters the unique steady state is asymptotically stable

(volver)
Summary about NNLIF model

- NNLIF model is a standard Fokker-Planck equation describing spiking events in neuron networks
Summary about NNLIF model

- NNLIF model is a standard Fokker-Planck equation describing spiking events in neuron networks
- The system can blow-up for all connectivity parameter $b > 0$ without or with refactory state and with the presence of an inhibitory population:
 - For any $b > 0$: appropriate initial data produce blow-up
 - For any initial data: values $b > 0$ large enough produce blow-up
- No blow-up for $b < 0$ or for $b > 0$ with delay
- The firing rate $N(t)$ blows-up in finite time whenever a singularity in the system occurs (related to synchronization of the network)
Summary about NNLIF model

- NNLIF model is a standard Fokker-Planck equation describing spiking events in neuron networks.
- The system can blow-up for all connectivity parameter $b > 0$ without or with refractory state and with the presence of an inhibitory population:
 - For any $b > 0$: appropriate initial data produce blow-up
 - For any initial data: values $b > 0$ large enough produce blow-up
- No blow-up for $b < 0$ or for $b > 0$ with delay.
- The firing rate $N(t)$ blows-up in finite time whenever a singularity in the system occurs (related to synchronization of the network).
- Set of steady states can be empty, a single state, two states or more, depending on the network connectivity and the presence of refractory state (asynchronous state for the network) or network with excitatory and inhibitory neurons.
Summary about NNLIF model

- NNLIF model is a standard Fokker-Planck equation describing spiking events in neuron networks.
- The system can blow-up for all connectivity parameter $b > 0$ without or with refractory state and with the presence of an inhibitory population:
 - For any $b > 0$: appropriate initial data produce blow-up
 - For any initial data: values $b > 0$ large enough produce blow-up
- No blow-up for $b < 0$ or for $b > 0$ with delay
- The firing rate $N(t)$ blows-up in finite time whenever a singularity in the system occurs (related to synchronization of the network)
- Set of steady states can be empty, a single state, two states or more, depending on the network connectivity and the presence of refractory state (asynchronous state for the network) or network with excitatory and inhibitory neurons
- When random discharge potential is considered spontaneous activity can appear
Works in collaboration with ...

- Nonlinear Noisy Leaky Integrate and Fire (NNLIF)
 - The Journal of Mathematical Neuroscience (2011), 1:7 in collaboration with Carrillo (Imperial College London) and Perthame (Université Pierre et Marie Curie)

- Nonlinear Fokker-Planck Equation including conductance
 - Journal of Computational Physics 230 (2011) 1084-1099 in collaboration with Carrillo and Tao (Center for Bioinformatics, Peking University, Center for Neural Science, NYU)

- From the microscopic to mesoscopic models
 - Mathematical Models and Methods in Applied Sciences in collaboration with Chevallier (Laboratoire J. A. Dieudonne), Doumic (INRIA Paris-Rocquencourt), Reynaud-Bouret (Laboratoire J. A. Dieudonne)