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Abstract Macaulay duration is a well-known and widely used interest rate risk measure.

It is commonly believed that it only works for parallel shifts of interest rates. We show

in this paper that this limitation is largely due to the traditional parametric modelling and

the derivative approach, the Macaulay duration works for non-parallel shifts as well when

the non-parametric modelling and the equivalent zero coupon bond approach are used. We

show that the Macaulay duration provides the best one-number sensitivity information for

non-parallel interest rate changes and that a Macaulay duration matched portfolio is least

vulnerable to the downside risk caused by non-parallel rate changes under some verifiable

conditions.
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Macaulay duration is a well-known interest rate risk measure for a portfolio of regular

bonds (options-free and default-free). It measures the percentage change in portfolio value

due to the instantaneous change in interest rates. It also defines a portfolio immunization

horizon over which the portfolio value remains immunized from an instantaneous shock

in interest rates. A simple strategy in immunization is to match the present value and the

Macaulay duration of an asset portfolio with those of the liability. The portfolio is then

immunized to instantaneous small parallel movements in yields (the whole yield curve is

shifted up or down by the same increment). A dynamic strategy (continuous rebalancing) is

needed to keep the portfolio immunized against small parallel shifts.

The main criticism to the Macaulay duration is that it is valid only to small parallel shifts.

Much effort has been made to extend it to non-parallel shifts. Some other durations have

been suggested, for example, log-stochastic process duration (Khang, 1979) when short-

term rates are more volatile than long-term rates, key-rate duration (Ho, 1992) when there

H. Zheng (�)
Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom
e-mail: h.zheng@imperial.ac.uk

Springer



180 Ann Oper Res (2007) 151:179–191

are several key rates whose changes determine changes of other rates, multidimensional

duration (Rzadkowski and Zaremba, 2000) when several factors affect changes of the term

structure, etc. These durations are defined for more general patterns of rate changes and

one would expect they perform better in immunization than the Macaulay duration does.

However, this is not the case in many empirical tests, as pointed out by Jorion and Khoury

(1996, page 108): “The Macaulay duration was also compared to additive, multiplicative, and

log-multiplicative process duration. Somewhat unexpectedly, they reported little difference

among duration strategies and concluded that the simplest Macaulay duration provides the

most cost-effective immunization method.”

The common feature of those mentioned durations is that interest rate changes are specified

exogenously by some parametric models. Durations are defined simply as derivatives of

bond price with respect to underlying factors. The immunization based on these durations

works well if rate changes do follow specified models, but may perform poorly if they

do not. This intuitively explains why those more recent durations do not have consistent

better performance than the simple Macaulay duration simply because it is unlikely one can

accurately predict rate changes in practice.

Fong and Vasicek (1984) define a measure of immunization risk, called M-squared, and

show that a Macaulay duration matched portfolio structured with minimum M-squared is

less vulnerable to any interest rate movements with bounded slopes. Two questions remain

unanswered in Fong and Vasicek (1984): 1. How to choose an immunization portfolio when a

Macaulay duration matched portfolio does not exist, and 2. Is a Macaulay duration matched

minimum M-squared portfolio least vulnerable to non-parallel interest rate changes? The

reason for these questions is that in Fong and Vasicek (1984) a portfolio is assumed to be

Macaulay duration matched and therefore no further effort is made on other possibilities.

Nawalkha and Chambers (1996) suggest another immunization risk measure, called M-

absolute, which is valid for any portfolios without duration constraints, and show that a

portfolio structured with minimum M-absolute is less vulnerable to any bounded interest

rate changes. M-absolute of a bond is the weighted sum of time differences of cash flows

with a specified holding period. The optimal solution of a minimum M-absolute portfolio is

unstable in the sense that it can easily choose bonds of very different durations with a small

change of data.

Zheng, Thomas, and Allen (2003) suggest an alternative interest rate risk measure, called

approximate duration, for regular bonds in order to address the model misspecification risk.

The approximate duration measures the bond price sensitivity to rate changes without assum-

ing prior any particular patterns of rate changes. The immunization based on approximate

duration does not completely remove the interest rate risk, but it minimizes the overall down-

side risk to any patterns of rate changes, which is in the same spirit as that of Nawalkha

and Chambers (1996). Vinter and Zheng (2003) extend the approximate duration further to

instantaneous forward rates with bounded measurable rate changes. The approximate du-

ration is characterized as the median time of the discounted cash flows with nonsmooth

optimization.

This paper discusses the measurement and immunization of a bond (or a portfolio of bonds)

with respect to Lipschitz (non-parallel) changes of interest rates, i.e., the rate of change is

bounded. In practice rate changes are always Lipschitz when yield curves are calibrated

with linear splines (Ho, 1997) or other smooth splines from the observed market data. The

objective of this paper is to answer the following two questions: 1. Is Macaulay duration

the best one-number sensitivity measure for Lipschitz changes of interest rates? and 2. Is

the Macaulay duration matched minimum M-squared portfolio least vulnerable to Lipschitz

changes of interest rates? The main contribution of the paper is to give positive answers to
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both questions (under some conditions for the second one), which establishes the Macaulay

duration as a good interest rate risk measure for non-parallel shifts as well and explains partly

many apparent paradoxes in the empirical literature on durations.

The paper is organized as follows: Section 2 reviews the equivalent ZCB approach to

studying the sensitivity of regular bonds and shows the Macaulay duration provides the best

one-number sensitivity information when rate changes are Lipschitz. Section 3 discusses

the immunization with the minimum downside risk and characterizes the conditions under

which the Macaulay duration matched minimum M-squared portfolio is least vulnerable to

non-parallel rate changes. The conclusions summarizes the main results and open questions.

The appendix contains the proofs of theorems.

1 Nonparametric duration measures

Assume that the term structure of interest rates is flat with rate r (continuous compounding)

and that a bond has cash flows ci at time ti , i = 1, . . . , N , until maturity tN = T . The

bond price at time 0 is equal to P = ∑N
i=1 ci e−r ti and the Macaulay duration is defined

by D = ∑N
i=1 ti ci e−r ti /P .1 A standard method to derive the Macaulay duration is to set

D = −P ′/P where P ′ is the derivative of P with respect to r . This approach gives clear

financial interpretation to the Macaulay duration, i.e., it indicates the magnitude of percentage

price changes to yield changes. An alternative method to derive the Macaulay duration is to

find an equivalent zero-coupon bond with the same present value and interest rate sensitivity

as the given bond, i.e., the face value F and the maturity D of the equivalent ZCB are

determined from equations P = P0 := Fe−r D and P ′ = P ′
0. The solution D is again the

Macaulay duration.

When there are several factors affecting rate changes, the two methods produce diver-

gent results. The derivative method changes to the partial derivative method and the dura-

tion becomes a vector, which implies the change of the term structure must be specified

parametrically and the model risk is inherent. The equivalent zero coupon bond method

keeps the same spirit with a generalized equivalence relation and the duration is still a

single number. The first approach is discussed by Ho (1997), Rzadkowski and Zaremba

(2000), etc. The second approach is investigated by Zheng, Thomas, and Allen (2003),

Vinter and Zheng (2003). We first review the idea of the second approach to general rate

changes.

Assume the initial term structure of forward rates f is given, that is, f (t) is the instanta-

neous forward rate (continuous compounding) at time t , seen at time 0. The present value of

a bond is given by

P( f ) =
∑

i

civ(ti )

where v(t) = e− ∫ t
0 f (u)du is the discount factor at time t . If there is an instantaneous shift of

forward rates from f to f + g, where g is a function defined on a space S with a norm ‖ · ‖,

then the new bond price P( f + g) can be approximated (the first order Taylor expansion) by

P( f ) + P ′( f ; g) where

P ′( f ; g) =
∑

i

civ(ti )

(
−

∫ ti

0

g(u)du

)
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is the directional derivative of P at f in the direction g. Consider now a ZCB with face value

F and maturity D. Its present value is

P0( f ) = Fv(D)

and its directional derivative is

P ′
0( f ; g) = P0( f )

(
−

∫ D

0

g(u)du

)
.

The ZCB is said to be equivalent to the given bond if

P( f ) = P0( f ) (1)

and

P ′( f ; g) = P ′
0( f ; g) for all g. (2)

Divide (2) with (1) and set

wi = civ(ti )/P( f ) (3)

to get

∑
i

wi

∫ ti

0

g(u)du =
∫ D

0

g(u)du for all g

which is equivalent to equation H (D) = 0 where

H (D) = max
‖g‖≤1

∣∣∣∣∣∑
i

wi

∫ ti

D
g(u)du

∣∣∣∣∣ (4)

Note H (D) is the normalized maximum deviation of interest rate sensitivities of the two

bonds. Once D is derived F is computed from (1).

If rate changes are parallel, i.e., g is a constant function, then H (D) = | ∑i wi ti − D| and

the solution to H (D) = 0 is the Macaulay duration D = ∑
i wi ti . However, if rate changes

are not parallel then there is no solution to H (D) = 0 unless the coupon bond itself has

only one cash flow. We need to generalize the equivalence from the relation H (D) = 0 to

something else. A natural candidate is to make H (D) as close to zero as possible. We therefore

call a ZCB with face value F and maturity D equivalent to the given bond if D is the optimal

solution to the problem:

minimize H (D) subject to D ≥ 0 (5)

and F satisfies (1).

Vinter and Zheng (2003) discuss, among some other finance problems, the equivalence

relation in the space S = L∞[0, ∞) with the norm ‖g‖ = supx |g(x)|. The optimal solution

Da to (5) is the median time of the discounted cash flows, i.e., Da = ti0
if

∑
i<i0

wi ≤ ∑
i≥i0

wi
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and
∑

i≤i0
wi ≥ ∑

i>i0
wi for some integer i0 and Da is any number in the interval [ti0

, ti0+1]

if
∑

i≤i0
wi = ∑

i≥i0+1 wi . The result implies that if we know nothing about rate changes

(always measurably bounded) then the ZCB that best approximates a coupon bond should

have the maturity equal to the median time of the discounted cash flows of the given bond.

However, the resulting ZCB is unstable in the sense that its maturity can vary greatly even

there are only small changes of cash flows. For example, if a bond has two cash flows

of equal present values, one in one year and the other in ten years, then the equivalent

ZCB has duration of either one year or ten years with any slight tipping of balance of

cash flows. Note that Da is intrinsically equal to one of cash flow dates ti0
. It is undecided

only when
∑

i≤i0
wi = ∑

i≥i0+1 wi , but that relation is transient since the weights wi change

continuously as time t passes by. The optimal solution Da is the same as the approximate

duration, an interest rate risk measure discussed in Zheng, Thomas, and Allen (2003) in

comparing duration-based immunization strategies.

In this paper we study the equivalent ZCB when S is a Lipschitz functional space, i.e., if g ∈
S then there exists a K > 0, called Lipschitz constant, such that |g(x) − g(y)| ≤ K |x − y| for

all x, y ≥ 0. If g is continuously differentiable with bounded derivatives, then g is Lipschitz

with K = ‖g′‖∞. The converse is not true, for example, linear splines are Lipschitz, but are

not differentiable. The next result shows that the Macaulay duration is a stable interest rate

sensitivity measure valid not only for parallel shifts but also for non-parallel shifts.

Theorem 1. Let the change of the term structure g be a Lipschitz function with a D-dependent
norm ‖g‖D defined by ‖g‖D = max{|g(D)|, K }.2 Let all cash flows of the underlying bond
be nonnegative. Then the maximum deviation H (D) is characterized by

H (D) = 1

2

∑
i

wi (ti − D)2 +
∣∣∣∣∣ ∑

i

wi ti − D

∣∣∣∣∣ (6)

and the optimal solution to (5) is the mean time of the discounted cash flows, i.e., the Macaulay
duration Dm = ∑

i wi ti .

Theorem 1 shows that the Macaulay duration Dm not only gives exact sensitivity in-

formation when rate changes are parallel but also provides the best approximation of that

information when rate changes are not parallel as long as the slope of rate changes is not too

steep. The Macaulay duration Dm is also stable, i.e., small changes of cash flows result in

small changes of the Macaulay duration, this is because Dm is the mean time, not the median

time, of the discounted cash flows.

In practice we do not observe the instantaneous forward rate curve f directly, but we can

easily construct it based on the observed market data to any degree of accuracy (depending

on the availability of the data). Let R(0) be the short rate at time t0 = 0 and R(ti ) be the

zero rate at time ti , i = 1, . . . , N .3 The relation between R(t) and f (u), 0 ≤ u ≤ t , is R(t) =
(1/t)

∫ t
0

f (u)du with R(0) = limt↓0 R(t) = f (0). Assume a linear spline (the same technique

applies to other splines) is used to construct the instantaneous forward rate curve f from

rates f (ti ) at time ti , i = 0, 1, . . . , N . We can set f (0) = R(0) and compute f (ti ) from the

recursive formula f (ti ) = 2(ti R(ti ) − ti−1 R(ti−1))/(ti − ti−1) − fi−1 for i = 1, . . . , N . The

curve f and the change g constructed this way are Lipschitz.

Heath et al. (1992) discuss the risk-neutral forward rate process modelling and its appli-

cations in pricing interest rate derivatives. They specify the whole term structure of f (s, t),
the instantaneous forward rates at time t seen at time s ≤ t , and assume f (·, t) is driven by
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some diffusion processes for fixed t . Therefore with probability one the realized path f (·, t)
is nowhere differentiable, certainly not Lipschitz. However, the HJM forward rate model can

not be directly applied in immunization context because immunization is concerned with the

impact of an unpredictable regime change from f to f + g at a fixed time s, not the dynamic

process f itself over the whole period.

Note that the traditional Macaulay duration is well-defined for bonds with positive or

negative cash flows but the Macaulay duration in Theorem 1 is only defined for bonds with

nonnegative cash flows. This disparity is due to the different derivation techniques: one with

derivative (parallel shift, valid in two directions) and the other with minimum deviation (any

pattern, valid only in one direction). This observation implies that the short-selling (negative

cash flows) is not allowed when the Macaulay duration is used for Lipschitz (non-parallel)

rate changes.

2 Downside risk minimizing immunization

Suppose a bond (or a portfolio of bonds) is to be held for a period D. The value of the bond

at time D is

FV ( f ) =
∑

i

ci e
∫ D

ti
f (u)du = P( f )e

∫ D
0 f (u)du .

In practice FV ( f ) may represent the value of the liability at time D to be paid. If forward

rates change from f to f + g, then the value of the bond changes to FV ( f + g). The

immunization is to choose a bond (or a portfolio of bonds) such that FV ( f + g) ≥ FV ( f )

for any rate changes g. The next result provides a lower bound for FV ( f + g) and shows

that the Macaulay duration maximizes the lower bound.

Theorem 2. Let the change of forward rates g be a Lipschitz function (non-parallel shifts).
Then for any holding period D > 0

FV ( f + g) ≥ FV ( f ) − ‖g‖D H (D)FV ( f ) for all g (7)

where H (D) is given by (6). Furthermore, if the change of forward rates g is a constant
function (parallel shifts) and D is the Macaulay duration, then

FV ( f + g) ≥ FV ( f ) for all g.

Theorem 2 shows that a Macaulay duration matched bond immunizes the interest rate risk

only when rate changes are parallel. In general it is impossible to have a bond (or a portfolio

of bonds) such that FV ( f + g) ≥ FV ( f ) for all rate changes g. The best one can hope for

is to make the loss (the downside risk), when it occurs, as small as possible. (7) shows that

the percentage loss is bounded by ‖g‖D H (D), the product of the magnitude of interest rate

changes and the maximum deviation of a bond with a holding period D. To minimize the

downside risk one should choose a bond (or a portfolio of bonds) with minimum H (D) as

‖g‖D is uncontrollable. If the holding period D is a decision variable, then the Macaulay

duration Dm minimizes H (D). If the holding period D is fixed as in immunization, then a

bond with the smallest H (D) in comparison with other bonds is likely to be least vulnerable

to the loss caused by non-parallel rate changes. This raises a natural question as whether a
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Macaulay duration matched bond (or a portfolio of bonds) is still a good choice in controlling

the downside risk.

Fong and Vasicek (1984) define M2 = ∑
i wi (ti − D)2 as the time variance of a bond with

a holding period D. They claim a Macaulay duration matched portfolio has the minimum

exposure to interest rate changes when M2 is minimized. We can recover the same conclusion

from Theorem 2 under the weak assumption (rate changes are Lipschitz, not continuously

differentiable) and provide a better objective function H (D) than M2 in choosing a bond

portfolio with the minimum downside risk.

Assume that the liability portfolio is a ZCB with the present value V and the duration D,

and that the asset portfolio is made of N bonds with a holding period D. Assume that there

are x j units of bond j which has the present value Pj , the Macaulay duration D j , and the

time variance M2
j , j = 1, . . . , N . Then the present value V (x), the Macaulay duration D(x),

and the maximum deviation H (x) of the asset portfolio are given by

V (x) =
∑

j

Pj x j

D(x) =
∑

j

(Pj x j/V (x))D j (8)

H (x) = (1/2)
∑

j

(Pj x j/V (x))M2
j +

∣∣∣∣∣ ∑
j

(Pj x j/V (x))D j − D

∣∣∣∣∣.
To match the present values of the asset and liability portfolios decision variables x j must

satisfy the relation V (x) = V . Denote y j = (x j Pj )/V the proportion of bond j in the whole

portfolio for j = 1, . . . , N . From (8) we have
∑

j y j = 1 and y j ≥ 0 for all j . The Macaulay

duration and the maximum deviation of the portfolio are given by D(y) = ∑
j y j D j and

H (y) = (1/2)
∑

j y j M2
j + | ∑ j y j D j − D|, respectively. We can set up an optimal portfolio

(in the sense of minimum downside risk) by solving the following optimization problem

minimize (1/2)
∑

j

y j M2
j +

∣∣∣∣∣ ∑
j

y j D j − D

∣∣∣∣∣ (9)

subject to
∑

j

y j = 1 and y j ≥ 0, ∀ j.

(9) can be easily formulated by an equivalent linear programming problem.

Fong and Vasicek (1984) choose an optimal portfolio by minimizing the M2 of the port-

folio, i.e.,

minimize (1/2)
∑

j

y j M2
j

subject to
∑

j

y j D j = D (10)

∑
j

y j = 1 and y j ≥ 0, ∀ j.

(9) is a better formulated optimization problem than (10) in two aspects: 1. The minimum

value of (9) is less than or equal to that of (10) because any feasible solution to (10) is a
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feasible solution to (9) with the same objective function value, which implies that a portfolio

chosen with (9) has smaller bound for the downside risk than that chosen with (10), and

the downside risk itself is likely to be smaller as a result. 2. The existence of the optimal

solution to (9) is guaranteed because the feasible region is a nonempty compact convex set in

RN , however, the feasible region to (10) can be an empty set, which implies that a portfolio

can always be chosen with (9), but not necessarily with (10). The example after Theorem 3

illustrates these points.

Next we specify the conditions under which optimization problems (9) and (10) are equiv-

alent, i.e., a Macaulay duration matched minimum M2 portfolio is the same as a minimum

maximum deviation portfolio which is least vulnerable to non-parallel rate changes.

Theorem 3. The optimization problems (9) and (10) have the same optimal solution if and
only if the following two conditions are satisfied:

(i) if (1/2)M2
k − Dk = min{(1/2)M2

j − D j : j = 1, . . . , N } then Dk ≥ D;

(ii) if (1/2)M2
k + Dk = min{(1/2)M2

j + D j : j = 1, . . . , N } then Dk ≤ D.

Furthermore, if either (1/2)M2
k − Dk ≤ (1/2)M2

j − D j for all j and Dk < D or (1/2)M2
k +

Dk ≤ (1/2)M2
j + D j for all j and Dk > D, then the optimal solution to (9) is yk = 1 and

y j = 0 for j �= k, and the minimum value of (9) is strictly less than that of (10).

Example. Consider an asset portfolio of 3 bonds: bond 1 has 50% cash flow at time 4 and

the rest at time 8 (in terms of present values), bond 2 has 50% cash flow at time 10 and the

rest at time 14, bond 3 has only one cash flow at time 8.

(a) Assume the holding period is D = 10. The Macaulay durations and the time vari-

ances of these bonds are given by D1 = 6, M2
1 = 20, D2 = 12, M2

2 = 8, and D3 = 8,

M2
3 = 4. We can check that min{(1/2)M2

j − D j } = (1/2)M2
2 − D2 and D2 > D, and that

min{(1/2)M2
j + D j } = (1/2)M2

3 + D3 and D3 < D, therefore conditions (i) and (ii) in The-

orem 3 are satisfied. Problems (9) and (10) have the same optimal solution y1 = 0, y2 =
0.5, y3 = 0.5 and the optimal value 3. In this case a Macaulay duration matched minimum

M2 portfolio is the same as a minimum maximum deviation portfolio.

(b) Bonds 1 and 2 are the same as those in (a) but bond 3 is replaced by a cash flow at

time 11. Assume the holding period is still D = 10. We have D3 = 11 and M2
3 = 1. We can

check that condition (ii) is not satisfied because min{(1/2)M2
j + D j } = (1/2)M2

3 + D3 and

D3 > D. Problem (9) has the optimal solution y1 = 0, y2 = 0, y3 = 1 and the optimal value

1.5. Problem (10) has the optimal solution y1 = 0.2, y2 = 0, y3 = 0.8 and the optimal value

2.4. In this case a Macaulay duration matched minimum M2 portfolio is not as good as a

minimum maximum deviation portfolio.

(c) All three bonds are the same as those in (b) but the holding period is replaced by D = 14.

The time variances of these bonds are changed to M2
1 = 68, M2

2 = 8, and M2
3 = 9. We

can check that condition (i) is not satisfied because min{(1/2)M2
j − D j } = (1/2)M2

2 − D2

and D2 < D. Problem (9) has the optimal solution y1 = 0, y2 = 1, y3 = 0 and the optimal

value 6. Problem (10) has no feasible solution due to D j < D for all j . In this case a

Macaulay duration matched minimum M2 portfolio simply does not exist whereas a minimum

maximum deviation portfolio is still well defined.

An immunized portfolio requires continuous rebalancing to keep it immunized. Such a

strategy is untenable when there are transaction costs in trading bonds. One has to strike

a balance between two conflicting objectives of minimizing the transaction cost and of
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Table 1 Profits/losses (Volumes) of immunization strategies

1994 1995 1996 1997 1998 1999 2000 2001

Macaulay 0.00 3.39 −5.19 3.20 0.10 −0.14 −0.29 0.00

(6.60) (4.67) (8.30) (11.27) (6.97) (10.15) (13.26) (0.00)

M-Absolute 0.00 4.26 −2.34 4.85 −3.30 −1.48 1.32 0.00

(6.55) (3.73) (12.99) (0.55) (0.76) (0.80) (0.84) (0.00)

minimizing the maximum deviation. We can achieve this by solving the following LP:

minimize (1 − λ)
∑

j

a j y j + λ

(
(1/2)

∑
j

y j M2
j +

∣∣∣∣∣ ∑
j

y j D j − D

∣∣∣∣∣
)

subject to
∑

j

y j = 1 and y j ≥ 0, ∀ j

where a j is the transaction cost associated with bond j and 0 ≤ λ ≤ 1 is a preference param-

eter. If λ = 0 then the objective is to minimize the transaction cost. If λ = 1 then the objective

is to minimize the maximum deviation. A family of optimal solutions can be constructed by

varying parameter λ, which is similar to the Markowitz’s mean-variance efficient frontier.

We perform a simple empirical test to compare the Macaulay duration strategy and the

M-absolute strategy with the objective of minimizing the downside risk. The data used

are the observed US Treasury bonds and STRIPS rates. The data source is the Wall Street

Journal (NY edition) around February 15 from 1994 to 2001. Each year six new Treasury

bonds (maturity in one, two, three, five, ten, and twenty-five years) are added to the selection

universe. All bonds are options free with face value 100. Coupons are assumed to be paid

annually for ease of calculation. STRIPS rates are used as zero rates. Assume the holding

period is seven years from February 1994 (maturity in February 2001) and the target value

is one million dollars. The portfolio is rebalanced in every February.

Table 1 displays the profits/losses (000’s) and the number of bonds traded (000’s, in

parentheses) of the portfolio each year. The Macaulay and M-absolute strategies are stable

and have similar performances. Note that the M-absolute strategy has much fewer transactions

than that by the Macaulay duration strategy from 1997. The reason is that in 1996 the liability

has five years to maturity and there are five year bonds available in the asset portfolio, the

M-absolute strategy switches its bond holding from bonds of other maturities to those of five

years. After that only small adjustment is needed at rebalancing time. The portfolio has a

bullet structure and can significantly save the cost if transaction costs are not negligible or

if the portfolio is frequently rebalanced. On the other hand, such a concentration may have

adverse effect if there is default risk of underlying bonds (a topic not discussed in this paper).

3 Conclusions

In this paper we show that the Macaulay duration works well for non-parallel shifts of interest

rates. It provides the best one-number interest rate sensitivity information for Lipschitz rate

changes. A Macaulay duration matched minimum M-squared portfolio has the minimum

downside risk under some easily-verified conditions. These results are valid for regular

bonds, i.e., there is no uncertainty in timing and amount of cash flows, which implies that
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the Macaulay duration may work well for regular Treasury bonds (options-free and default-

free). However, if a bond has an embedded option (callable bond, etc) or has credit risk

(corporate bond, etc.) then one should be cautious in applying the results discussed in this

paper, especially in immunization. This is because the optimal portfolio set up with the help

of (9) contains only one or two bonds and is subject to severe credit/option risk. More research

is needed on the role of the Macaulay duration (or effective duration) for option-embedded

credit risky bonds.

Appendix

Proof of Theorem 1. Notice first that∣∣∣∣∣
∫ ti

D
(g(u) − g(D))du

∣∣∣∣∣ ≤
∫ ti

D
K (u − D)du ≤ K

2
(ti − D)2. (11)

The above calculation is valid for both cases D ≤ ti , or D > ti .
We can now show “≤” inequality of (6) as follows.

∣∣∣∣∣ ∑
i

wi

∫ ti

D
g(u)du

∣∣∣∣∣ =
∣∣∣∣∣ ∑

i

wi

( ∫ ti

D
(g(u) − g(D)

)
du +

∑
i

wi g(D)(ti − D)

∣∣∣∣∣
≤

∑
i

wi

∣∣∣∣∣
∫ ti

D
(g(u) − g(D))du

∣∣∣∣∣ +
∣∣∣∣∣ ∑

i

wi g(D)(ti − D)

∣∣∣∣∣
≤ K

2

∑
i

wi (ti − D)2 +
∣∣∣∣∣ ∑

i

wi ti − D

∣∣∣∣∣|g(D)|

≤ 1

2

∑
i

wi (ti − D)2 +
∣∣∣∣∣ ∑

i

wi ti − D

∣∣∣∣∣. (12)

The last inequality is due to ‖g‖D ≤ 1.

To show “≥” inequality of (6) we define g(D) = sgn(
∑

i wi ti − D), where sgn(x) = 1 if

x > 0 and −1 if x < 0, and g(u) = (u − D) + g(D). Then g is Lipschitz with ‖g‖D = 1.

Now compute
∫ ti

D g(u)du to get

∫ ti

D
g(u)du = 1

2
(ti − D)2 + g(D)(ti − D).

Therefore

H (D) ≥ 1

2

∑
i

wi (ti − D)2 +
∑

i

wi (ti − D)g(D)

= 1

2

∑
i

wi (ti − D)2 +
∣∣∣∣∣ ∑

i

wi ti − D

∣∣∣∣∣. (13)
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(12) and (13) imply (6). Note that H (D) in (6) is a nonsmooth convex function and, in general,

nonsmooth optimization is needed to find the minimum solution. However, it is easy to solve

this particular problem. The first term of (6) reaches the minimum when D = ∑
i wi ti and the

second term is zero with this choice of D. Therefore the Macaulay duration Dm = ∑
i wi ti

minimizes H (D).

Proof of Theorem 2. A simple calculation shows that

FV ( f + g)

FV ( f )
=

∑
i

wi e
∫ D

ti
g(u)du ≥ 1 +

∑
i

wi

∫ D

ti

g(u)du. (14)

The last inequality is due to ex ≥ 1 + x for any real number x and wi ≥ 0 and
∑

i wi = 1

(see (3)). If the change of forward rates g is a constant function, i.e., g(u) = c for some

constant c, then (14) implies

FV ( f + g)

FV ( f )
≥ 1 + c

(
D −

∑
i

wi ti

)
.

If the holding period D is chosen to be the Macaulay duration D = ∑
i wi ti then we have

FV ( f + g) ≥ FV ( f ) for all constant functions g.

If the change of forward rates g is a Lipschitz function, then (14) and (11) imply that

FV ( f + g)

FV ( f )
≥ 1 +

∑
i

wi (D − ti )g(D) − K

2

∑
i

wi (ti − D)2

≥ 1 −
∣∣∣∣ ∑

i

wi ti − D||g(D)

∣∣∣∣ − K

2

∑
i

wi (ti − D)2

≥ 1 − ‖g‖D H (D)

where H (D) is given by (6).

Proof of Theorem 3. Denote C j = (1/2)M2
j , j = 1, . . . , N . Note that (9) is equivalent to

the following LP:

minimize
∑

j

y j C j + z+ + z−

subject to
∑

j

y j D j − z+ + z− = D (15)

∑
j

y j = 1 and z+, z−, y j ≥ 0, ∀ j.

Note also that one of z+ and z− must be zero for the optimal solution of (15). If both z+ and

z− are zero then problems (10) and (15) are equivalent.

Assume conditions (i) and (ii) are satisfied but problems (9) and (10) are not equivalent.

Then either z+ or z− is positive. If z+ > 0 then z+ is a basic variable of LP (15) and z− = 0.

Since there are two basic variables for two equality constraints we conclude that the other
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basic variable must be one of y j , j = 1, . . . , N , say yk . The optimal basic feasible solution

is given by

yk = 1, y j = 0, j �= k, and z+ = Dk − D, z− = 0.

The objective function can be written in terms of non-basic variables as∑
j

C j y j + z+ + z− =
∑

j

(C j + D j )y j + 2z− − D

=
∑
j �=k

(C j + D j − Ck − Dk)y j + 2z− + (Ck + Dk − D)

The optimality implies that all coefficients of non-basic variables are non-negative, i.e.,

C j + D j − Ck − Dk ≥ 0 for all j �= k. On the other hand, z+ > 0 implies Dk > D. We

have arrived at a contradiction to condition (ii). Therefore z+ > 0 is impossible for the

optimal solution of (15) under condition (ii). Similarly, we can show z− > 0 is impossible

under condition (i). We have proved conditions (i) and (ii) imply the equivalence of (9) and

(10).

Assume problems (9) and (10) are equivalent but conditions (i) and (ii) are not both

satisfied. If condition (i) is not satisfied then Ck − Dk ≤ C j − D j for all j and Dk < D. We

can now estimate the objective function of (15) with the help of its constraints:∑
j

C j y j + z+ + z− =
∑

j

(C j − D j )y j + 2z+ + D

≥
∑

j

(Ck − Dk)y j + 2z+ + D

≥ Ck − Dk + D

The lower bound Ck − Dk + D is achieved when yk = 1, y j = 0 for j �= k, and z+ = 0,

z− = D − Dk , which is a basic feasible solution as Dk < D. However, z− > 0 contradicts

the equivalence of (10) and (15). Condition (i) is therefore satisfied. Note we have explicitly

constructed the optimal solution to problem (15) when condition (i) is not satisfied. Condition

(ii) can be shown satisfied in the same way.

Notes
∗ The author would like to thank the anonymous referees for their helpful comments and

suggestions on earlier versions.

1. If bond price P is expressed in terms of its yield y by P = ∑
i ci (1 + y)−ti , then its

Macaulay duration is defined by Dmac = ∑
i ti ci (1 + y)−ti /P , and its modified duration is

defined by Dmod = −(1/P)d P/dy = Dmac/(1 + y). However, in continuous compound-

ing case two durations are the same Dmac = Dmod .

2. The norm ‖g‖D is equivalent to the standard norm ‖g‖ = max(|g(0)|, K ) due to the

Lipschitz property of g. The benefit of using ‖g‖D instead of ‖g‖ is that an equality

relation (6) is established. If ‖g‖ is used in the definition of H (D) instead of ‖g‖D , then

H (D) is bounded above by 1
2

∑
i wi (ti − D)2 + | ∑i wi ti − D|(1 + D) and the Macaulay

duration Dm provides the least upper bound.
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3. Zero rates can be extracted from the observed coupon bonds with the standard bootstrap-

ping technique (Hull (2002)) or the LP method (Allen, Thomas, and Zheng, 2000).

References

Allen, D.E., L.C. Thomas, and H. Zheng. (2000). “Stripping Coupons with Linear Programming.” Journal of
Fixed Income, 10(Sept), 80–87.

Fong, H.G. and O.A. Vasicek. (1984). “A Risk Minimizing Strategy for Portfolio Immunization.” Journal of
Finance, 39, 1541–1546.

Ho, T. (1992). “Key Rate Durations: Measures of Interest Rate Risks.” Journal of Fixed Income, 2(Sept),
29–44.

Hull, J.C. (2002). Options, Futures, & Other Derivatives. Prentice-Hall International.
Jorion, P. and S.J. Khoury. (1996). Financial Risk Management. Blackwell.
Khang, C. (1979). “Bond Immunization when Short-term Rates Fluctuate More Than Long-term Rates.”

Journal of Financial and Quantitative Analysis, 14, 1035–1040.
Nawalkha, S.K. and D.R. Chambers. (1996). “An Improved Immunization Strategy: M-absolute.” Financial

Analysts Journal, 52(Sept/Oct), 69–76.
Rzadkowski, G. and L.S. Zaremba. (2000). “New Formulas for Immunizing Durations.” Journal of Derivatives,

8(Winter), 28–36.
Vinter, R.B. and H. Zheng. (2003). “Some Finance Problems Solved with Nonsmooth Optimization Tech-

niques.” Journal Optimization Theory Applications, 119, 1–18.
Zheng, H., L.C. Thomas, and D.E. Allen. (2003). “The Duration Derby: A Comparison of Duration Based

Strategies in Asset Liability Management.” Journal of Bond Trading and Management, 1, 371–380.

Springer


