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SUMMARY

It is frequently observed in practice that the Wald statistic gives a poor assessment of the statis- 10

tical significance of a variance component. This paper provides detailed analytic insight into the
phenomenon by way of two simple models, which point to an atypical geometry as the source of
the aberration. The latter can in principle be checked numerically to cover situations of arbitrary
complexity, such as those arising from elaborate forms of blocking in an experimental context,
or models for longitudinal or clustered data. The salient point, echoing Dickey (2020), is that a 15

suitable likelihood-ratio test should always be used for the assessment of variance components.

Some key words: components of variance, likelihood ratio, nuisance parameters, REML, Wald statistic.

1. INTRODUCTION

Faithful representation of a process generating data often entails specification of two or more
sources of variability. In an experimental context, simple or elaborate forms of blocking induce 20

nested or crossed structure within the set of plots. Similar grouping arises in observational studies
where, for instance, data may originate from different hospitals, regions, or from several family
groups, of no direct interest but likely to generate structured correlation in the outcome.

As in certain other settings, inference based on the likelihood function for the full generative
model is typically miscalibrated, sometimes seriously so, and should ideally be based on a suit- 25

able marginal or conditional likelihood. In the present context, appropriate preliminary reduction
leads to residual maximum likelihood (REML), developed by Patterson and Thompson (1971),
and closely connected to marginal likelihood (Bartlett, 1937).

Even when the REML likelihood is used, the Wald test routinely reported in software imple-
mentations is frequently found to be ineffectual for detecting components of variance when they 30

are unambiguously present. A typical example occurs in chapter 4 of McCullagh (2023), where
the likelihood-ratio statistic is more than eight times as large as the squared Wald ratio. The phe-
nomenon has also been documented by Dickey (2020), who presented examples in which the
REML Wald statistic is bounded. In at least one of the examples he considered, the natural esti-
mate of standard error of the REML estimator is proportionate to the REML estimate itself, so 35

that the role of the data in the Wald construction is negligible. The purpose of the present paper is
to expose the matter in a form amenable to detailed analytic calculation, thereby revealing depen-

C© 2020 Biometrika Trust



2 BATTEY AND MCCULLAGH

dence on key aspects and indicating other settings in which the same phenomenon is inevitable.
Dickey’s (2020) insights are reproduced and elucidated further. The source of the anomalous
behaviour is not failure of distributional approximations obtained under hypothetical regimes of40

sometimes questionable adequacy, but rather atypical geometry of the (REML) log-likelihood
function, which induces a bounded Wald statistic even under a notional limiting operation in
which the likelihood-ratio statistic for testing the same hypothesis is arbitrarily large. We show
that a version of the score statistic is subject to the same aberration.

The implications for applied work are consequential, as undetected sources of variability typi-45

cally result in estimated standard errors for regression coefficient estimators that are deceptively
small, and therefore confidence intervals that are misleadingly narrow. The opposite situation can
occasionally arise as well. For instance, in a randomized blocks design, omission of the block
factor as a variance component has the effect of increasing the estimated variance of treatment
effect estimators.50

2. VARIANCE COMPONENTS MODELS

In a typical variance-components model, the distribution of the response vector is specified by
a mean vector µ = Xβ in the linear subspace X spanned by the columns of the model matrix X ,
and a covariance matrix Σ in the convex cone

V =
{

Σ =

s∑
u=0

θuVu : θu ≥ 0
}

spanned by given matrices V0, . . . , Vs, which are positive-definite or semi-definite. Usually V0 =55

In is the identity; the remaining matrices may be block factors or structured matrices associated
with spatial or temporal dependence.

The residual likelihood is the likelihood function based on the residual UTY , where
ker(UT) = X . Provided that the matrices UTVuU are linearly independent, the variance com-
ponents θu may be estimated by maximizing the residual likelihood. In subsequent discussion,60

reference to the log-likelihood function and its maximizer means the REML version unless oth-
erwise specified.

There are compelling general arguments, notably invariance and permissibility of asymmet-
ric confidence regions, for basing an assessment of the hypothesis H0 : θs = 0, say, on the
likelihood-ratio statistic65

Λ = 2{`(θ̂)− `(θ̂(0))},

where θ̂ is the maximum likelihood estimator and θ̂(0) is the constrained estimator under H0.
Non-negativity of the variance coefficients means that the subset of V defined by the constraint
θs = 0 is a boundary sub-cone, with the implication that the likelihood achieves its maximum
on the boundary with positive probability, usually one half for sufficiently large sample size
(Chernoff, 1954). When an exact F statistic exists, the boundary event occurs whenever F ≤ 1.70

On this event, θ̂ ∈ H0 coincides with θ̂(0) and the log-likelihood ratio is exactly zero. Thus with
asymptotic probability one half Λ = 0; otherwise its distribution under H0 is χ2

1 under suitable
limiting conditions. The realized value of Λ is to be calibrated against this distribution.

The nominal asymptotic variance of θ̂s is iss(θ), the (s, s) component of the inverse Fisher in-
formation matrix. With asymptotic probability one half, the squared Wald ratioW 2 = θ̂2s/i

ss(θ̂s)75

is equal to zero underH0 and otherwise it is asymptotically equivalent to Λ by a standard asymp-
totic argument. However, it is frequently observed in practice that W 2 gives a poor assessment
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of the statistical significance of the sth variance component, in the sense that it fails to reject H0

even when Λ does so unambiguously at the same significance level. If the likelihood is maxi-
mized on the boundary, both W 2 and Λ are zero and there is no disagreement. Disagreement can 80

only occur when both are positive, and it is that phenomenon that we address here.
Among the substantial literature on testing variance components is an early contribution by

Wald (1947), notable in that it recommends an F test but fails to warn against use of the epony-
mous statistic in this context. Subsequent contributions have developed non-standard asymptotic
theory for the likelihood-ratio statistic and modifications thereof, relaxing an earlier assumption 85

that the true parameter value belongs to the interior of the parameter space (e.g., Self and Liang,
1987; Geyer, 1994; Vu and Zhou, 1997). While the likelihood-ratio test and its variants have been
the focus of theoretical development, common software implementations report Wald statistics
as standard, without warning. Dickey (2020) appears to have been the first to emphasize the point
at issue. The popularity of Wald-based inference perhaps stems from the convenience of its con- 90

struction, requiring a single maximum likelihood fit in contrast with two for Λ, which facilitates
the presentation of confidence statements.

The analysis of sections 3 and 6 is comparable to that of Dickey (2020), whose derivations
cover situations in which the likelihood-ratio test coincides with an exact F test. The two papers
illustrate the aberration under study in different ways and section 3.4 provides a comparison and 95

synthesis. Sections 4 and 5 cover situations in which a fruitful formulation in terms of F may be
infeasible but for which the shared anomalous geometry can be checked by direct study of the
log-likelihood function. Together, the present paper and that of Dickey (2020) provide a thorough
explanation of a phenomenon of broad relevance and scientific consequence.

3. ANALYSIS FOR A SINGLE BLOCK FACTOR 100

3.1. Introduction
We consider in this section a simple Gaussian model with two variance components estimated

from the sufficient statistic, which consists of the within-blocks mean square MS0 on f0 degrees
of freedom and the between-blocks mean square MS1 on f1 degrees of freedom. Specifically,
the outcome is Yji = µ+ ηj + εji, (j = 1, . . . , k, i = 1, . . . , b) where, for an arbitrary block 105

index j, (Yj1, . . . , Yjb)
T has a Gaussian distribution of mean µ1b and covariance matrix Σ =

σ20Ib + σ2η1b1
T
b . Define, in a standard notation for averaging over suffixes, Y j • =

∑
i Yji/b and

similarly for the double average. The between-blocks sum of squares∑
j,i

(Y j • − Y ••)2 = b
∑
j

(Y j • − Y ••)2 = f1MS1

is distributed as σ21χ
2
f1

where f1 = k − 1 and, in the usual variance-components parameterization
with θ ≥ 0, 110

σ21 = E(MS1) = bσ2η + σ20 = σ20(1 + bθ).

The within-blocks sum of squares
∑

j,i(Yji − Y j •)
2 = f0MS0 is σ20χ

2
f0

distributed indepen-
dently of the between-blocks sum of squares, where f0 = k(b− 1). The constraint on θ means
that the null hypothesis H0 : θ = 0 of equality of variances is on the boundary.

In the balanced one-way analysis of variance structure of the above formulation, the REML
log likelihood is the marginal log likelihood `(θ, σ20) based on the joint density function of 115

(MS0,MS1). While numerous generalizations may be considered, the simple version presented
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here isolates the point at issue in the most incisive form, free of secondary effects that complicate
the analysis and interpretation.

3.2. Comparison of Wald and likelihood ratio statistics
Maximization of `(θ, σ20) without the constraint θ̂ ≥ 0 produces estimators θ̂ = (F − 1)/b120

and σ̂20 = MS0 where F = MS1/MS0 is Fisher’s F ratio, whose distribution depends only on
the variance ratio θ. The maximum likelihood estimator θ̂ has nominal asymptotic variance given
by the relevant diagonal component of the inverse Fisher information matrix, namely

iθθ(θ, σ20) = iθθ(θ) =
2f(1 + bθ)2

f0f1b2
, (1)

where f = f1 + f0. The squared Wald statistic for testing θ = 0 is therefore

W 2 = θ̂2
{

f0f1b
2

2f(1 + bθ̂)2

}
=
(F − 1

F

)2 f0f1
2f

,

to be compared with the likelihood ratio statistic125

Λ = f log MS− f1 log MS1 − f0 log MS0

= f log(1 + f1bθ̂/f)− f1 log(1 + bθ̂),

where the pooled mean square MS = (f1MS1 + f0MS0)/f is the maximum likelihood estimator
of σ20 under the constraint θ = 0.

Although the statistics W 2 and Λ are known functions of bθ̂ = (F − 1), simple approxima-
tions provide insight into the nature of the aberration described in section 1. Taylor expansion of
W 2 and Λ around θ̂ = 0 gives130

W 2 =
b2θ̂2f0f1

2f
(1− 2bθ̂) +O(θ̂4) (2)

Λ =
b2θ̂2f0f1

2f

{
1− 2bθ̂(f0 + 2f1)

3f

}
+O(θ̂4)

Λ/W 2 = 1 +
2bθ̂(2f0 + f1)

3f
+

4b2θ̂2(2f0 + f1)

3f
+O(θ̂3),

or in terms of Λ ≥ 0

Λ/W 2 = 1 +
2
√

2(2f0 + f1)Λ
1/2

3(ff0f1)1/2
+

4(2f0 + f1)(3f + f1)Λ

3ff0f1
+O(Λ3/2),

showing that they agree up to second order in θ̂ and to first order in Λ, but not beyond. Typically
f0 � f1 is large, in which case the ratio is approximately

Λ/W 2 ' 1 +
4bθ̂

3
= 1 +

4(F − 1)

3
' 1 +

4
√

2Λ/f1
3

, Λ ≥ 0 (3)

for small θ̂ or Λ.
The squared Wald statistic W 2 is justified based on standard asymptotic theory for maximum135

likelihood estimators. First- and second-moment theory suggests three further Wald statistics, for
which the same anomalous behaviour is demonstrated in S.2 of the supplementary material. For
a similar discussion of two score statistics, see S.3.
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In the simplest setting, at least, both W and Λ1/2sign(F − 1) are monotone functions of the
mean-square ratio F , so their distributions are known exactly as a function of the variance-ratio 140

parameter θ. The transformations Λ = g1(F ) and W 2 = g2(F ) are strictly monotone increasing
for F > 1, and decreasing for F < 1. The discrepancies described here arise from the standard
practice of treating Λ andW 2 as if they were asymptotically identical statistics rather than equiv-
alent statistics. The standard practice is justified only if g1 = g2, at least approximately for large
samples, which is not the case in typical variance-components models. 145

One definition of Wald-detectability equates θ to Φ−1(1− α) times the estimated standard
error of θ̂. It can be shown (supplementary material S.2) that there does not exist a positive
Wald-detectable value in this sense unless the number of blocks is large. It is arguably more
natural to compute standard errors under the null, in which case the values at the borderline of
Wald-detectability are 150

θ∗16 =

(
2f

f0f1b2

)1/2

, θ∗2 = 2θ∗16

at the 16% and 2% levels. The corresponding thresholds in terms of F are

F ∗16 = 1 +

(
2f

f0f1

)1/2

, F ∗2 = 2F ∗16.

With f0 = 102, f1 = 5 and b = 18, the ratio Λ/W 2 is approximately 1.864 at θ∗16 and 2.727 at
θ∗2. With the same numbers, F ∗16 = 1.648 and F ∗2 = 3.296, to be compared with the 16% and
2% critical values of the F distribution on (f1, f0) degrees of freedom, which are 1.625 and
2.818 respectively. Thus, even when standard errors are computed under the null hypothesis, 155

the observed value of the F statistic has to be 17% larger than the 2% critical value of the F
distribution in order for the Wald test to reject at the same level. Equivalently, rejection at the 2%
level using a Wald statistic with standard errors computed under the null requires an observed
value of θ̂ that is double that necessary for rejection at the same level using an F test. These latter
conclusions do not involve any approximations, and are similar and complementary to those of 160

Dickey (2020).
Geometric insight is obtained by noting that the Wald statistic W 2 implicitly defines a

quadratic approximation q(θ) to the profile REML log likelihood function, `(θ; σ̂2θ) in a neigh-
bourhood of θ̂ = (F − 1)/b. Specifically, for fixed θ, the maximum likelihood estimator of σ20 is
σ̂2θ = w0MS0 + w1MS1/(1 + bθ) where wr = fr/f and 165

2`(θ; σ̂2θ) = −f [1 + log{f0MS0(1 + bθ) + f1MS1}] + f0 log(1 + bθ). (4)

Write `(θ; σ̂2θ) = ˆ̀(θ) + f/2. The quadratic approximation to ˆ̀(θ) implicit in the Wald test is

q(θ) = −
(
f0f1b

2

2fF 2

)
(θ − θ̂)2 + ˆ̀(θ̂),

where f0f1b2/(2fF 2) is 1/iθθ(θ̂) and

2ˆ̀(θ̂) = −f log f − f1 log MS1 − f0 log MS0.

Since the two functions have the same value at θ̂, the discrepancy between the Wald and likeli-
hood ratio statistics for testing θ = 0 is the difference in y-intercepts:

q(0)− ˆ̀(0) =
Λ

2
−
(
f0f1
2f

)(F − 1

F

)2
, (5)
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Fig. 1. Graphs of the profile REML log likelihood func-
tion ˆ̀(θ) (black) and its quadratic approximation q(θ) (or-
ange dashed) for f1 = 5, f0 = 102, b = 18, MS0 = 1 and

(from top left to bottom right) F ∈ {2, 3, 4, 5}.

where the expression for Λ in terms of F is170

Λ = f log(1 + f1(F − 1)/f)− f1 logF.

For F and f1 fixed,

q(0)− ˆ̀(0) =
f1
2

{
(F − 1)

(F 2 − F + 1

F 2

)
− logF

}
+O(f−10 ),

showing that the discrepancy is roughly linear in F for large f0, while for fixed f1 and f0, (5)
converges to zero as F approaches unity and is unbounded for F arbitrarily large. Fig. 1 graphs
q(θ) and ˆ̀(θ) for different values of F .

3.3. Non-constant Fisher information and anomalous geometry175

From equation (4), ˆ̀(θ) has second derivative

γ(θ) =
b2f0

2

{
f0fMS2

0

(f1MS1 + f0MS0(1 + bθ))2
− 1

(1 + bθ)2

}
,

whose value at θ̂ is

γ(θ̂) = −b
2f0f1
2F 2

= −1/iθθ(θ̂), (6)

showing that the curvature at the maximum-likelihood point is close to zero for large F , as de-
picted in Fig. 1. In other words, ˆ̀(θ) is arbitrarily well approximated by a horizontal asymptote
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at ˆ̀(θ̂) in a neighbourhood of θ̂ for arbitrarily large F . Equation (6) also shows that the discrep- 180

ancy q(0)− ˆ̀(0) is attributable to the higher-order derivatives, since there is no error incurred
by using −1/iθθ(θ̂) in place of γ(θ̂) in the Taylor series approximation to ˆ̀(θ). The effect of
higher-order derivatives is encapsulated to a large extent in the considerable non-constancy of
iθθ(θ) as a function of θ over the range of interest.

From (1), the ratio of the nominal asymptotic variances of θ̂ at arbitrary θ and at θ = 0 is 185

iθθ(θ)/iθθ(0) = (1 + bθ)2, and the range of primary interest is

0 ≤ θ ≤
√

2f/b2f0f1,

the upper value being the nominal asymptotic standard deviation of θ̂ under the null hypothesis,
having conditioned on the event that θ̂ is not on the boundary. Over this range, the asymptotic
variance varies by a factor

1 ≤ (1 + bθ)2 ≤ (1 +
√

2f/f0f1)
2,

which is large for typical values of f1. For example, f0 = 102, f1 = 5, gives a range of approxi- 190

mately 1 ≤ (1 + bθ)2 ≤ 2.72.

3.4. A synthesis with Dickey (2020)
The motivation for the present paper came from practical examples in chapter 4 of McCullagh

(2023), where the Wald statistic was ineffectual at detecting variance components, the absence
of which was strongly refuted by a likelihood ratio test. Dickey (2020) exposed the same phe- 195

nomenon. His exposition, aimed at practitioners, covers widely used models in the analysis of
designed experiments for which exact F and Wald tests are available. The present paper is framed
in terms of the log-likelihood ratio statistic Λ, which is more generally available and points to
geometric insights not recoverable from the moment-based Wald constructions. Three instances
of the latter are discussed in the supplementary material, among which equation (S.1) coincides 200

with equation (2) of Dickey (2020). For cases where F is available, the present paper and that of
Dickey provide equivalent explanations from two points of view.

4. TWO-SAMPLE PROBLEM IN GENERAL SCALE FAMILIES

Let Y be a random variable from a scale family with density function τ−1g(y/τ), y, τ > 0,
where g is a known, continuous, density function on the positive real line. Let 205

Ig =

∫ ∞
0

{xg′(x) + g(x)}2

g(x)
dx.

Then the Fisher information for τ in an independent and identically distributed sample
Y1, . . . , Yn is nIg/τ2 and that for τ0, τ1 in a two-sample problem of sizes n0 and n1 is

Ig diag
(n0
τ20
,
n1
τ21

)
. (7)

The squared Wald statistic for testing equality of scale parameters is therefore

W 2 =
n0n1Ig(τ̂1 − τ̂0)2

n0τ̂21 + n1τ̂20
=
n0n1Ig(θ̂ − 1)2

n0θ̂2 + n1
,
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where θ̂ is the estimated ratio τ̂1/τ̂0. The Wald statistic is bounded in both limits for θ̂ arbitrarily
large or small. Specifically210

lim
θ̂→0

W 2 = n0Ig, lim
θ̂→∞

W 2 = n1Ig.

The curvature of the profile log-likelihood function at θ̂ is approximated by the expected Fisher
information in the profile log likelihood. The Fisher information transforms as

i
(ψ)
ab (ψ) =

∂φr

∂ψa
∂φs

∂ψb
i(φ)rs (φ), (8)

where ψ and φ are two parameterizations and we have used the convention that symbols appear-
ing both as subscripts and superscripts in the same product are summed. The information about
θ, having adjusted for estimation of τ0 is therefore, using (7) and (8),215

iθθ.τ0 = iθθ − i2θτ0/iτ0τ0 =
n0n1

θ2(n0 + n1)
Ig,

showing that the two-sample problem in general scale families has the same anomalous geometry
documented in section 3 for large θ, leading to the discrepancy between the likelihood-ratio and
the Wald statistics.

5. GAUSSIAN VARIANCE COMPONENTS MODEL

Consider a variance-components model in which Y ∈ Rn is normal with mean µ ∈ X of di-220

mension p < n, and covariance matrix Σ = σ2(In + V (θ)) where V (θ) is a known matrix func-
tion of a vector parameter θ = (θ1, . . . , θs)

T with V (0) = 0. This encompasses the linear model
V (θ) =

∑
u θuVu from section 2. The subspace X ⊂ Rn is a group under addition, which im-

plies that for any matrix UT with kernel X , the normalized residual statistic

q(y, U) = UTy/‖UTy‖ = UTy/(yTUUTy)1/2. (9)

is maximal invariant under the affine group with action g(a, x) : y 7→ ay + x, with a > 0, and225

x ∈ X . For distributional calculations, it is convenient to take the columns ofU to be an orthonor-
mal basis in X⊥, the orthogonal complement of X with respect to the standard inner product. In
that case UUT = In −X(XTX)−1XT, UTU = In−p, and the density function of Q = q(Y,U)
is (supplementary material S.4)

Γ
(n−p

2

)
|Aθ|−1/2(qTA−1θ q)−(n−p)/2

2π(n−p)/2
dq1 · · · dqn−p, (10)

where σ2Aθ = UTΣU . At θ = 0, Q is uniformly distributed on the (n− p)-dimensional unit230

sphere in Rn. The above exposition hybridizes Kariya (1980) and King (1980).
By construction, the distribution (10) does not depend on β or σ2, and inference for θ is

conveniently based on the marginal log likelihood function

˘̀(θ) = −1
2 log |Aθ| − (n−p)

2 log(qTA−1θ q), (11)

closely related to the REML log likelihood function which uses the marginal distribution of UTY
rather than Q. Since the transformation to Q eliminates the nuisance parameter σ2 as well as β,235

analysis based on (11) is more amenable to analytic calculation.
The density function in (10) is relative to a particular orthonormal basis in X⊥, and the same

basis is embedded in the likelihood function (11) in the matrix Aθ. The conclusion in (11) is



Biometrika style 9

0.0 0.5 1.0 1.5 2.0
-10

-8

-6

-4

-2

0

Fig. 2. Graph of ˆ̀(θ)− ˆ̀(θ̂) from section 3 (black) and
˘̀(θ)− ˘̀(θ̆) from equation (12) (orange dashed) for f1 =

22, f0 = 92, b = 5, MS0 = 1 and F = 4.

equivalent to equation (3.3) McCullagh (2009), which evades the problem of selecting a basis by
allowing singular matrices. 240

The single block factor setting of section 3 is a special case with n = (f1 + 1)b, Σ = σ2(In +
θV ), V = If1+1 ⊗ 1b1

T
b and X = 1, so that UUT = In − 1n1T

n/n. Suppose for an exact analytic
calculation that f1 + 1 and b are both powers of two. Supplementary material S.5 shows that
log |Aθ| = f1 log(1 + bθ) and

qTA−1θ q = 1 +
∑f1

j=1q
2
jb{(1 + bθ)−1 − 1}

so that (11) becomes 245

˘̀(θ) =−f1
2

log(1 + bθ)− f

2
log

{
1−

bθ
∑f1

j=1q
2
jb

(1 + bθ)

}
=−f1

2
log(1 + bθ)− f

2
log

{
1− bθf1F

(1 + bθ)(f0 + f1F )

}
. (12)

The solution of the likelihood equation by differentiation of (12) is (1 + bθ̆) = F and direct
calculation shows that ˘̀(θ)− ˘̀(θ̆) = ˆ̀(θ)− ˆ̀(θ̂) from (4). This is demonstrated empirically in
Fig. 2 with the values of f0, f1 and b from the numerical example of section 6.1 so as to also
illustrate the anomalous geometry. When an analysis of variance is feasible, it produces identical
estimates to those based on maximization of (11), the only difference arising from the choice of 250

basis for the orthogonal subspaces.
More generally, in a model with a scalar parameter θ generating a variance component in the

form Σ = σ2(In + V (θ)), the likelihood equation for θ is

tr(A−1θ Ȧθ)

(n− p)
=
qT(A−1θ ȦθA

−1
θ )q

qTA−1θ q

at θ = θ̆, where Ȧθ = ∇θAθ and by the Woodbury identity

A−1θ = In−p − UT(V (θ)−1 + UUT)−1U.
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The second derivative of ˘̀(θ) at an arbitrary point is255

γ̆(θ) = ∇2
θθ

˘̀(θ) =−1
2 tr
(
A−1θ Äθ −A−1θ ȦθA

−1
θ Ȧθ

)
−(n− p)

2

{
qTA−1θ (2ȦθA

−1
θ Ȧθ − Äθ)A−1θ q

qTA−1θ q
+
qT(A−1θ ȦθA

−1
θ )q

(qTA−1θ q)2

}
,

where Äθ = ∇2
θθAθ. A general analytic approximation to the curvature γ̆(θ̆) has not been ascer-

tained. However, if V (θ) is of the form θV with V a known matrix, then Ȧθ = UTV U , Äθ = 0
and the previous display simplifies. In particular

lim
θ→∞

tr
(
A−1θ Äθ −A−1θ ȦθA

−1
θ Ȧθ

)
= 0,

lim
θ→∞

A−1θ ȦθA
−1
θ = 0,

and260

lim
θ→∞

A−1θ
(
2ȦθA

−1
θ Ȧθ − Äθ

)
A−1θ = 0,

so that limθ→∞∇2
θθ

˘̀(θ) = 0. By consistency of the maximum likelihood estimator, the marginal
log likelihood function has zero curvature at the maximising point when the true value of θ is
arbitrarily large.

6. NUMERICAL ILLUSTRATIONS

6.1. Covariance determined by split-plot nested blocking265

The split-plot covariance σ20(In + θV ) is a linear combination of the identity and a binary ma-
trix such that Vij = 1 if observational units i, j belong to the same whole-plot or block. Chap-
ter 1 of McCullagh (2023) discusses an example of this type with l = 24 rats constituting the
blocks, and s = 5 sites on each rat constituting the observational units. A two-level treatment
was assigned at random to the rats, so the model formula site+treat for the expected value270

determines a subspace of dimension 6. This is not a split-plot design in the traditional sense be-
cause the split-plot effect is associated with a classification factor (sites ranging from anterior to
caudal), not with a treatment factor.

The real experiment is a little more complicated because some components are missing. With
this exception, the simulated data mirror that example, and illustrate the effect of increasing θ on275

the discrepancy between Λ andW 2. Since θ̂ ' 0.4 for the actual experiment, the range 0 ≤ θ ≤ 1
was used for simulation. For each of 1000 Monte Carlo replications, outcomes were generated
according to the model Y ∼ N(µ,Σ), the particular point µ ∈ X being immaterial for the REML
likelihood. As it happens, the analysis of section 3 applies here with two modified mean squares,
one for treatment and one for residuals eliminating additive row and column effects, namely280

f0MS0 = ‖(In − Prat − Psite + P0)Y ‖2 ∼ σ20χ2
f0 ,

f1MS1 = ‖(Prat − Ptrt)Y ‖2 ∼ σ21χ2
f1 ,

where f1 = l − 2, f0 = (l − 1)(s− 1) and, for example, PtrtY is the projection of Y on the
subspace spanned by the treatment basis. For the null hypothesis θ = 0, Fig. 3 compares the
simulated values of Λ/W 2 with the linear approximation 1 + 4sθ̂/3 from (3).
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Fig. 3. Simulated Λ/W 2 plotted against θ̂ for the nested-
blocks arrangement with l = 24 large blocks and s = 5

nested blocks.

Maximization of the marginal log-likelihood function ˘̀(θ) from equation (11) is equivalent.
Both normed log-likelihood functions are graphed in Fig 2 for θ̂ = θ̆ = 0.6, from which the 285

anomalous geometry is apparent.

6.2. Covariance determined by Latin square blocking
The Latin square covariance Σ = σ20(In + θ1V1 + θ2V2) is a linear combination of the identity

and two binary matrices of the form (V1)ij = 1 if observational units i and j share a column and
(V2)ij = 1 if they share a row. For the simulation, the variance component parameters were taken 290

as σ20 = 1, θ2 = 0.2, while θ1 was varied in the range 0 ≤ θ1 ≤ 1. The relevant mean squares on
f0 = (b− 1)(b− 2) and f1 = (b− 1) degrees of freedom are

f0MS0 = ‖(In − Pcol − Prow − Ptrt + 2P0)Y ‖2 ∼ σ20χ2
f0 ,

f1MS1 = ‖(Pcol − P0)Y ‖2 ∼ σ21χ2
f1 ,

where σ21 = σ20(1 + bθ1). The analogous mean square MS2 for rows on f2 = f1 degrees of free-
dom is used in variance estimation. Specifically, the information about θ1, having adjusted for
estimation of σ20 and θ2 is 295

b2f1
2(1 + bθ1)2

{
1− f21 (1 + bθ2)

2

f2f(1 + bθ1)2

}
. (13)

In (13), θj is estimated as the positive part of (Fj − 1)/b with Fj = MSj/MS0. For f = f1 +
f0 � f1, which amounts to b being large, the adjustment is negligible provided that θ2 is not
too large relative to θ1, and (13) is comparable to (1). The resulting Wald statistic for testing the
hypothesis θ1 = 0 is to be compared with Λ, whose form is identical to that of section 3.

Fig. 4 depicts qualitatively similar behaviour for the ratio Λ/W 2 as that of Fig. 3, with addi- 300

tional variability attributable to randomness in θ̂2 manifesting through the estimate of (13). The
version with θ2 treated as known is depicted in the right panel of Fig. 4.
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Fig. 4. Simulated Λ/W 2 plotted against θ̂1 for the Latin
square with b = 6 rows, columns and treatments. Left: θ2

estimated in (13); right: θ2 treated as known.
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SUMMARY

Supplementary material provides more explicit derivations for some of the key results, to- 10

gether with a discussion of three further Wald statistics and two score statistics.

S.1. INVERSION OF THE TAYLOR EXPANSION OF Λ

From section 3.2, Taylor expansion of Λ shows that to a first approximation θ̂2 = 2fΛ/b2f0f1.
Thus, write θ̂0 = b−1(2fΛ/f0f1)

1/2 and expand Λ around θ̂ = 0 in the form[ 2f

b2f0f1

{
f log(1 + f1bθ̂/f)− f1 log(1 + bθ̂)

}]1/2
= θ̂ − b(f + f1)θ̂

2

3f
+O(θ̂3).

Equating the right hand side to θ̂0 and inverting for θ̂ gives 15

θ̂ = θ̂0 +
b(f + f1)θ̂

2
0

3f
+

2b2(f + f1)
2θ̂30

32f2
+O(θ̂40)

=

√
2fΛ/f0f1

b
+

2(f + f1)Λ

3bf0f1
+O(Λ3/2),

and by a similar inversion for θ̂2,

θ̂2 =
2fΛ

b2f0f1
+O(Λ3/2).

On using these expressions in the order O(θ̂3) expansion for Λ/W 2,

Λ/W 2 = 1 +
2
√

2(2f0 + f1)Λ
1/2

3(ff0f1)1/2
+

4(2f0 + f1)(3f + f1)Λ

3ff0f1
+O(Λ3/2).

S.2. THREE FURTHER WALD STATISTICS

Depending on the chosen parameterization, the natural variance component estimate may be
constructed from a difference of mean squares, a ratio of mean squares or the log-ratio of mean 20

squares. First and second moment theory thus suggests three further Wald statistics appropriate

C© 2020 Biometrika Trust
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in some contexts and included here for comparison. The likelihood ratio statistic is invariant to
the chosen parameterization.

The first version of the Wald statistic is based on the difference of mean squares MS1 −MS0,
whose variance is25

var(MS1 −MS0) =
2σ40
f0

+
2σ41
f1

.

The estimated variance of the difference is

2σ̂40
f0

+
2σ̂41
f1

=
2MS2

0

f0
+

2MS2
1

f1
.

In keeping with section 3, the variance of MS1 −MS0 is computed and estimated for general θ
rather than θ = 0. Thus, the squared Wald statistic simplifies to

W 2
1 =

(MS1 −MS0)
2

2MS2
0

f0
+

2MS2
1

f1

=
(F − 1)2

2

f0f1
f1 + F 2f0

, (S.1)

which is equation (2) of Dickey (2020). Evidently, W 2
1 , like W 2 and the other versions to be

presented, is scale invariant and has a distribution depending only on the variance ratio.30

The second version of the Wald statistic is a linear function of the sample F -ratio F =
MS1/MS0, whose distribution is (1 + bθ)Ff1,f0 , a scalar multiple of Fisher’s F distribution on
f1, f0 degrees of freedom. Provided that the within-blocks degrees of freedom satisfies f0 > 4,
the variance of F is

var(F ) =
σ41
σ40
× 2f20 (f − 2)

f1(f0 − 2)2(f0 − 4)
,

and since σ̂21/σ̂
2
0 = F , the estimated variance is35

F 2 × 2f20 (f − 2)

f1(f0 − 2)2(f0 − 4)
.

The second version of the Wald statistic is therefore

W 2
2 =

(F − 1

F

)2 f1(f0 − 2)2(f0 − 4)

2f20 (f − 2)
'
(F − 1

F

)2 f0f1
2f

= W 2. (S.2)

The approximation is asymptotic for fixed f1 and large f0.
The third version of the Wald statistic is a linear function of the log F -ratio, whose variance is

var logF = ψ′(f0/2) + ψ′(f1/2),

where ψ is the derivative of the log gamma function, satisfying ψ′(x) = 1/x+O(1/x2) for
large x. On the log scale, the variance is constant and independent of the parameter, so no data-40

dependent estimate is needed. Thus, the third version for comparison is

W 2
3 =

log2 F

ψ′(f0/2) + ψ′(f1/2)
' log2 F × f0f1

2f
(S.3)

In this case, the approximation requires both degrees of freedom to be large.
The parameter constraint θ ≥ 0 or σ1 ≥ σ0, can be imposed by replacing F by max(F, 1) in

(S.1)-(S.3).
For f0 � f1, W 2

1 'W 2, while for any f0, f1, W 2 ≤W 2
1 ≤ f1/2. Thus, W 2

1 is subject to the45

same deficiency as W 2. Equation (S.2) shows that W 2
2 is similarly problematic. The anomalous
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behaviour persists for all θ and the variance component is not detectable at any threshold unless
the number of blocks is large.

For small θ̂

log2(1 + bθ̂)× f0f1
2f

=
θ̂2b2f0f1

2f
(1− bθ̂) +O(θ̂4). (S.4)

The Taylor expansion around θ̂ = 0 of the ratio of Λ to equation (S.4) is 50

1 +
bθ̂(f0 − f1)

3f
+
b2θ̂2(f0 − f1)

3f
+O(θ̂3)

and therefore, approximately for small Λ ≥ 0,

Λ/W 2
3 ' 1 +

√
2fΛ/f0f1

3
, (S.5)

to be compared with (3). The approximation (S.5) requires f0 � f1, both large.

S.3. TWO SCORE STATISTICS

Two versions of the score statistic are

S2
1 = ∇θ ˆ̀(0)2iθθ(0) =

(F − 1)2f0f1f

2(f1F + f0)2

and 55

S2
2 =

∇θ ˆ̀(0)2

(−∇2
θθ

ˆ̀(θ̂))
=

(F − 1)2ff0f1F
2

2(f1F + f0)2
.

These evaluate the derivative of the profile log likelihood (4) at the null hypothesis value θ = 0
and rescale by either the nominal asymptotic variance at the null hypothesis iθθ(0) or, as is
sometimes recommended, by the inverse of the observed information. To impose the constraint
θ ≥ 0, a negative gradient at θ = 0 may be replaced by zero, so that the test never rejects when
the maximum is achieved on the boundary. 60

In a form comparable to (2),

S2
1 =

b2θ̂2f0f1
2f

(
1− 2bf1θ̂

f

)
+O(θ̂4)

Λ/S2
1 = 1− 2bθ̂(f0 − f1)

3f
− 2bθ̂2

f

(f(f + f1)− 6bf1
3f

)
+O(θ̂3).

Thus, the anomalous behaviour documented in sections 3.2–S.2 is not reproduced when S2
1 is

used in place of the Wald statistic. This is also visually apparent from Fig. 1, where the gradient
of the profile log-likelihood function at zero is large, and the extreme non-constancy of iθθ(θ)
does not play a role. For S2

2 the situation is less clear, as 65

S2
2 =

b2θ̂2f0f1
2f

(
1 +

2bθ̂f0
f

)
+O(θ̂4).

Λ/S2
2 = 1− 2bθ̂(2f + f0)

3f
+

4b2θ̂2f0(2f + f0)

3f2
+O(θ̂3),
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which consists of antagonistic expressions in θ̂ and θ̂2, and points to anomalous behaviour if
2bf0θ̂/f � 1. This condition, however, is not really compatible with θ̂ being small. In terms of
Λ ≥ 0 the above expansions are

Λ/S2
1 = 1− 2

√
2(f0 − f1)Λ1/2

3(ff0f1)1/2
+ 4
(f1f(b− 3) + 3f2 − 2b(f20 − 9f1)

9bff0f1

)
Λ +O(Λ3/2)

Λ/S2
2 = 1− 2

√
2(2f + f0)Λ

1/2

3(ff0f1)1/2
+

4(2f + f0)(6f0 + (f + f1))Λ

9ff0f1
+O(Λ3/2).

S.4. DERIVATION OF EQUATION 10
The distribution of W = w(Y ) = UTY is normal of mean zero and covariance σ2Aθ =70

UTΣU . In the transformation w 7→ (w/‖w‖, wTw) = (q, r2), the volume element transforms
as

dw1 · · · dwn−p =
(r2)

n−p
2 −1dr2

∏n−p−1
j=1 dqj

2
(
1−

∑n−p−1
j−1 q2j

)1/2 = 2−1(r2)
n−p
2 −1dr2dq

where dq = dq1 · · · dqn−p. This can be shown directly by computing the Jacobian determinant,
or equivalently (Muirhead, 1984, p.50-52) by applying the exterior product calculus to the dif-
ferentials of the n− p equations75 ∑j

i=1w
2
i = r2

∑j
i=1qi,

∑n−p
i=1 qi = 1, j = 1, . . . n− p.

The joint density function is therefore

(r2)(n−p)/2−1 exp
(
− r2

2σ2 q
TA−1θ q

)
2(2πσ2)(n−p)/2|Aθ|1/2

dr2dq,

from which the marginal density (10) of Q is obtained by integration using a change of variables
from r2 to r2qTA−1θ q/2σ2.

S.5. DERIVATION OF EQUATION 12
The eigenvector equation (In − 1n1T

n/n)uj = uj shows that U can be constructed from a80

Hadamard matrix of dimension n by discarding the column of ones and dividing each entry by
n1/2 = ((f1 + 1)b)1/2.

In standardized form, in which the first row and column have all entries equal to 1, a Hadamard
matrix of dimension 2m is constructed from one of half the size as

H2m =

(
H2m−1 H2m−1

H2m−1 −H2m−1

)
. (S.6)

Thus, in the form most relevant for computing Aθ, U consists of repeated blocks of size 2b×85

2b, itself consisting of sub-blocks Ub,1, Ub,2, Ub,3, Ub,4 say, obtained from the corresponding
Hadamard matrices Hb by removing the first column and appending the column from the matrix
immediately to the right in representation (S.6), which is eitherHb or−Hb. These 2b× 2b blocks
are repeated (f1 + 1)/2 times in the column and row dimensions, up to the (n− 1)th column of
U , which terminates an incomplete block consisting of b× (b− 1) matrices Ůb,2 and Ůb,4, say.90
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Explicitly,

U =


Ub,1 Ub,2 Ub,1 Ub,2 · · · Ub,1 Ub,2 Ub,1 Ůb,2
Ub,3 Ub,4 Ub,3 Ub,4 · · · Ub,3 Ub,4 Ub,3 Ůb,4

...
...

...
...

...
...

Ub,1 Ub,2 Ub,1 Ub,2 · · · Ub,1 Ub,2 Ub,1 Ůb,2
Ub,3 Ub,4 Ub,3 Ub,4 · · · Ub,3 Ub,4 Ub,3 Ůb,4

 .

Multiplication in blocks of size b shows that off-diagonal blocks of UT(If+1 ⊗ 1b1
T
b )U are all

zero and the sth diagonal block is

(f1 + 1)
(
UT
b,11b1

T
bUb,1 + UT

b,31b1
T
bUb,3

)
/2 s mod 2 = 1,

(f1 + 1)
(
UT
b,21b1

T
bUb,2 + UT

b,41b1
T
bUb,4

)
/2 s mod 2 = 0,

the terminal diagonal block being

(f1 + 1)
(
ŮT
b,21b1

T
b Ůb,2 + ŮT

b,41b1
T
b Ůb,4

)
/2

All columns of Ub,j except the last sum to zero for j = 1, . . . , 4, the bth column summing to 95

± b/((f1 + 1)b)1/2. Thus, in

Aθ = In−1 + θUT(If+1 ⊗ 1b1
T
b )U,

UT(If+1 ⊗ 1b1
T
b )U is a matrix of zeros with entry b at diagonal positions b, 2b, . . . , f1b. It fol-

lows that log |Aθ| = f1 log(1 + bθ) and

qTA−1θ q = 1 +
∑f1

j=1q
2
jb

(
(1 + bθ)−1 − 1

)
.

Resolve v = UUTy into orthogonal components v = v′ + v′′, where v′ ∈ V ⊂ Rn and v′′ ∈
V ⊥. More explicitly, the components of v are 100

vjb = v•• + (vj• − v••) + (vjb − vj•) = (vj• − v••) + (vjb − vj•).

For any fixed s ∈ {1, . . . , b}, {u•s, u•(2s), · · · , u•(f1s)} is an orthonormal basis for the (k − 1)-
dimensional subspace V , where u•s denotes the sth column of U , the remaining k(b− 1)
columns of U being a basis for V ⊥. It follows that

v′ =

f1∑
j=1

〈v − v′′, u•(jb)〉u•(jb) =

f1∑
j=1

〈y, u•(jb)〉u•(jb) =

f1∑
j=1

wjbu•(jb)

and by orthonormality of the basis, ‖v′‖2 =
∑f1

j=1w
2
jb so that

f1∑
j=1

q2jb =
f1MS1

f0MS0 + f1MS1
=

f1F

f0 + f1F
.
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