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Asset price dynamics

• Process X = (Xt)t≥0 take values in Rd , with dynamics
described by the SDE

dXt = f (Xt)dt + γ(Xt)dWt , X0 = x ∈ Rd , (1)

where W = (Wt)t≥0 is a Brownian motion in Rm.

• Let n ∈ N+ be a positive integer and T > 0 a fixed time.

• Define a partition on the interval [0,T ] by

π := {0 = t0 < t1 < . . . < tn = T}.
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Option Price and Greeks

• Let g be a function of process X at terminal time T .

• Option price V (x), given the initial condition X0 = x :

V (x) := E [g(Xtn)|X0 = x ] , V̂N(x) :=
1

N

N∑
j=1

g(X̂
(j)
tn ).

• Greeks are sensitivities of an option price with respect to a
parameter.

• To compute the sensitivity w.r.t. to x , use a central-difference

∆C ,h :=
V (x + h)− V (x − h)

2h
.
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Motivational Example: Bachelier Delta (∆)

• Constant diffusion γ > 0, zero drift for forward SDE of price
process X that satisfies (1):

dXt = γdWt , X0 = x .

• Cauchy problem:

L(0)u· = 0, uT = g(XT ),

where the differential operators are defined as

L(0) := ∂t +
1

2
γ2∂2

x , L(1) := γ∂x .

• Shorthand: u
(0)
0 ≡ L(0)u0, u

(1)∗(0)
0 ≡ L(1)L(0)u0.
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Delta using a Fh-measurable weight

• The solution at time T can be written as

g(XT ) = u(T ,XT ) = u(h,Xh) + γ

∫ T

h
∂xutdWt ,

and infer that E [g(XT )] = E [uh], for 0 ≤ h ≤ T .

• It follows:

E
[
g(XT )

Wh

h

]
= E

[
E[uT

Wh

h
|Fh]

]
= E

[
Wh

h
E[uT |Fh]

]
= E

[
uh

Wh

h

]
= γ∂xu0 = L(1)u0.
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Monte Carlo approximation

• Rearranging yields a Delta of the form

∆ := ∂xu(0, x) = E
[
g(XT )

Wh

γh

]
,

with an obvious MC scheme.
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Aim

1 Find weights Hh such that for a general model for X :

Greek = E[g(X̂T )Hh] +O(hm),

where Hh is some Fh-measurable weight.

2 Control MSE for convergence results of the Greek
approximations.
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Theoretical Coefficients Hψ

• Bm[0,1] as the set of bounded measurable functions

ψ : [0, 1]→ R such that∫ 1

0
ψ(s)ds = 1 and if m ∈ N+,

∫ 1

0
ψ(s)skds = 0, 1 ≤ k ≤ m.

• Using this family of functions, define the weights Hψ
· , which

shall be used to approximate the ∆:

Definition (Hψ
h -functionals)

Let ψ ∈ Bm[0,1], and for 0 < h ≤ T , define Hψ
t,h as

Hψ
t,h :=

1

h

∫ t+h

s=t
ψ

(
s − t

h

)
dWs ,

and for shorthand Hψ
h := Hψ

0,h.
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Expansions using Hψ for function v

• Let m ≥ 1, for any v(t, x) smooth enough and ψ ∈ Bm−1
[0,1] ,

then for θ > 0 we have the weak expansion

E
[
Hψ
θ v(θ,X 0,x

θ )
]

= v (1)(0, x) + θv (1,0)(0, x)

+ . . .+
θm−1

(m − 1)!
v (1)∗(0)m−1(0, x) +O(θm) . (2)

• Apply this to value function u satisfying L(0)u· = u
(0)
· = 0, to

obtain
E
[
Hψ
h g(X̂n)

]
= u(1)(0, x) +O(hm).
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Flavour of techniques

• Iterated Itô integrals, and weak Taylor schemes.

• Expansions introduced by [TT90].

• Choose weights for state-space Greeks.

• Refine Hψ
h for higher order schemes.
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Higher order schemes

• Consider N simulations, and fix the step size to h = 1/Nζ .

• Approximate ∆, with E
[
g(X̂ n

T )Hψ
h

]
.

r (Scheme) Weight ζ MSE Complexity Slope

1 (Euler) ψ ≡ 1 1/3 O(N−2/3) O(N4/3) −0.50

2 (WT2) ψs,1, ψp,1 1/5 O(N−4/5) O(N6/5) −0.66

3 (WT3) ψs,2, ψp,2 1/7 O(N−6/7) O(N8/7) −0.75

Table: Implementation and MSE for the Delta.
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• f (x) ≡ 0, γ(x) ≡ 1 + sin2(x), g(x) ≡ arctan(x).
• (X0,T ) = (0.3, 1), (ζ1, ζ2, ζ3) = (1/3, 1/5, 1/7).
• ≈ 20 seconds for WT3 vs ≈ 60 seconds for WT1!
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Complexity vs MSE (log log plot)

 

 
WT1 (r,c) = (−0.51649,−8.4175)
WT2 (r,c) = (−0.70609,−8.5722)
WT3 (r,c) = (−0.76792,−8.6215)
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Extrapolating schemes

• Show that E
[
Hψ
h g(X̂ n

T )
]

= u(1)(0, x) + c1h +O(h2).

• Approximation X n/2 is with a grid of stepsize 2h.

Theorem (Romberg extrapolation)

2E
[
Hψ
h g(X̂ n

T )
]
− E

[
Hψ

2hg(X̂
n/2
T )

]
= L(1)u(0, x) + O(h2).

• Similar expansion for higher order Romberg extrapolation
using better ψ ∈ Bm[0,1] and weak Taylor expansions.

r (Scheme) Weight ζ MSE Complexity Slope

1 (Euler) ψ ≡ 1 1/5 O(N−4/5) O(N6/5) -0.66

2 (WT2) ψs,1 1/7 O(N−6/7) O(N8/7) -0.75

3 (WT3) ψs,2 1/9 O(N−8/9) O(N10/9) -0.80

Table: Implementation and MSE for the Delta, using extrapolation.
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Extrapolated: Complexity vs MSE (log log plot)

 

 
Extrapolated − (m,c) = (−0.69232,−8.3992)

Figure: MSE for ∆ vs Complexity, using 50 repeats, ζ = 1/5.
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Heston Delta

• The Heston model can be represented with i.i.d. Brownian

motions W (1) = (W
(1)
t )t≥0 and W (2) = (W

(2)
t )t≥0 as

d

(
St
Xt

)
=

(
rSt

κ (θ − Xt)

)
dt +

(√
XtSt 0
0 ξ

√
Xt

)(
dW

(1)
t

dW
(2)
t

)

where (S0,X0) = (x , v).

• In general:

∆ = E

[
g(XT )

(H
ψ·,m
h )(1)

x
√
v

]
+O(hm),

where (H
ψ·,m
h )(1) is an order m weight, defined using W

(1)
· .
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Explicit and drift-implicit schemes
• (κ, θ, ξ, r , x , v) = (1.15, 0.04, 0.2, 0, 100, 0.04).
• Mean reversion ω := 2κθ/ξ2 = 2.3.
• Call option with strike K = 100, and T = 1.
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Complexity vs MSE (log log plot)

 

 
Explicit Euler (r,c) = (−0.53697,−6.4368)
Drift−implicit (r,c) = (−0.49373,−6.2407)

Figure: MSE for ∆ vs Complexity, using 100 repeats, ζ = 1/3.
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Further work

Extending results to:

• Non-linear PDEs and higher order Greeks.

• Increase space dimension for sensitivities with respect to
constant parameter.

• Related work (see [Cha13, CC14]).
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Thank you for listening
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