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Abstract. The pioneering work on parameter orthogonalization by Cox and Reid
(1987) is presented as an inducement of abstract population-level sparsity. This is
taken as a unifying theme for this article, in which sparsity-inducing parameteri-
zations or data transformations are sought. Three recent examples are framed in
this light: sparse parameterizations of covariance models, the construction of fac-
torizable transformations for the elimination of nuisance parameters, and inference
in high-dimensional regression. Strategies for the problem of exact or approximate
sparsity inducement appear to be context specific and may entail, for instance,
solving one or more partial differential equation or specifying a parameterized path
through transformation or parameterization space. Open problems are emphasized.

Some key words: Nuisance parameter; parameter orthogonalization; partial likeli-
hood; sparse parameterizations.

1. Introduction

Sparsity, the existence of many zeros or near-zeros in some domain, plays at least
two roles in high-dimensional statistical theory: to aid interpretation and to restrain
estimation error associated with multitudinous nuisance parameters. The ideas to be
presented are motivated primarily by the latter, with a low-dimensional parameter
of interest encapsulating relevant aspects of interpretation. In some contexts there
is a natural and interpretable notion of sparsity, and the statistical challenge is the
now rather routine task of specifying an estimator that exploits this structure to
give appropriate statistical guarantees. See, e.g., Wainwright (2019) for an extensive
account covering numerous examples.

The present article is barely concerned with estimators and other sample quantities.
Its contribution is to explore the idea that certain forms of abstract, population-level
sparsity may be systematically induced, and to seek unification of some isolated
examples through this perspective. The precursor, although not framed as sparsity
inducement, appears to be the paper on parameter orthogonalization by Cox and
Reid (1987).

The four principal examples considered fall broadly into two categories: sparsity
induced by reparameterization and sparsity induced by transformations of the data.
The exposition here follows this separation, although it is plausible that the two
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approaches are connected. To avoid repetition, only the essential aspects of each
case are presented, from which a synthesis is attempted.

2. Sparsity induced by reparameterization

2.1. Parameter orthogonalization (Cox and Reid, 1987). Direct use of the
likelihood function often produces misleading estimates of parameters of interest when
the dimension of the nuisance parameter vector is of a similar order of magnitude
to the number of independent observations, and is typically suboptimal even for
moderately many nuisance parameters. One resolution, an implicit invocation of
sparsity, is parameter orthogonalization (Cox and Reid, 1987), prior to likelihood
inference on the parameter of interest.

Let ψ and λ represent parameters of interest and nuisance parameters, respectively,
in a parametric statistical model. Where iψλ(ψ, λ) denotes the corresponding off-
diagonal block of the Fisher information matrix, ψ and λ are said to be globally
orthogonal if iψλ(ψ, λ) = 0 for all ψ and λ and locally orthogonal if this equality
holds at particular values. The implication of parameter orthogonality is that the
maximum likelihood estimator of ψ behaves “almost as if” λ were fixed at its true

value in the sense that ψ̂ − ψ̂λ = Op(n
−1) for λ in an O(n−1/2)-neighbourhood of

the true value. Here, ψ̂ is the unconstrained maximum likelihood estimator and ψ̂λ
maximizes the likelihood over the constrained parameter space at λ. The previous
statements assume that the dimension of λ is fixed.

Parameter orthogonality also enables higher-order inference via a simple modifi-
cation to the profile log-likelihood function without the specification of an ancillary
complement to the maximum likelihood estimator (Barndorff-Nielsen, 1983; Cox and
Reid, 1987).

From an initial parameterization (ψ, λ), Cox and Reid (1987) provided a way to
construct an interest-respecting reparameterization (ψ, φ(ψ, λ)) such that iψφ = 0.
In other words, they proposed a sparsity-inducing reparameterization. In general,
establishment of the appropriate reparameterization entails solving a set of partial
differential equations, although there is a simpler route if the parameter of interest
is a canonical parameter of a full exponential family, as noted by Huzurbazar (1956)
for two-parameter families and more generally by Barndorff-Nielsen (1978, p. 183).
A version of the more explicit derivation of Appendix A was presented by Barndorff-
Nielsen and Cox (1994, p. 64).

Sparsity of the Fisher information matrix has emerged in recent literature on in-
ference in high-dimensional regression (e.g., van de Geer et al., 2014; Ning and Liu,
2017; Fang et al., 2017). However, its presence is assumed rather than induced as
in Cox and Reid (1987). Direct imposition of such sparsity is highly restrictive, as
can be seen from the simple example of a normal-theory linear regression model. In
that context, with ψ taken as an arbitrary regression coefficient and λ the remaining
coefficients, the requirement iψλ = 0 without preliminary manoeuvres is equivalent
to assuming that all columns of the design matrix corresponding to λ are orthogonal
to those corresponding to ψ. We return to this example in Section 3.2.
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2.2. Sparse parameterizations of covariance models. Covariance matrices and
their inverses are encountered throughout classical multivariate analysis, almost al-
ways as nuisance parameters to be estimated, which necessitates a sparsity assump-
tion to extend multivariate procedures to high-dimensional settings. More precisely,
the requirement is typically that an estimator of the covariance or precision matrix
is consistent in the spectral matrix norm as the dimension p of the matrix tends to
infinity with the effective sample size n under a suitable scaling condition. This no-
tional asymptotic regime is a theoretical device, a means of studying the probabilistic
behaviour of an estimator as a function of n when p > n.

Spectral-norm consistency, while achievable under a sparsity constraint, is only
relevant if the assumptions made are valid to an adequate order of approximation.
This motivates a search for parameterizations under which relevant covariance mod-
els are sparse. In particular, it raises the question, to which we refer henceforth as
Q∗: for a given (relevant) covariance model not obviously sparse in any domain, can a
sparsity-inducing parameterization be deduced? An answer would enable reparame-
terization to achieve maximal sparsity, and on the transformed scale, a more effective
and valid estimation could be achieved by exploiting the sparsity before transform-
ing the conclusions back to the scale of interest. Battey (2019) established statistical
guarantees for such a procedure assuming the sparsity scale is known or can be reli-
ably estimated, which does not address Q∗. The idea of parameterizing and thereby
estimating the sparsity scale using a device analogous to that proposed by Box and
Cox (1964) has been suggested by Peter McCullagh in unpublished communication.

The problem Q∗ remains open. The proof of concept to be outlined follows Battey
(2017), who gave an example of a covariance model that is unexpectedly sparse after
reparameterization. The starting point was the converse formulation: to impose
sparsity in unusual domains and study the structure induced on the original and
inverse scales. Consider the matrix logarithm L of a covariance matrix Σ, implicitly
defined through the Taylor series expansion of the matrix exponential:

Σ = exp(L) =
∑∞

k=0L
k/k!.

In contrast to Σ, which belongs to the open cone of positive definite matrices, L
belongs to the vector space of symmetric matrices, for which there exists a natu-
ral basis, B = {B1, . . . , Bp(p+1)/2} say, consisting of p(p+ 1)/2 p-dimensional square
matrices. The choice to study the matrix logarithm was made on mathematical
grounds, as the properties of vector spaces make the formulation feasible and fruit-
ful, and allow a simple characterization of sparsity through the basis expansion

L = L(α) =
∑p(p+1)/2

m=1 αmBm. In particular, the sparsity of L corresponds to
that of the basis coefficient vector α = (α1, . . . , αp(p+1)/2)

>. With the constraint
‖α‖0 = s∗ � p, where ‖α‖0 is the number of nonzero entries of α, the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λp and corresponding eigenvectors (γj)

p
j=1 of the resulting matrix

Σ(α) inherit substantial structure, as illustrated in Figure 1. The right-hand panel
corrects Figure 1 of Battey (2017), which depicted a single realization instead of a
Monte Carlo average.

Figure 1 was obtained by generating 100 realizations of a random, sparse L by tak-
ing the support of α to be random samples of size s∗ from the index set {1, . . . , p(p+
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Figure 1. Simulation averages of ‖γj‖0 (left) and I1{λj = 1} (right)
for 100 random logarithmically s∗-sparse covariance matrices, plotted
against the index j of ordered eigenvalues (y-axis) and s∗ ∈ {1, . . . , p}
(x-axis) for p = 100.

1)/2}. This was done for different values of s∗ as indicated in Figure 1. The values
of the nonzero basis coefficients were then drawn from a standard normal distribu-
tion, although the latter aspect is irrelevant as far as the induced structure on Σ is
concerned: any other distribution could have been used instead.

Figure 1 indicates that a priori unexpected structure is present in the eigenvec-
tors and eigenvalues of the covariance matrix, which translates to structure on the
covariance matrix and its inverse. Specifically, there exists a permutation matrix P
such that Σ = PWP>, where W consists of a potentially large, dense block and
is otherwise diagonal. The dimension of the dense block is provided by theoretical
analysis and can be expressed in terms of sparsity s∗ and dimension p through a
random-matrix perspective. The key conclusion is that L can be appreciably sparser
than Σ.

This idea was extended to another class of examples by Rybak and Battey (2021),
but the scope for further progress seems substantial. Most notably, the earlier work
only contains a brief discussion of how one may traverse paths through a parameteri-
zation space in search of a sparse representation. These paths were chosen, following
McCullagh’s proposal, to pass through the covariance and inverse covariance param-
eterizations, as well as the matrix logarithmic parameterization. In the Box and Cox
(1964) analysis of transformations, a path through a model space was viewed as a
technically convenient way of assessing a discrete set of plausible models for com-
patibility with data. Any values of their key transformation parameter that yielded
nonphysical models were not used in the final analysis. The situation in the present
context is different as the covariance matrix is almost always a nuisance parameter
and the goal of the reparameterization is to aid inference on the parameters of interest
— a line of argument similar to that of Cox and Reid (1987).
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3. Sparsity induced by transformations of data

3.1. Construction of factorizable transformations in matched-comparison
problems. Suppose that X1, . . . , Xb are responses on b blocks of individuals, where
each Xi is a vector of random variables. The simplest realistic example has (Xi)

b
i=1 =

(Ti, Ci)
b
i=1, an outcome variable on b pairs of homozygotic twins, where one twin

from each pair has been chosen at random to receive a treatment and their outcome
denoted by Ti, while the other twin is the untreated control with outcome Ci. The
goal is inference on the treatment effect ψ in the presence of pair-specific nuisance
parameters λ1, . . . , λb, the latter arising from an inability or unwillingness to model
the generating process in detail. These may, for instance, represent genetic differences
between the b twin pairs.

Maximum likelihood estimation without preliminary manoeuvres typically pro-
duces misleading inference for ψ. It is, however, sometimes possible to eliminate b
nuisance parameters from the analysis by exploiting the natural separation in the
data due to the matching, and transforming the observations in such a way that the
resulting likelihood function, L(ψ, λ;x) say, fruitfully factorizes. Such a factorization
is of the form

L(ψ, λ;x) = Lpa(ψ;x)Lr(ψ, λ;x), (3.1)

where the factor Lpa(ψ;x) is called the partial likelihood (Cox, 1975). Ideally, little
or no information for inference on ψ is lost through relinquishment of the remainder
likelihood Lr(ψ, λ;x).

Conditional (Bartlett, 1936, 1937) and marginal (Fraser, 1968) likelihood are spe-
cial cases of partial likelihood in which Lpa(ψ;x) is replaced by the product of appro-
priate marginal and conditional probability functions, respectively, evaluated at the
data. A different construction leading to the encompassing form in Equation (3.1)
was given by Cox (1972) to evade estimation of the baseline hazard function in the
proportional hazards model.

In a matched-comparison setting, a suitable marginal likelihood is found by making
a transformation s(x) such that the probability density or mass function fS of Si =
s(Xi) is free of λi, so that Lpa(ψ, x) can be taken as

∏
i fS(si;ψ). Such factorizations,

with a partial-likelihood component that is free of nuisance parameters, need not
exist, which raises the question of whether useful approximate versions are available.

The following example (Lindsay, 1980) solidifies ideas. Similar examples based on
different distributions appear in Cox (1958), Cox and Hinkley (1974) and Barndorff-
Nielsen and Cox (1994).

Example 1. Suppose that Ti and Ci are exponentially distributed of rates λiψ and
λi/ψ, respectively. The marginal density of Si = Ti/Ci at s is fS(s) = ψ2/(1 +
ψ2s)2, which does not depend on λi. Thus (Si)

b
i=1 are independent and identically

distributed and can be used for likelihood-based inference on ψ.

The connection to sparsity is that the partial derivative of fS with respect to λ
is identically zero when the distribution of Si is free of λ. Thus, search for a trans-
formation Si = s(Xi) that produces sparsity of ∇λfS at any set of evaluation points
corresponds to a search for a factorizable transformation of Xi. Battey, Cox and
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Lee (2022) used this sparsity as the basis for systematically deducing a factorizable
transformation. This was achieved via integro-differential equations constructed from
the Laplace transform of fS and convertible to standard forms of partial differential
equations in some contexts. The approach can also be viewed as inducing sparsity on
the (ψ, λ) off-diagonal blocks of the Fisher information matrix, as in Cox and Reid
(1987).

3.2. Inference in high-dimensional linear regression. The work to be outlined
(Battey and Reid, 2022) stemmed from an attempt to formulate the high-dimensional
linear regression problem in a way that would evade nuisance parameters as in Section
3.1. Sparsity is induced through linear transformations of the data, which exploits
the linearity of the regression model.

For an arbitrary component βv of the p-dimensional regression coefficient vector
β, write the linear regression model for the n observations in matrix form as

Y = Xβ + ε = xvβv +X−vβ−v + ε,

where ε is an error term with a mean of zero and a variance of τ , β−v is the nuisance
component of β, and X−v is the matrix X of observations on explanatory variables
after removing the column corresponding to βv. Although p � n, we assume β is
sparse in the sense that ‖β‖0 = s� p.

Each coefficient is treated in turn as the parameter of interest and an interest-
respecting transformation is sought that produces sparsity (the existence of many
zeros or near-zeros) in the (βv, β−v) off-diagonal block of the conditional Fisher in-
formation matrix or, rather, the notional conditional Fisher information matrix that
would have emerged had a normality assumption been made.

Sparsity is achieved approximately by premultiplication of the regression equation
by an n× n matrix Av:

AvY = AvXβ +Avε

Ỹ v = X̃vβ + ε̃v = x̃vvβv + X̃v
−vβ−v + ε̃v,

with Av such that x̃vv is as orthogonal as achievable to the p − 1 columns of X̃v
−v.

Orthogonality means that direct regression of Ỹ v on x̃vv estimates βv without bias,
as in a factorial experiment. In practice, exact orthogonalization is not achievable
from this premultiplication strategy, so some bias is expected from the simple least

squares regression of Y v on the single column x̃vv. Let β̃v = x̃vvỸ
v/(x̃vTv x̃

v
v) denote

such a marginal least-squares estimator of βv. Choose Av to minimize an observable

upper bound on the mean squared error of β̃v. This leads, after a re-expression in
terms of qv = AvTAvxv, to a simple, unconstrained optimization problem with an
exact analytic solution. The estimator of βv in terms of qv is

β̃v = (x̃vTv x̃
v
v)
−1x̃vvỸ

v = (xT
vA

vTAvxv)
−1xT

vA
vTAvY = (qTv xv)

−1qTv Y.

Using the optimized value qv = a(I + X−vX
T
−v)
−1xv ensures that the observable

upper bound on the mean squared error of β̃v is minimized, where a is any nonzero
real number and can be taken to be one without loss of generality.
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Let bv be the bias associated with β̃v. This decays at a rate of O(s/n), where n
is the sample size and s the sparsity of β. The implication is that, by ignoring bv,
Wald-based inference for each βv is accurate to an order of O(s/

√
n).

There are strong connections to earlier work on the problem of inference in high-
dimensional regression, notably to Zhang and Zhang (2014) and van de Geer et
al. (2014). A key conceptual distinction, that aligns these works with the theme of
this present article, is that the construction outlined above induces sparsity where
earlier contributions assume it.

Battey and Reid (2022) proposed using the confidence intervals for each βv as
part of a broader inferential framework concerned with uncertainty over the sparse
regression model. The need for such confidence sets of models was emphasized in
Cox (1968, 1995), Cox and Snell (1974, 1989) and Cox and Battey (2017).

4. Discussion and open problems

This short article is an attempt to synthesize four ideas through a unifying theme
of sparsity inducement: a search for parameterizations or data transformations that
yield zeros or near-zeros as components of key population-level objects. This is in
contrast to a large body of work in which any sparsity on population-level objects
is assumed and subsequently imposed on sample objects through penalization or
thresholding.

A precise mathematical characterization in full generality seems a formidable chal-
lenge. The following list of open problems may be useful endeavours in this goal.

(1) In Section 2.2, for a given covariance model, not obviously sparse in any
domain, can a sparsity-inducing parameterization be deduced? What is the
appropriate formalization of sparsity in such contexts?

(2) If the interpretability of nuisance parameters is accepted as immaterial in
Section 2.2, then a broader search over parameterization space is suggested
than that permitted through simple parameterized paths. How can this be
operationalized?

(3) What is the most appropriate approximate formulation of the factorizable
transformation problem highlighted in Section 3.1? Such a formulation would
need to allow the probability density function of the transformed random vari-
able to depend weakly on the nuisance parameter. How should the adequacy
of such transformations be assessed?

(4) Are there systematic routes to deducing fruitful partial likelihood factoriza-
tions more generally, beyond the matched comparison problems of Section
3.1? This question was one of five posed by Cox (1975) and has remained
open since, except for the modest progress by Battey, Cox and Lee (2022).

(5) The transformations of Section 3.2 used the composite of observed data, and
the sparsity-inducing transformations relied on the special structure of the
linear regression model. Is there a formulation broad enough to encompass
the transformations of both Sections 3.1 and 3.2?

(6) In relation to points (4) and (5): a key example with a marginal likelihood
component that does not appear to be recoverable through direct application
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of the ideas of Battey, Cox and Lee (2022) is a normal-theory linear regres-
sion model with a coefficient vector β and an unknown error variance σ2.
The minimal sufficient statistic is (β̂, S2), where β̂ is the least squares esti-
mator and S2 is the residual sum of squares divided by the residual degrees
of freedom. Direct use of the likelihood function produces an estimate of
error variance that is too small, particularly when the number of covariates
is appreciable relative to the number of independent observations. By the
minimal sufficiency and independence of β̂ and S2, the joint density function
of the responses factorizes as f(y;β, σ2) = f(y | β̂, s2)f(β̂;β, σ2)f(s2;σ2) and
reliable inference for σ2 can be obtained by using the final component to con-
struct a partial likelihood. The point of considering simple examples is not
to recover the correct answer, but rather to do so through a seamless appli-
cation of theory, which can then be applied to more challenging situations.
See Fraser, Reid and Lin (2018) for another discussion in this vein.

(7) Likelihood theory has, associated with it, an important and enlightening
differential geometric interpretation. How does partial likelihood (including
marginal and conditional likelihood as special cases) fit into this discussion?

(8) Can a connection be established between data-based transformations for the
elimination of nuisance parameters via marginal or conditional likelihood and
the interest-respecting reparameterisations of Cox and Reid (1987)? Some
informal remarks in Battey, Cox and Lee (2022), which were based on Fraser
(1964), made a connection between sample and parameter spaces through the
notion of a local location model.

(9) McCullagh and Polson (2018) devised an approach to quantifying sparsity us-
ing ideas from extreme value theory. The connection to the present discussion
is unclear.

A broad goal is a unified theory of inference that is Fisherian when the dimension
of the unknown parameter is smaller than the sample size, yet is also operational
when the converse is true. A notion of sparsity seems inevitable, and this may take
unusual forms as exemplified in the present article.
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Appendix A. Orthogonality of the mixed parameterization

Write the log-likelihood function of a full exponential family with canonical pa-
rameters ψ and λ, and canonical statistics S and T as

`(ψ, λ) = sψ + tλ−K(ψ, λ).
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Let

µT = E(T ) = Kλ(ψ, λ) =
∂

∂λ
K(ψ, λ),

and

µS = E(S) = Kψ(ψ, λ) =
∂

∂ψ
K(ψ, λ).

Starting with the canonical parameterization θ = (ψ, λ), transform to the interest-
respecting mixed parameterization φ = (ψ, µT ). The information matrix in the
canonical parameterization,

iθ(θ) = iθ(ψ, λ) =

(
Kψψ Kψλ

Kλψ Kλλ

)
,

transforms as

iφuv{ψ, φ(θ)} =
∑
w,x

∂θw
∂φu

iθwx(θ)
∂θx
∂φv

, (A.1)

where (
∂θw
∂φu

)
=

(
∂φu
∂θw

)−1
=

(
∂ψ/∂ψ ∂ψ/∂λ
∂µT /∂ψ ∂µT /∂λ

)−1
is the matrix with arbitrary entry ∂θw/∂φu. If ψ and λ are one-dimensional, then(

∂θw
∂φu

)
=

(
1 0

Kλψ Kλλ

)−1
= K−1λλ

(
Kλλ 0
−Kλψ 1

)
and Equation (A.1) gives

iφ{ψ, φ(θ)} =

(
Kψψ −KψλK

−1
λλKλψ 0

0 K−1λλ

)
.

This holds in arbitrary dimensions, as can be shown using the expression for the
inverse of a block-partitioned matrix:(

∂θw
∂φu

)
=

(
I 0

−K−1λλKλψ K−1λλ

)
.
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