Proposition 49.

1. A group G is nilpotent if and only if G appears as an element of its upper central series.
2. If G is nilpotent, then the upper central series and the lower central series have the same length. (That is to say, the least c such that $\gamma_{c+1}(G) = \{e\}$, is equal to the least c such that $Z_c(G) = G$.)

Proof.

1. Suppose that G has nilpotency class c. Then the lower central series is a central series for G of length c. Now by Proposition 48 we see that $\gamma_{c-i+1}(G) \leq Z_i(G)$ for all i (taking the different numbering convention for the lower central series into account). In particular, $\gamma_1(G) \leq Z_c(G)$. But $\gamma_1(G) = G$, and so $Z_c(G) = G$.

Suppose conversely that $Z_k(G) = G$ for some G. Then the series $\{G_i\}$, given by $G_i = Z_{k-i}(G)$ for $0 \leq i \leq k$, is a central series for G. So G is nilpotent by Corollary 47.

2. In the proof of part 1 we have seen that if $\gamma_{c+1}(G) = \{e\}$, then $Z_c(G) = G$. Suppose conversely that $Z_k(G) = G$. Let $\{G_i\}$ be the central series defined in the proof of part 1. By Proposition 46 we have $\gamma_{k+1}(G) \leq G_k = \{e\}$. It follows that the lower central series and the upper central series have the same length.

Warning. A group G of nilpotency class c may have a central series of length greater than c. For instance, if G is abelian, then it has class 1; but any chain of subgroups

$$G = G_0 > G_1 > \cdots > G_k = \{e\}$$

constitutes a central series, and such a series can be arbitrarily long. Proposition 46 does tell us, however, that no central series can be of length shorter than c.

Theorem 50

Every p-group is nilpotent.

Proof. Let G be a p-group. For $i \in \mathbb{N}$, suppose that $Z_i(G) < G$. Since G is finite, there exists k such that $Z_k(G) = Z_{k+1}(G)$. Suppose that $Z_k(G) \neq G$. Then the quotient $G/Z_k(G)$ is a non-trivial p-group, and so by Proposition 21 it has a non-trivial centre. But it follows that $Z_{k+1}(G) > Z_k(G)$, and this is a contradiction. So we must have $Z_k(G) = G$, and so G is nilpotent by Proposition 49.1.

Example. We have seen that D_{2n+1} is nilpotent, even though no other dihedral group is. Thus the only nilpotent dihedral groups are 2-groups.

Proposition 51. Let G be nilpotent of class c.

1. Any subgroup H of G is nilpotent of class at most c.
2. If $N \triangleleft G$, then G/N is nilpotent of class at most c.
3. If H is nilpotent of class d then $G \times H$ is nilpotent of class $\max(c,d)$.
Proof.
1. Let $H \leq G$. It is easy to show inductively that $\gamma_i(H) \leq \gamma_i(G)$ for all i. So $\gamma_{i+1}(H) = \{e\}$.
2. Let $\theta : G \rightarrow G/N$ be the canonical map. It is easy to show inductively that $\theta(\gamma_i(G)) = \gamma_i(G/N)$ for all $i \in \mathbb{N}$. So $\gamma_{i+1}(G/N) = \{e_{G/N}\}$.
3. We note that
 $$[(g_1,h_1),(g_2,h_2)] = ([g_1,g_2],[h_1,h_2])$$
 for all $g_1,g_2 \in G$ and $h_1,h_2 \in H$. So $\gamma_i(G \times H) = \gamma_i(G) \times \gamma_i(H)$ for all i, and the result follows.

Example. Let $G = \langle a \rangle \times_\varphi \langle b \rangle$, where a has order 12, b has order 2, and $\varphi_b(a) = a^7$. We show that G is nilpotent.

We note that $\langle a \rangle = \langle a^3 \rangle \times \langle a^4 \rangle$ (as an internal direct product), and that $\varphi_b(a^3) = a^{-3}$, while $\varphi_b(a^4) = a^4$. It follows that a^4 is central in G, and hence that
 $$G = (\langle a^3 \rangle \times \langle b \rangle) \times \langle a^4 \rangle \cong D_8 \times C_3.$$

Now both D_8 and C_3 are nilpotent, and so G is nilpotent.

Proposition 52. If G is a finite nilpotent group, and H is a proper subgroup of G, then $N_G(H) \neq H$.

Proof. Let e be the nilpotency class of G. Since $\gamma_1(G) = G$, and $\gamma_{i+1}(G) = \{e\}$, there exists j such that $\gamma_j(G) \leq H$, but $\gamma_{j+1}(G) \leq H$. Since $\gamma_j(G)$ is normal in G we see that $\gamma_j(G)H$ is a subgroup of G. Now $H/\gamma_{j+1}(G)$ is certainly normal in the abelian group $\gamma_j(G)/\gamma_{j+1}(G)$, and so H is normal in $\gamma_j(G)H$. So we have $H \leq \gamma_j(G)H \leq N_G(H)$, hence the result.

Example. Let $G = D_{16}$. Every subgroup H of rotations is normal in G, and so $N_G(H) = G$. Let a be a rotation of order 8, and let b be a reflection. Then we see that
 $$\langle b \rangle \triangleleft \langle a^4 \rangle \triangleleft \langle a^2 \rangle \triangleleft \langle b \rangle \triangleleft G,$$
 since each of the subgroups in the chain has index 2 in the next. Every subgroup of G is either a rotation subgroup, or else one of the subgroups in the chain above (for some reflection b), and so we see that every proper subgroup of G is normalized by a strictly larger subgroup.

Lemma 53 (Frattini Argument). Let G be a finite group, and K a normal subgroup. Let P be a Sylow p-subgroup of K. Then $G = K\!N_G(P)$.

Proof. Let $g \in G$. Then $(g)^P \leq K$ since K is normal, and so $(g)^P \in \text{Syl}_p(K)$. Since any two Sylow p-subgroups of K are conjugate in K, we have $(g)^P = kP$ for some $k \in K$. But now it is clear that $k^{-1}(g)^P = P$, and $g = k(k^{-1}g) \in KN_G(P)$.

33
Corollary 54. Let G be a finite group, and let P be a Sylow p-subgroup of G. Then $N_G(N_G(P)) = N_G(P)$.

Proof. Since $N_G(P)$ is a normal subgroup of $N_G(N_G(P))$, and since $P \in \text{Syl}_p(N_G(P))$, the Frattini Argument tells us that $N_G(N_G(P)) = N_G(P)N_{N_G(P)}(P)$. But clearly $N_{N_G(P)}(P) \leq N_G(P)$, and the result follows. □

Theorem 55

Let G be a finite group, and let p_1, \ldots, p_k be the distinct prime divisors of $|G|$. Let P_1, \ldots, P_k be subgroups of G with $P_i \in \text{Syl}_{p_i}(G)$ for all i. The following statements are equivalent.

1. G is nilpotent.
2. $P_i \trianglelefteq G$ for all i.
3. $G \cong P_1 \times \cdots \times P_k$.

Proof.

$1 \implies 2$ Let G be nilpotent. Corollary 54 tells us that $N_G(P_i) = N_G(N_G(P_i))$. But Proposition 52 tells us that no proper subgroup of G is equal to its own normalizer. Hence $N_G(P_i) = G$.

$2 \implies 3$ Suppose that $P_i \trianglelefteq G$ for all i. We argue by induction; let $\mathcal{S}(j)$ be the statement that $P_1 \cdots P_j \cong P_1 \times \cdots \times P_j$. Certainly $\mathcal{S}(1)$ is true. Suppose that $\mathcal{S}(j)$ true for a particular $j < k$. Let $N = P_1 \cdots P_j$. Since N and NP_{j+1} are both normal in G, and since their orders are coprime, we have $[N, P_{j+1}] \leq N \cap P_{j+1} = \{e\}$. So $ng = gn$ for all $n \in N$ and $g \in P_{j+1}$, and so $NP_{j+1} \cong N \times P_{j+1}$. The statement $\mathcal{S}(j + 1)$ follows inductively.

This is sufficient to prove the implication, since $|G| = |P_1 \cdots P_k|$.

$3 \implies 1$ Suppose that $G = P_1 \times \cdots \times P_k$. Each subgroup P_i is nilpotent by Theorem 50. Since G is the direct product of nilpotent groups, it follows from Proposition 51.3 that G is itself nilpotent. □

Corollary 56. Let G be a finite group, and let $g, h \in G$ be elements with coprime orders. Then $gh = hg$.

Proof. Let P_1, \ldots, P_k be the Sylow subgroups of G. By Theorem 55 there exists an isomorphism $\theta G \longrightarrow P_1 \times \cdots \times P_k$. Let $\theta(g) = (g_1, \ldots, g_k)$ and $\theta(h) = (h_1, \ldots, h_k)$. Since g and h have coprime orders, one of g_i or h_i must be the identity, for all i. Hence g and h commute. □

Remark. The converse to Corollary 56 is also true. Suppose that G has the property that any two elements with coprime order commute. Let P_1, \ldots, P_k be Sylow subgroups for the distinct prime divisors p_1, \ldots, p_k of G. Then clearly $P_i \in N_G(P_j)$ for all i, j, since if $i \neq j$ then the elements of P_i and P_j commute. It follows that $N_G(P_i) = G$ for all i, and so the Sylow subgroups of G are all normal; hence G is nilpotent.

Definition. Let G be a group. A subgroup $M \trianglelefteq G$ is **maximal** if $M \trianglelefteq H \trianglelefteq G \implies H = M$ or $H = G$. We write $M <_{\text{max}} G$ to indicate that M is a maximal subgroup of G.
Remark. We note that if \(G \) is a finite group, then it is clear that every proper subgroup of \(G \) is contained in some maximal subgroup of \(G \). This is not necessarily the case in an infinite group; indeed there exist infinite groups with no maximal subgroups, for instance \((\mathbb{Q},+)\).

Proposition 57. If \(G \) is a finite nilpotent group, and if \(M <_{\text{max}} G \), then \(M \triangleleft G \), and \(|G/M|\) is prime.

Proof. By Proposition 52 we see that \(N_G(M) \neq M \). But certainly \(M \leq N_G(M) \leq G \), and so \(N_G(N) = G \). So \(M \triangleleft G \). Since there are no proper subgroups of \(G \) strictly containing \(M \), it follows from Proposition 2 that \(G/M \) has no proper, non-trivial subgroup. Hence \(G/M \) is cyclic of prime order.

Proposition 58. Let \(G \) be a finite group. If every maximal subgroup of \(G \) is normal, then \(G \) is nilpotent.

Proof. Suppose that every maximal subgroup of \(G \) is normal. Let \(P \) be a Sylow \(p \)-subgroup of \(G \), and suppose that \(N_G(P) \neq G \). Then \(N_G(P) \leq M \) for some maximal subgroup \(M \). Now \(P \in \text{Syl}_p(M) \), and \(M \) is normal in \(G \) by hypothesis. So the conditions of the Frattini argument are satisfied, and we have \(G = MN_G(P) \). But this is a contradiction, since \(N_G(P) \leq M \). So we must have \(N_G(P) = G \). Hence every Sylow subgroup of \(G \) is normal, and so \(G \) is nilpotent by Theorem 55.

We summarize our main criteria for nilpotence in the following theorem.

Theorem 59

Let \(G \) be a finite group. The following are all equivalent to the statement that \(G \) is nilpotent.

1. The lower central series for \(G \) terminates at \(\{e\} \).
2. The upper central series for \(G \) terminates at \(G \).
3. \(G \) has a central series.
4. Every Sylow subgroup of \(G \) is normal.
5. \(G \) is a direct product of \(p \)-groups.
6. Any two elements of \(G \) with coprime order commute.
7. Each proper subgroup of \(G \) is properly contained in its normalizer.
8. Every maximal subgroup of \(G \) is normal.

The first three of these conditions apply also to infinite groups.

§8 More on group actions

Definition. Let \(G \) and \(H \) be isomorphic groups. Let \(G \) act on a set \(X \), and \(H \) on a set \(Y \).

1. We say that the actions of \(G \) and \(H \) are *equivalent* if there is an isomorphism \(\theta : G \rightarrow H \) and a bijection \(\alpha : X \rightarrow Y \) such that \(\alpha(gx) = \theta(g)\alpha(x) \) for all \(g \in G \) and \(x \in X \).
2. In the special case that \(G = H \) and \(\theta \) is the identity map, we have \(\alpha : X \to Y \) such that \(\alpha(gx) = g\alpha(x) \) for all \(g \in G \) and \(x \in X \). Then we say that the actions on \(X \) and \(Y \) are equivalent actions of \(G \), and that \(\alpha \) is an equivalence of actions.

We revisit the Orbit-Stabilizer Theorem in the light of this definition.

Theorem 60. Orbit-Stabilizer Theorem Revisited

Let \(G \) act transitively on a set \(X \). Let \(x \in X \), and let \(H \) be the stabilizer of \(x \) in \(G \). Let \(Y \) be the set of left cosets of \(H \) in \(G \). Then the action of \(G \) on \(Y \) by left translation, and the action of \(G \) on \(X \), are equivalent actions of \(G \).

Proof. Recall that for \(k_1, k_2 \in G \) we have \(k_1H = k_2H \iff k_1x = k_2x \). So there is a well-defined map \(f : Y \to X \) given by \(f(kH) = kx \) for \(k \in G \). The map \(f \) is bijective (this is the substance of the proof of Theorem 10.)

Now for all \(g \in G \) we have \(g f(kH) = gkx = f(gkH) \), and so \(f \) is an equivalence of actions.

The significance of Theorem 60 is that the study of transitive actions of \(G \) is reduced to the study of actions of \(G \) on the left cosets of its subgroups.

Suppose that \(G \) is a group acting on a set \(\Omega \). For every \(k \in \mathbb{N} \), there is an action of \(G \) on \(\Omega^k \) given by

\[
g(x_1, \ldots, x_k) = (gx_1, \ldots, gx_k).
\]

Definition. Let \(G \) act on \(\Omega \), and let \(k \leq |\Omega| \). We say that the action of \(G \) on \(\Omega \) is \(k \)-transitive if for any two \(k \)-tuples \(x = (x_1, \ldots, x_k) \) and \(y = (y_1, \ldots, y_k) \) in \(\Omega^k \), with the property that \(x_i \neq x_j \) and \(y_i \neq y_j \) when \(i \neq j \), there exists \(g \in G \) such that \(gx = y \) (so \(gx_i = y_i \) for \(1 \leq i \leq k \)).

Another way of phrasing the definition is that \(G \) is \(k \)-transitive on \(\Omega \) if it acts transitively on the subset of \(\Omega^k \) consisting of \(k \)-tuples of distinct elements of \(\Omega \).

Remark. If \(G \) acts \(k \)-transitively on \(\Omega \), then it is clear that it acts \(\ell \)-transitively on \(\Omega \) for every \(\ell \leq k \).

Examples.

1. \(S_n \) acts \(n \)-transitively on \(\Omega = \{1, \ldots, n\} \). For any \(n \)-tuple \(x = (x_1, \ldots, x_n) \) of distinct elements of \(\Omega \) we have \(\{x_1, \ldots, x_n\} = \{1, \ldots, n\} \), and so the map \(f_x : i \mapsto x_i \) is in \(S_n \). Now if \(y \) is another \(n \)-tuple of distinct elements then \(f_y f_x^{-1} : x \mapsto y \).

2. \(A_n \) acts only \((n-2) \)-transitively on \(\Omega = \{1, \ldots, n\} \). It is not \((n-1) \)-transitive, since the tuples \((1, 3, \ldots, n) \) and \((2, 3, \ldots, n) \) lie in distinct orbits. Let \(x \) and \(y \) be \((k-2) \)-tuple of distinct elements of \(\Omega \). Then there is an element \(g \) of \(S_n \) such that \(gx = y \). Now there exist two points \(i, j \) which are not in the tuple \(y \), and since \((i j)y = y \) we have \((i j)gx = y \). Since one of \(g \) or \((i j)g \) lies in \(A_n \), we see that \(x \) and \(y \) lie in the same orbit of \(A_n \), as we claimed.
3. If \(n > 3 \) then \(D_{2n} \) is only 1-transitive on the vertices of a regular \(n \)-gon. There exist vertices \(u, v, w \) such that \(u \) is adjacent to \(v \) but not to \(w \), and it is clear that there is no \(g \in D_{2n} \) such that \(g(u, v) = (u, w) \) since symmetries of an \(n \)-gon preserve adjacency of vertices.

Remark. If \(G \) acts on \(\Omega \) and \(H = \text{Stab}_G(x) \) for \(x \in \Omega \), then \(H \) acts on \(\Omega \setminus \{x\} \).

Proposition 61. Let \(G \) be transitive on \(\Omega \), let \(x \in \Omega \), and let \(H = \text{Stab}_G(x) \). Let \(k \in \mathbb{N} \). Then \(G \) acts \(k \)-transitively on \(\Omega \) if and only if \(H \) acts \((k - 1)\)-transitively on \(\Omega \setminus \{x\} \).

Proof. Suppose \(G \) is \(k \)-transitive. Let \(y = (y_1, \ldots, y_{k-1}) \) and \(z = (z_1, \ldots, z_{k-1}) \) be \((k - 1)\)-tuples of distinct elements of \(\Omega \setminus \{x\} \). Then \(y' = (y_1, \ldots, y_{k-1}, x) \) and \(z' = (z_1, \ldots, z_{k-1}, x) \) are \(k \)-tuples of distinct elements of \(\Omega \), and so there exists \(h \in G \) such that \(hy' = z' \). Now we see that \(hx = x \), and so \(h \in H \). It is also clear that \(hy = z \). So we have shown that \(H \) is \((k - 1)\)-transitive on \(\Omega \setminus \{x\} \).

Conversely, suppose that \(H \) is \((k - 1)\)-transitive on \(\Omega \setminus \{x\} \). Let \(y = (y_1, \ldots, y_k) \) and \(z = (z_1, \ldots, z_k) \) be distinct \(k \)-tuples of elements of \(\Omega \). Since \(G \) is transitive on \(\Omega \), there exist \(f, g \in G \) such that \(fy_k = x \) and \(gz_k = x \). Now we see that \(u = (fy_1, \ldots, fy_{k-1}) \) and \(v = (gz_1, \ldots, gz_{k-1}) \) are \((k - 1)\)-tuples of distinct elements of \(\Omega \setminus \{x\} \). So there exists \(h \in H \) such that \(hu = v \). Now it is straightforward to check that \(hfy_i = gz_i \) for \(1 \leq i \leq k \), and so \(g^{-1}hfy = z \). We have therefore shown that \(G \) is \(k \)-transitive on \(\Omega \). \(\square \)

Definition. Recall that an equivalence relation on a set \(\Omega \) may be regarded as a partition of the set \(\Omega \) into disjoint subsets (the parts, or equivalence classes) whose union is \(\Omega \). (If \(x, y \in \Omega \), then \(x \sim y \) if and only if \(x \) and \(y \) lie in the same part.

1. We say that an equivalence relation is trivial if it has only one part, or if all of its parts have size 1. (So either \(x \sim y \) for all \(x, y \), or else \(x \sim y \) only if \(x = y \).)
2. Suppose that \(G \) acts on \(\Omega \). We say that \(G \) preserves \(\Omega \) if
 \[
 x \sim y \iff gx \sim gy, \quad \text{for } x, y \in \Omega.
 \]

It is clear that any group \(G \) acting on \(\Omega \) preserves the trivial partitions.

Definition. Let \(|\Omega| > 1 \), and let \(G \) act transitively on \(\Omega \).

1. If \(\sim \) is a non-trivial equivalence relation on \(\Omega \), such that \(G \) preserves \(\sim \), then we say the action of \(G \) is imprimitive, and that \(\sim \) is a system of imprimitivity for \(G \). The parts of \(\sim \) are called blocks.
2. If there is no non-trivial equivalence relation on \(\Omega \) which is preserved by \(G \), then we say that the action of \(G \) is primitive.

Examples.

1. Let \(g \) be the \(n \)-cycle \((1 \ldots n) \in S_n \), and let \(\langle g \rangle \) act on \(\Omega = \{1, \ldots, n\} \) in the natural way. The action is primitive if and only if \(n \) is prime. Otherwise \(n \) has some proper divisor \(d \), and the equivalence relation on \(\Omega \) given by \(i \sim j \iff i \equiv j \bmod d \) is a system of imprimitivity.

37
2. S_n is primitive on $\Omega = \{1, \ldots, n\}$ for $n > 1$. And A_n is primitive on Ω for $n > 2$.
3. D_{2n} acts primitively on the vertices of an n-gon if and only if n is prime. If $n = ab$ is a proper factorization of n, then we can inscribe b distinct a-gons inside the n-gon, and the vertices of the a-gons form the blocks of a system of imprimitivity.

Proposition 62. Let \mathcal{B} be a system of imprimitivity for the action of G on Ω. For a block B of \mathcal{B}, define $gB = \{gx \mid x \in B\}$. Then gB is a block of \mathcal{B}, and the map $B \mapsto gB$ defines a transitive action of G on the set of blocks of \mathcal{B}.

Proof. If $x \in gB$ and $y \in \Omega$, then $g^{-1}x \sim g^{-1}y \iff g^{-1}y \in B$. So we have $x \sim y \iff y \in gB$, and so gB is a block of \mathcal{B}. It is easy to see that $eB = B$ and that $g(hB) = ghB$ for $g, h \in G$, and so the map $B \mapsto gB$ gives an action of G. And since G is transitive on Ω, it is clear that it is transitive on the blocks.

Corollary 63. If \mathcal{B} is a system of imprimitivity for the action of G on Ω, then all of the blocks of \mathcal{B} have the same size.

Proof. This is clear from the transitivity of G on the blocks; if B and C are blocks then $C = gB$ for some $g \in G$.

Corollary 64. If $|\Omega| = p$, where p is prime, and if G acts transitively on Ω, then the action of G is primitive.

Proof. Let \sim be an equivalence relation preserved by G. It is clear from Corollary 63 that the size of each part divides $|\Omega|$. But since p is prime, its only divisors are 1 and p. So \sim must be trivial, and hence G is primitive.

Remark. Corollary 64 establishes the claim, in the examples above, that the actions of C_p and D_{2p} on p points are primitive.

Proposition 65. If G is 2-transitive on Ω, then it is primitive.

Proof. Let \sim be any non-trivial equivalence relation on Ω. It has distinct parts B_1 and B_2, and the part B_1 contains distinct points x and y. Let $z \in B_2$. Then since G acts 2-transitively, there exists $g \in G$ such that $g(x, y) = (x, z)$. So we have $x \sim y$ but $gx \not\sim gy$. Hence G does not preserve \sim, and so G is primitive.

Remark. Primitivity is a strictly stronger condition than transitivity, since e.g. $\langle (1234) \rangle$ is transitive but not primitive on $\{1, 2, 3, 4\}$. And 2-transitivity is strictly stronger than primitivity, since e.g. A_3 is primitive but not 2-transitive on $\{1, 2, 3\}$.

Proposition 66. Let G act transitively on Ω. Let H be the stabilizer of a point $x \in \Omega$. Then the action of G is primitive if and only if $H <_{\text{max}} G$.
Proof. Suppose that \mathcal{B} is a system of imprimitivity for G on Ω. Let B be the block of \mathcal{B} which contains the point x. Let y be point in B distinct from x. Since G is transitive, there exists $g \in G$ with $gx = y$. Since $y \in gB$, we have $gB = B$. Let $L = \text{Stab}_G(B)$, the stabilizer in the action of G on the blocks of \mathcal{B}. It is clear that $H \leq L$, and since $g \in L \setminus H$, we have $H < L$. But since there is more than one block of \mathcal{B}, and G is transitive on blocks, we see that $L < G$. We have that $H < L < G$, and so H is not maximal in G.

Conversely, suppose H is not maximal. Let L be a subgroup such that $H < L < G$. Recall from Theorem 60 that the action of G on Ω is equivalent to its action on left cosets of H. So we may suppose that Ω is this set of cosets. Now we define an equivalence relation \sim on Ω by $aH \sim bH \iff aL = bL$. This relation is well defined, since if $aH = a'H$ then $aL = a'L$, and it is clear that it is an equivalence relation; it is non-trivial, since $H < L < G$. Now for $g \in G$ we have
\[
aH \sim bH \iff aL = bL \iff gaL = gbL \iff gaH \sim gbH,\]
and so \sim is a system of imprimitivity for G. So G is not primitive. \hfill \Box

Corollary 67. If G is nilpotent and G acts primitively on Ω, then $|\Omega|$ is prime.

Proof. Let H be the stabilizer of $x \in \Omega$. Then $H <_{\text{max}} G$, and so $|G : H|$ is prime, by Proposition 57. But $|\Omega| = |G : H|$ by Theorem 60. \hfill \Box

Remark. Let G and Ω be as in Corollary 67. We have that $H \triangleleft G$ by Proposition 57, and it follows that H is the kernel of the action. So we have a homomorphism $G/H \longrightarrow \text{Sym}(\Omega) \cong S_p$ for some prime p. Now in S_p there is no non-p-element which commutes with a p-cycle. But since G is nilpotent, any two elements of coprime order commute, and it follows that the image of G/H in S_p is cyclic of order p.

Proposition 68. Let G act faithfully and primitively on a finite set Ω, and let N be a non-trivial normal subgroup of G. Then N is transitive on Ω.

Proof. Let $M <_{\text{max}} G$ be the stabilizer of $x \in \Omega$, and let $N \trianglelefteq G$. Then $M \leq MN \leq G$, and so MN is equal either to M or to G. If $MN = N$ then $N \leq M$, and since N is normal we have $N \leq \langle M \rangle$ for every $g \in G$. But the conjugates of M are the point-stabilizers in G, and it follows that N is contained in the kernel of G. But G is faithful, and so we must have $N = \{e\}$ in this case.

We may therefore suppose that $MN = G$. Now the stabilizer of x in N is $M \cap N$, and we have
\[
|\text{Orb}_N(x)| = \frac{|N|}{|M \cap N|} = \frac{|MN|}{|M|} = \frac{|G|}{|M|} = |\text{Orb}_G(x)|.
\]
(Here we have used the Orbit-Stabilizer Theorem and the Third Isomorphism Theorem.) Since G is transitive, we have $\text{Orb}_N(x) = \Omega$, and so N is transitive. \hfill \Box

Proposition 69. Let G be a subgroup of S_7 of order 168. Then G is simple.
Proof. First note that since 7 divides 168, there is a 7-cycle in G, and so G is transitive on $\{1, \ldots , 7\}$. By Corollary 64 we see that G acts primitively. Suppose that N is a proper, non-trivial normal subgroup of G. Then N is transitive by Proposition 68, and so $|N|$ is divisible by 7. So N contains a Sylow 7-subgroup of G, and since it is normal, it must contain all Sylow 7-subgroups of G.

Let P be a Sylow 7-subgroup of G. We observe that S_7 contains 120 conjugates of P, and so the normalizer of P in S_7 has order 42. So G does not normalize P. The number $n_7(G)$ of Sylow 7-subgroups of G is therefore greater than 1; we have $n_7(G) \equiv 1 \mod 7$, and $n_7(G)$ divides 168, and so we must have $n_7(G) = 8$. So the subgroup N has 8 Sylow 7-subgroups, and hence 8 divides $|N|$. Since 7 also divides $|N|$, we see that 56 divides $|N|$. It follows that $|N| = 56$, since $168 = 56 \times 3$.

Now N contains 48 elements of order 7, since each conjugate of P contains 6 such elements. It follows that N has only 8 elements whose order is not 7, and it is clear that these must form a normal Sylow 2-subgroup K. Now N acts transitively on 7 points, and so N is primitive by Corollary 64. So K is transitive by Proposition 68. So we have a subgroup of order 8 acting transitively on 7 points, and this is absurd since 7 does not divide 8. So we have a contradiction; no such subgroup N can exist, and so G is simple.

We conclude the course by constructing a subgroup of S_7 of order 168. More precisely, we shall construct a group G with a faithful action on 7 points, which can therefore be identified with a subgroup of S_7.

Let $G = \text{GL}_3(2)$, the set of invertible 3×3 matrices with entries from \mathbb{Z}_2, under matrix multiplication. Since \mathbb{Z}_2 is a field, the standard results of linear algebra apply. A 3×3 matrix is invertible if and only if it has non-zero determinant, which is the case if and only if its columns are linearly independent over \mathbb{Z}_2.

There is an action of G on the space \mathbb{Z}_2^3 of column vectors, with basis

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

This space has size $2^3 = 8$, and G acts transitively on the 7 non-zero vectors.

Note that if $Ae_i = c_i$ for $i = 1, 2, 3$, then the columns of A are c_1, c_2, c_3. It follows that the action of G is faithful, since the only element which fixes all three basis vectors is the identity.

It remains to calculate $|G|$. We consider how we can construct an element A of G, column by column. There are clearly 7 possibilities for the first column c_1 of A, since any non-zero vector will do. The columns must be linearly independent, and so the second column c_2 cannot lie in the span of the first. This rules out the choices $c_2 \in \{0, c_1\}$, and there are 6 remaining possibilities. Now we require the last column c_3 to lie outside the span of the first two; this span contains 4 vectors, and so there are 4 possible choices for c_3. So there are $7 \times 6 = 168$ possible choices for the matrix A, and so $|G| = 168$.

Proposition 70. The group $\text{GL}_3(2)$ constructed above is simple.
Proof. We have shown that $GL_3(2)$ acts faithfully and transitively on 7 points. So it is isomorphic with a subgroup of S_7, of order 168, and so it is simple by Proposition 69.

Remark. The group $GL_3(2)$ is one member of an infinite family of simple groups. Let $GL_d(p)$ be the general linear group, the group of invertible $d \times d$ matrices over the field \mathbb{Z}_p. Define $SL_d(p)$ to be the special linear group, the subgroup consisting of matrices with determinant 1. The centre of $SL_d(p)$ is given by

$$Z = Z(SL_d(p)) = \{ \lambda I \mid \lambda \in \mathbb{Z}_p, \lambda^d = 1 \}.$$

The quotient group $PSL_d(p) = SL_d(p)/Z$, the projective special linear group, is simple except when $d = 2$ and $p = 2, 3$. It has a natural 2-transitive action on the lines of \mathbb{Z}_p^d.

The field \mathbb{Z}_p in this construction can be replaced with any other finite field.