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ABSTRACT

Parametric statistical problems involving both large amounts of data and models with many
parameters raise issues that are explicitly or implicitly differential geometric. When the
number of nuisance parameters is comparable to the sample size, alternative approaches to
inference on interest parameters treat the nuisance parameters either as random variables
or as arbitrary constants. The two approaches are compared in the context of parametric
survival analysis, with emphasis on the effects of misspecification of the random effects distri-
bution. Notably, we derive a detailed expression for the precision of the maximum likelihood
estimator of an interest parameter when the assumed random effects model is erroneous,
recovering simply derived results based on the Fisher information in the correctly specified
situation but otherwise illustrating complex dependence on other aspects. Methods of assess-
ing model adequacy are given. The results are both directly applicable and illustrate general
principles of inference when there is a high-dimensional nuisance parameter. Open problems
with an information geometrical bearing are outlined.

Some key words. Conditional likelihood; Exponential distribution; Marginal likelihood;
Matched pairs; Model comparison; Poisson process; Random effects.

1 Introduction
Statistical analysis when the number of unknown parameters is comparable with the number
of independent observations may demand modification of maximum-likelihood-based methods
(Bartlett, 1937). There are comparable difficulties with Bayesian analyses based on high
dimensional “flat” priors. For an extreme example from a different perspective, see Stein
(1956).

Yates (1935, 1936) has discussed these issues in depth both for factorial experiments
and also for variety trials in connection with balanced and partially balanced incomplete
block designs. His development, powerful and almost explanation free, hinges, especially
for incomplete block designs, on the geometry of least squares and the distinction between
error-estimating and effect-estimating subspaces. Qualitatively similar forms of argument
implicitly underlie the present paper.

Later discussion of these issues has mostly been either in general terms (Barndorff-Nielsen
and Cox, 1994, chapter 2) or has approached them from a more decision-oriented perspective
(e.g. Tibshirani, 1996). In the present paper we show the considerations involved in the con-
text of parametric analysis of matched pair survival data. Matched pair designs leading to a
large number of nuisance parameters have been considered in various contexts, in particular
by Cox (1958), Anderson (1970), Lindsay (1980), Kumon and Amari (1984) and Kartsonaki
and Cox (2016). A key aspect is the way the potentially large number of nuisance parameters
are represented. One is by a probability distribution parametrically specified. The second
is as a set of unknown constants and the third is as independent and identically distributed
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random variables with totally unknown distribution. The consequences of the last two are
essentially identical; note that the second would be converted into the third by reordering the
data at random. By contrast, if appropriate the stronger assumptions involved in the para-
metric formulation lead to formally more precise conclusions. We illustrate the considerations
involved with a theoretical and empirical analysis of the effect of misspecification. Assess-
ment of model adequacy is also discussed. The results aim both to be directly applicable and
to illustrate general principles.

2 Issues of formulation
Consider the comparison of two treatments in a matched pair design. For each of n pairs
of individuals, one of the pair is a control and the other receives a treatment, leading to
observations of survival times for the ith pair represented by random variables Ci, Ti. We
study analyses based on underlying exponential distributions, that is that the observations
are in effect the first point events in individual Poisson processes. Study of the systematic
variation between treatment and control is in general complicated by variation between pairs.

There are a number of ways to represent this simple situation. We specify them in
terms of the rate parameter of the underlying Poisson processes, that is the reciprocal of the
exponential means. The two key components specify the relation between Ci and Ti and the
form of the inter-pair variation.

For a given pair, the Poisson rate under the treatment may be a constant multiple of that
under the control. Alternatively the two rates may have a constant difference. There are
other possibilities such as that the two mean survival times differ by a constant. The first
two representations at least have a clear underlying interpretation in terms of a potential
generating process and we largely concentrate on those.

In the formulation in terms of ratios, the rate parameters of Ci and Ti are written γi/ψ
and γiψ, and in the additive formulation are written ρi − ∆ and ρi + ∆. Thus γi and ρi
are responsible for the inter-pair variation whereas ψ and ∆ are key parameters of interest
for understanding the effect of the treatment. There is a clear constraint on the parameter
space in the second model and the two representations are in a formal sense rather similar
to logistic and additive models for binary data.

To represent in general terms arbitrary systematic variation between pairs of individu-
als we either treat γi or ρi as constants, unknown parameters specific to each pair, or as
realizations of random variables. The conceptual differences are considerable although the
numerical implications are often minor when the sample is large.

An approach sometimes used in observational studies for which there is no natural pairing
involves matching individuals based on the combination of a large number of background vari-
ables into a one-dimensional propensity score (Rosenbaum and Rubin, 1983). If background
variables are available and not too numerous we favour using them directly for detailed inter-
pretation. By contrast, the present paper focusses on situations in which component variables
are not separately observed.

3 Exponential matched pairs with proportional rates
3.1 Nuisance parameters as arbitrary constants
For the representation involving ratios of rates let Zi = Ti/Ci, removing dependence on γi.
The density at z is

ψ2/(1 + ψ2z)2. (1)

Standard maximum likelihood theory based on the marginal distribution of the Zi applies.
In particular, the maximum likelihood estimator of ψ based on (1) is consistent and asymp-
totically normally distributed with variance given by the inverse of the Fisher information.
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The Fisher information per observation is

(2 + 2− 8/3)ψ−2 = (4/3)ψ−2. (2)

By eliminating the nuisance parameters in this way by marginalization, some information on
the interest parameter is in general lost, because (Z1, . . . , Zn) = S, say, is not sufficient for
ψ. Further discussion of these issues is given in section 7.2. A smaller variance is achievable
at the expense of stronger modelling assumptions, as demonstrated in section 3.2.

3.2 Nuisance parameters as random variables
Instead of regarding the pair effects as constants we now suppose that they are random
variables independently gamma distributed of shape parameter α and rate β. Then the joint
density function of Ti and Ci at (t, c) is

βα

Γ(α)

∫ ∞
0

γα+1 exp{−γ(ψt+ c/ψ + β)}dγ = Γ(α+ 2)
Γ(α)

βα

(ψt+ c/ψ + β)α+2 . (3)

The Fisher information matrix per observation can be shown (see Appendix A.2) to be block
diagonal with the relevant entry for inference about ψ equal to

2(α+ 2)
(α+ 3)ψ2 . (4)

The two limits of this as α → ∞ and α → 0 are 2ψ−2 and (4/3)ψ−2, the latter being
(2), the Fisher information per observation obtained by treating the nuisance parameters
as arbitrary constants. The variance depends on the relative dispersion of the nuisance
parameters through α.

See section 7.1 for a formulation in terms of unobserved covariates involving a log normal
distribution over the γi.

Equation (4) shows that the gamma random effects formulation is more efficient than
the one in which nuisance parameters are treated as arbitrary constants, provided that the
random effects specification is reasonable. The modelling assumption is more severe, but the
following analysis of the misspecified situation shows that, provided ψ is bounded away from
zero, the corresponding maximum likelihood estimator ψ̂ obtained by assuming the gamma
random effects model of section 3.2, converges almost surely to ψ as n→∞. Thus ψ̂ remains
consistent in spite of an arbitrary degree of misspecification in the assumed random effects
distribution.

Let γi (i = 1, . . . , n) be independent random variables with an arbitrary density function
f(γ). The associated joint distribution of Ti and Ci satisfies (see Appendix A.3)

E
{ Ti

(Tiψ + Ci/ψ + β)j
}

= 1
ψ2E

{ Ci
(Tiψ + Ci/ψ + β)j

}
(j = 1, 2, 3, . . .). (5)

In view of the expressions for the cross partial derivatives of the log likelihood function (equa-
tion (28) in Appendix A.2), equation (5) establishes orthogonality of ψ to α and β whatever
the random effects distribution. The interpretation of the notional parameters α and β under
model misspecification is discussed below. The orthogonality justifies consideration of the
marginal maximum likelihood estimating equation for ψ, i.e.

0 = 1
n

n∑
i=1

`i,ψ(ψ̂) = 1
n

n∑
i=1

Ci

ψ̂2(Tiψ̂ + Ci/ψ̂ + β)
− 1
n

n∑
i=1

Ti

Tiψ̂ + Ci/ψ̂ + β
. (6)

For any κ > 0 bounded away from zero, consider

1
n

n∑
i=1

Ci
κ2(Tiκ+ Ci/κ+ β) −

1
n

n∑
i=1

Ti
Tiκ+ Ci/κ+ β

. (7)
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Under the random effects formulation, the summands are independent and identically dis-
tributed and a law of large numbers implies convergence of the averages to their expectations.
The limiting value of the maximum likelihood estimator, as n → ∞, is the value of κ that
equalizes the two expectations. Appendix A.4 shows that the expectations exist and the
value of κ that equalizes them is ψ. Thus ψ̂ is consistent despite the misspecification.

An analysis of efficiency is harder. Let gθ∗ denote the density function of the true joint
distribution of (Ti, Ci), where θ∗ = (λ, ψ) and λ could be a finite or infinite dimensional
nuisance parameter, but the proportional rates model of section 2 is assumed so that ψ
captures the treatment effect. This joint density is determined by the marginal density
function of the random effects distribution f(γ) as

gθ∗(t, c) =
∫ ∞

0
γ2f(γ) exp{−γ(tψ + c/ψ)}dγ. (8)

Thus if f is not parameterized, λ is f itself. Let Θ denote the parameter space for the
erroneous gamma random effects model and let fθ(x, y) denote the misspecified joint density
function of each (Ti, Ci) at (x, y), given by equation (3). Thus we may define θ̂ = (α̂, β̂, ψ̂)
by argmaxv∈Θ

∑n
i=1 log fv(Ti, Ci), which converges almost surely (Appendix A.1) to

θ = (θ1, θ2, θ3) = argmin
v∈Θ

∫ ∞
0

∫ ∞
0

log gθ
∗(x, y)

fv(x, y) gθ
∗(x, y)dxdy, (9)

where, from the previous derivations, θ3 = ψ, the true treatment effect. Thus α = θ1 and
β = θ2 are the values that minimize the Kullback-Leibler divergence between the assumed
(erroneous) model and the true model.

By the orthogonality established in (5), a discussion of efficiency requires consideration
of the likelihood derivatives only with respect to ψ. In particular, by the established consis-
tency, a mean value expansion and standard arguments, it can be shown that the asymptotic
distribution of n1/2(ψ̂ − ψ) is Gaussian of zero mean and variance [E{`i,ψψ(θ)}]−2E{`2

i,ψ(θ)},
leading to a variance of R/(R−Q)2, where R and Q depend in a rather complicated way on
the density function f(γ) of the true random effects distribution. Specifically

R = 1
ψ2

{1
3 −

2β
3 E(γi)−

β2

3 E(γ2
i )

− β2
∫ ∞

0
γ2f(γ)eγβEi(−γβ)dγ − β3

3

∫ ∞
0

γ3f(γ)eγβEi(−γβ)dγ
}
,

Q = 1
ψ2

{
1 + β2

∫ ∞
0

γ2f(γ)eγβEi(−γβ)dγ − βE(γi)
}
. (10)

Here Ei(x) is the exponential integral (Olver, 1974, equation 3.07) thus, in equation (10),

Ei(−γβ) = −
∫ ∞
γβ

z−1e−zdz, γβ > 0,

and because the γi are treated as totally random, E(γκi ) =
∫∞

0 γκf(γ)dγ.
In a correctly specified situation, {E(`i,ψψ)}−2E(`2

i,ψ) is the inverse Fisher information.
When the random effects are gamma distributed of parameter α and rate β, as assumed, Q =
2(α+2)−1ψ−2 and R = 2(α+3)−1(α+2)−1ψ−2 so that R/(R−Q)2 is 2−1(α+2)−1(α+3)ψ2,
i.e. the reciprocal of equation (4). While formula (10) does not seem amenable to detailed
interpretation under misspecification, it serves to illustrate complicated dependence on key
aspects of the formulation.

Table 4 of section 6.2 shows that the loss of efficiency in the gamma model for random
effects can be severe when the sample size is not large and when the random effects distribu-
tion is misspecified. Thus, while the random effects formulation is in principle always feasible
for nuisance parameter problems, the adequacy of the choice of random effects distribution,
often made on the basis of mathematical convenience, needs consideration. A discussion in
the context of the present example is in section 5.
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4 Exponential matched pairs with additive rates
When the nuisance parameters ρi of the additive treatment effects model (see section 2) are
treated as arbitrary constants, the inference is based on conditioning on the sufficient statistic
for the nuisance parameter in each pair (Kartsonaki and Cox, 2016). We extend their results
slightly by giving explicit expressions for the conditional and unconditional variances of the
estimator. The likelihood contribution from the ith pair is

(ρ2
i −∆2) exp{−ρi(ti + ci)} exp{−∆(ti − ci)}. (11)

Thus Ti +Ci is sufficient for ρi and this leads to inference based on the difference Ti−Ci, or
equivalently Ti given the pairwise totals Ti +Ci = Si, say. The density function of Si at s is

(ρ2
i −∆2){e−(ρi−∆)s − e−(ρi+∆)s}/(2∆). (12)

Some algebra shows that the conditional density function of Ti at t given Si = si is, for
∆ > 0,

2∆e−2∆t

1− e−2∆si
. (13)

Let ∆̂ denote the maximum likelihood estimator of ∆ based on the conditional density
function (13). The Fisher information of ∆̂, conditional on Si = si is

n

∆2 − 4
n∑
i=1

s2
i e
−2∆si

(1− e−2∆si)2 = n

∆2 −
∑n
i=1s

2
i sinh−2(∆si), (14)

where s sinh−1(∆s) < ∆−1 for all s > 0 and lims→0{s sinh−1(∆s)} = ∆−1 so that the condi-
tional Fisher information is non-negative. For planning, the unconditional Fisher information
is relevant. This is used for determining the sample size required to achieve a pre-specified
conditional efficiency with high probability, and is obtained by replacing the ith summand
by

(ρ2
i −∆2)
2∆

∫ ∞
0

s2(e∆s − e−∆s) exp(−ρis)
sinh2(∆s)

ds

= (ρ2
i −∆2)

∆

∫ ∞
0

s2 exp(−ρis)
sinh(∆s) ds = (ρ2

i −∆2)
4∆4

∫ ∞
0

t2e−qt

1− e−t dt, (15)

where q = (ρi + ∆)/(2∆) and in the last line we have changed variables to t = 2∆s. The in-
tegral and summation representations of Riemann’s generalized zeta function are (Whittaker
and Watson, 1927, p265–66)

ζ(z, q) = 1
Γ(z)

∫ ∞
0

tz−1e−qt

1− e−t dt =
∞∑
m=0

1
(q +m)z ,

and the unconditional Fisher information is, from (15),

n

∆2 −
1

2∆4

n∑
i=1

(ρ2
i −∆2)ζ{3, (ρi + ∆)/(2∆)}. (16)

Section 6.1 confirms the above calculations by simulation.
Among other possibilities, the pair effects might be assumed to have a gamma distribution

of parameter α and rate β starting at ∆, leading to a joint density function of Ti and Ci at
(t, c) given by

αβα exp(−2∆t)
(t+ c+ β)α+1

{ α+ 1
t+ c+ β

+ 2∆
}
. (17)
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Standard maximum likelihood theory applies when the random effects distribution is cor-
rectly specified. An analysis of misspecification of this model is complicated by the fact that
the parameters α and β are not orthogonal to ∆ under arbitrary misspecification. Thus
a full theoretical analysis of the kind developed in section 3.2 will not be explored for the
maximum likelihood estimator ∆̃ based on equation (17). However Table 5 of section 6.2
provides numerical evidence that severe loss of efficiency can result, relative to the version
that treats the nuisance parameters as arbitrary constants. Consistency of ∆̃ is also suspect.
A referee asked whether there is any mathematically convenient distribution for the nuisance
parameters that results in orthogonality of the nuisance parameters to the interest param-
eter ∆ in the additive rates model in spite of possible misspecification. In principle, if the
true distribution of Ti and Ci is known and given in terms of parameters (∆, α, β), say, a
reparameterization to (∆, λ, η), say, can always be found such that λ and η are orthogonal
to ∆. This entails solving the pair of differential equations

i∗αα
∂α(∆, λ, η)

∂∆ + i∗βα
∂β(∆, λ, η)

∂∆ = −i∗∆α

i∗αβ
∂α(∆, λ, η)

∂∆ + i∗ββ
∂β(∆, λ, η)

∂∆ = −i∗∆β ,

initially to determine the dependence of α and β on ∆ and ultimately choosing λ and η
as detailed by Cox and Reid (1987). However, in the above display i∗αβ , i∗∆β , etc. are the
expectations of the second cross partial derivatives of the assumed loglikelihood function,
taken with respect to the true model. These expressions differ depending on the form of
misspecification. An extension of the ideas of Cox and Reid (1987) to accommodate arbi-
trary misspecification is an important question which demands further study, ideally in full
generality.

5 Assessment of model adequacy
In the above two models, exact tests of model adequacy are available. Sufficiency represents
a separation of the information in the data into that relevant for estimating the parameters of
a given model and that relevant for assessing the adequacy of the model (Barndorff-Nielsen
and Cox, 1994, p.29). Suppose that the proportional treatment effect model of section 3
holds. The likelihood contribution from the ith pair is

γ2
i exp(−γici/ψ) exp(−γiψti). (18)

From this, for any given ψ, Ci/ψ + Tiψ = Si(ψ), say, is sufficient for γi and has density
function

fSi(ψ)(s) = γ2
i s exp(−γis), (19)

i.e., Si(ψ) is gamma distributed with shape parameter 2 and rate parameter γi.
The model and an arbitrarily specified parameter value ψ = ψ0 are jointly compatible

with the data if the realization of Ti, say, is not extreme relative to the conditional density
function of Ti given Si(ψ) = si(ψ), assuming ψ = ψ0. The conditional density of Ti at ti,
given Si(ψ) = si(ψ), is

γ2
i exp{−γisi(ψ)}

γ2
i si(ψ) exp{−γisi(ψ)} = 1

si(ψ) , (20)

showing that Ti | {Si(ψ) = si(ψ)} is uniformly distributed between 0 and si(ψ).
For any hypothesized value ψ0 of ψ, compatibility of the proportional treatment effects

model and ψ0 with the data corresponds to compatibility of the realizations of Ti/si(ψ0) =
Ui(ψ0), say, with a uniform distribution on (0,1) for all i = 1, . . . , n. This is a basis for
checking consistency with the proportional model. More specifically, an α-level confidence
set using Fisher’s (1925, section 21.1) test is

C(α) , (ψ0 ∈ Ψ : min[F{−2
∑n
i=1 logUi(ψ0)}, 1− F{−2

∑n
i=1 logUi(ψ0)}] < α), (21)

6



where F is the distribution function of a χ2 random variable with 2n degrees of freedom. If
the confidence set is non-empty at a specified level, there are at least some values of ψ0 for
which the proportional treatment effects model is compatible with the data at this level.

For sufficiently large sample size, one might treat ψ̂ as fixed and equal to ψ under the null
hypothesis that the model is true. The adequacy of this assumption can then be assessed
by checking the compatibility of the realizations of Ti/si(ψ̂) for i = 1, . . . , n with a uniform
distribution on (0, 1).

The same ideas allow the adequacy of the a random effects model to be checked. In
particular, for any given ψ, the collection of weighted sums Si(ψ) for i = 1, . . . , n is sufficient
for the nuisance parameters α and β, as can be seen from equation (3). One could condition
as above.

For sufficiently many pairs, however, a simpler option is available due to the small number
of nuisance parameters in the random effects model. The distribution function at s of Si =
Ti + Ci under the gamma random effects model is given by

1− βα

ψ2 − 1

{
ψ2

(β + s/ψ)α −
1

(β + sψ)α

}
. (22)

Since the maximum likelihood estimators α̃, β̃ and ψ̃ are consistent and completely specify
the model, for sufficiently many individuals it may often be a reasonable approach to consider
these as fixed and equal to the true values α, β and ψ under the null hypothesis that the
gamma random effects model is correctly specified. Making this replacement in equation (22)
and evaluating the distribution function at the points Si for i, . . . , n leads to approximately
standard uniformly distributed points under the null hypothesis, and Fisher’s (1925, section
21.1) test is applicable.

Similar arguments apply to the additive effects model. Section 4 shows that Si = Ti +Ci
is sufficient for the nuisance parameter ρi, so that the conditional density of Ti given Si = si
is free of ρi and is given by equation (13). In section 4, this justified estimation of the
treatment effect ∆ by maximization of the conditional likelihood based on (13). To assess
model adequacy it is necessary to condition on the jointly sufficient statistic for all unknown
parameters. Thus, as in the proportional rates formulation, one must fix ∆ at hypothesized
values leading to a joint assessment of the adequacy of the additive effects model at an
arbitrary but given value ∆0 of the interest parameter. The model and a value ∆0 are
compatible with the data at a particular level if T1, . . . , Tn are not extreme relative to what
would be expected under their joint conditional density assuming ∆ = ∆0, i.e.,

n∏
i=1

fTi|Si=si
(zi; ∆0) =

n∏
i=1

2∆0e
−2∆0zi

1− e−2∆0si
.

As in the proportional rates model, For sufficiently large sample size, one might reasonably
treat ∆̂ as fixed and equal to ∆ under the null hypothesis that the additive rates model is
true and proceed as above using ∆̂ in place of ∆0 to assess model adequacy.

There are situations where exact tests of model adequacy based on these principles do
not seem feasible. One example in the spirit of this work would be an exponential matched
pair problem in which Ti and Ci have a stable difference in means. In section 7.2, we explain
in more general terms how the structure of the inference problem dictates the appropriate
strategy.

6 Empirical validation and numerical extensions
6.1 Fixed nuisance parameters
Throughout the following numerical work ψ = ∆ = 2. For several different values of n we
generate (γi)ni=1 from a gamma distribution of shape α = 1 and rate β = 1, and we define
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ρi = ∆ + γi so that ρi −∆ > 0. The nuisance parameters (γi)ni=1 and (ρi)ni=1 are then fixed
over Monte Carlo replications.

In each of R = 1000 Monte Carlo replications, T (PR)
i and C(PR)

i (i = 1, . . . , n) are gen-
erated independently from exponential distributions of rates γiψ and γi/ψ respectively, and
T

(AR)
i and C(AR)

i are generated from exponential distributions of rates ρi + ∆ and ρi − ∆.
The parameter ψ in the proportional rates model is estimated by maximum likelihood based
on the density function of T (PR)

i /C
(PR)
i of equation (1). Let ψ̂n denote this estimator.

The sample variance of ψ̂n over the 1000 Monte Carlo replications is reported in the
second row of Table 1, with an estimate of its theoretical standard error in the third row.
This is based on the χ2 distribution with R−1 degrees of freedom of the sample variance. The
theoretical variance of ψ̂n is asymptotically (as n→∞) the inverse of the Fisher information.
Its theoretical value obtained from equation (2) is reported below the row of standard errors.
The values in the second and the fourth rows agree for large n.

We also report the results from fitting a gamma random effects model to T (PR)
i , C

(PR)
i

for i = 1, . . . , n. Let ψ̃n denote the corresponding maximum likelihood estimator of ψ. This
model is misspecified but the efficiency of ψ̃n is high. However the model is not severely
misspecified because the (γi)ni=1 are generated from a gamma distribution before being fixed
across Monte Carlo replications. In section 6.2, we consider the effect of more severe mis-
specification of the random effects distribution.

sample size (n)
20 40 60 80 120 160 200

Simulated bias of ψ̂n 0.0217 0.0212 0.0078 0.0035 0.0039 0.0089 -0.0040
Simulated variance of ψ̂n 0.1513 0.0759 0.0486 0.0365 0.0258 0.0192 0.0144
Estimated standard error 0.0068 0.0034 0.0022 0.0016 0.0012 0.00087 0.00065

Inverse Fisher information for ψ̂n 0.1500 0.0750 0.0500 0.0375 0.0250 0.0187 0.0150
Simulated bias of ψ̃n 0.0214 0.0164 0.0071 0.0038 0.0025 0.0103 -0.0036

Simulated variance of ψ̃n 0.1384 0.0700 0.0435 0.0323 0.0229 0.0171 0.0125
Estimated standard error 0.0062 0.0031 0.0019 0.0014 0.0010 0.00077 0.00056

Table 1: the generating process is the proportional rates model with fixed (γi)ni=1. Simulated
variance of the marginal maximum likelihood estimator and its estimated standard error, the
associated inverse Fisher information and the simulated variance of the maximum likelihood
estimator by erroneously assuming gamma random effects.

The parameter ∆ from the additive rates model is estimated using maximum likelihood
based on the conditional density function of T (AR)

i given the realization of T (AR)
i + C

(AR)
i .

This is equation (13). Let ∆̂n denote this maximum likelihood estimator. The Monte Carlo
variance of ∆̂n is reported in the second row of Table 2, with its estimated theoretical standard
error in in the third row. The unconditional variance based on equation (16) is reported in
the fourth row together with the Monte Carlo average of the conditional variances based on
(14) in the fifth row. The two agree to a close approximation and they also agree with the
Monte Carlo sample variances for sufficiently large n.

sample size (n)
20 40 60 80 120 160 200

Simulated bias of ∆̂n 0.1154 0.0644 0.0569 0.0448 0.0287 0.0179 0.0142
Simulated variance of ∆̂n 0.3895 0.1715 0.1144 0.0868 0.0554 0.0413 0.0307
Estimated standard error 0.0174 0.0077 0.0051 0.0039 0.0025 0.0018 0.0014
Inverse Fisher information 0.3040 0.1480 0.1033 0.0766 0.0523 0.0373 0.0308

Inverse conditional Fisher info 0.3072 0.1482 0.1034 0.0768 0.0523 0.0375 0.0308

Table 2: the generating process is the additive rates model with fixed (ρi)ni=1. Simulated
variance of the conditional maximum likelihood estimator and its estimated standard error,
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the inverse unconditional Fisher information based on equation (16), and the Monte Carlo
average of the inverse conditional Fisher information based on equation (14).

6.2 Randomly generated nuisance parameters
The simulation studies are the same as in section 6.1 except that (γi)ni=1 and the (ρi)ni=1 are
generated anew in each Monte Carlo replication. Thus the models in which these nuisance
parameters are treated as arbitrary constants are misspecified. In particular, dependence
between both versions of Ti and Ci is induced by the generating mechanism for γi and ρi.

Table 3 contains analogous information to the top three rows of Table 1 for the misspecified
case. The theoretically true variances have not been calculated and so are not reported.
However, the sample variances are very close to the theoretical asymptotic variances that
would obtain if the nuisance parameters were arbitrary constants (cf fourth row of Table 1).
We also report the Monte Carlo variance of ψ̃n, now under a correctly specified model, and
its theoretical asymptotic variance based on equation (4). Comparing the fifth and last rows
of Table 3, these agree for sufficiently large n.

sample size (n)
20 40 60 80 120 160 200

Simulated bias of ψ̂n 0.0435 0.0204 0.0173 0.0131 0.0080 0.0095 0.0043
Simulated variance of ψ̂n 0.1563 0.0772 0.0544 0.0386 0.0271 0.0194 0.0154
Estimated standard error 0.0070 0.0035 0.0024 0.0017 0.0012 0.00087 0.00069

Simulated bias of ψ̃n 0.0362 0.0198 0.0146 0.0106 0.0069 0.0047 0.0041
Simulated variance of ψ̃n 0.1373 0.0709 0.0455 0.0339 0.0242 0.0173 0.0139
Estimated standard error 0.0061 0.0032 0.0020 0.0015 0.0011 0.00077 0.00062
Inverse Fisher info for ψ̃n 0.1333 0.0667 0.0444 0.0333 0.0222 0.0167 0.0133

Table 3: the generating process is the proportional rates model with gamma distributed
(α=1, β=1) random effects (γi)ni=1. Simulated variances of the two estimators of ψ and the
asymptotic theoretical variance of ψ̃n.

To assess the efficiency of ψ̃n under fairly extreme misspecification of the random effects
distribution, we conduct the same experiment but with the (γi)ni=1 drawn from a log normal
distribution with scale parameter τ = 10. For comparison, the Monte Carlo variances of ψ̂n
are also reported in Table 4. The conclusion from this analysis is that while ψ̂n, justified
under the assumption that the nuisance parameters are arbitrary constants, has a stable
variance when the nuisance parameters are drawn from a rather extreme random effects
distribution, the variance of ψ̃n is appreciably larger when the random effects distribution is
misspecified in this way.

sample size (n)
20 40 60 80 120 160 200

Simulated bias of ψ̂n 0.0200 0.0099 0.0150 0.00026 -0.0036 0.0119 0.0010
Simulated variance of ψ̂n 0.1567 0.0729 0.0498 0.0375 0.0262 0.0185 0.0145
Estimated standard error 0.0070 0.0033 0.0022 0.0017 0.0012 0.00083 0.00065

Simulated bias of ψ̃n 0.1029 0.0406 0.0551 0.0139 0.0298 0.0440 0.0065
Simulated variance of ψ̃n 0.4367 0.1125 0.1389 0.0593 0.1645 0.1528 0.0208
Estimated standard error 0.0195 0.0050 0.0062 0.0027 0.0074 0.0068 0.00093

Table 4: the generating process is the proportional rates model with log normally distributed
(τ=10) random effects (γi)ni=1. Simulated variances of the two estimators of ψ.

We now consider the effect of misspecification of the random effects distribution in the
additive rates model by comparing the estimator ∆̂ of section 4 to the maximum likelihood
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estimator ∆̃ obtained by erroneously assuming that the joint density function of Ti and Ci
is given by equation (17). Rather than being a gamma distribution starting at ∆, the true
distribution of the ρi is a log normal distribution of scale parameter τ = 10 starting at ∆.
Although the theoretical variance of ∆̂ has not been calculated under the random effects
formulation, the ones based on equations (16) and (14) are reported in the fourth and fifth
rows of Table 5. As before, the estimated standard errors in the third and eighth rows are
based on a χ2 distribution with R − 1 degrees of freedom for the sample variance, where R
is the number of Monte Carlo replications.

sample size (n)
20 40 60 80 120 160 200

Simulated bias of ∆̂n 0.2320 0.1335 0.0635 0.0491 0.0560 0.0347 0.0139
Simulated variance of ∆̂n 0.6640 0.2681 0.1721 0.1198 0.0815 0.0539 0.0395
Estimated standard error 0.0297 0.0120 0.0077 0.0054 0.0036 0.0024 0.0018
Inverse Fisher information 0.3961 0.1899 0.1130 0.0880 0.0769 0.0511 0.0342

Inverse conditional Fisher info 0.4291 0.2043 0.1342 0.0998 0.0661 0.0495 0.0397
Simulated bias of ∆̃n 0.3540 0.1556 0.0578 0.0693 0.1454 0.1851 0.1614

Simulated variance of ∆̃n 1.1209 0.4147 0.2209 0.2465 0.2932 0.4872 0.4455
Estimated standard error 0.050 0.019 0.0099 0.011 0.013 0.022 0.020

Table 5: the generating process is the additive rates model with log normally distributed
(τ=10) random effects (ρi)ni=1 shifted by ∆. Simulated variance of the conditional maxi-
mum likelihood estimator and its estimated standard error, the inverse unconditional Fisher
information based on equation (16) of the paper, and the Monte Carlo average of the in-
verse conditional Fisher information based on equation (14). The seventh row presents the
simulated variance of ∆̃, the maximum likelihood estimator of ∆ by erroneously assuming a
gamma distribution starting at ∆ for the random effects.

6.3 Assessment of model adequacy in the proportional rates model
To illustrate the ideas in section 5 we consider the data generating process corresponding
to Table 1 with ψ = 1. This is the value of ψ that equalises the distributions of responses
for treated individuals and controls. In each of 1000 Monte Carlo replications we calculate
Ti/si(ψ0) = Ui(ψ0) for all ψ0 between zero and three in increments of 0.01 and for i = 1, . . . , n
with the values of n reported in Table 6. We use the composite of these values to produce a
confidence set for ψ as in equation (21). Table 6 reports the simulated coverage probabilities
of the α-level confidence sets for α ∈ {0.01, 0.05}. While the confidence sets need not be
intervals in general, they turned out to be intervals in all our Monte Carlo replications, thus
we report the mean lower and upper boundaries of these confidence intervals, averaged over
Monte Carlo replications.

sample size (n)
20 40 60 80 120 160 200

Simulated coverage probability (α = 0.01) 0.996 0.993 0.990 0.994 0.989 0.991 0.992
Simulated mean lower boundary (α = 0.01) 0.2766 0.3529 0.3804 0.4155 0.4570 0.4805 0.4993
Simulated mean upper boundary (α = 0.01) 2.9861 2.8872 2.7308 2.5430 2.2913 2.1542 2.0615
Simulated coverage probability (α = 0.05) 0.957 0.942 0.956 0.959 0.949 0.946 0.953
Simulated mean lower boundary (α = 0.05) 0.3542 0.4075 0.4402 0.4685 0.5037 0.5151 0.5387
Simulated mean upper boundary (α = 0.05) 2.8517 2.5349 2.3250 2.1951 2.0300 1.9514 1.8763

Table 6: the generating process is the proportional rates model with fixed (γi)ni=1 and ψ =
1. Monte Carlo coverage probabilities and mean upper and lower boundaries of α-level
confidence intervals constructed according to equation (21).

The interpretation of the numbers in Table 6 is that the proportional rates model with
fixed nuisance parameters is compatible with the data at level α for any value of ψ0 taking
values in C(α) defined by equation (21).
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7 Discussion and open problems
7.1 A synthesis with earlier literature
The choice of random effects distribution in section 3.2 was primarily one of mathematical
convenience. It coincides with typical usage in applications and raises conceptual issues: (i)
To what extent is the random effects formulation a plausible representation of the data gen-
erating mechanism? (ii) Are there statistical advantages of assuming a parametric random
effects model even if the formulation is physically implausible? (iii) Are there statistical ad-
vantages of treating nuisance parameters as arbitrary constants when there is a probabilistic
generating mechanism for them?

Our analysis has shown the need to be wary of assumptions made for mathematical con-
venience with no substantive basis. The following example shows how a different distribution
for the random effects may be more plausible, leading to the situation considered in Table
4. The comparison to Table 1 shows that the approach in which nuisance parameters are
treated as arbitrary constants is noticeably preferable to the approach in which the incorrect
parametric random effects distribution is used.

Suppose, in the notation of section 3, that one models the nuisance parameters as γi =
exp(xTi θ), where the xi are covariates that one could have, but did not, measure. If individuals
are sampled completely at random from a larger population, it is not unreasonable to treat
the covariates as realizations of random variables Xi, assumed to be i.i.d. copies of X, a
p-dimensional normally distributed random vector of mean zero and covariance matrix Σ =
QΛQT , where Q is a matrix whose columns are the unit-length eigenvectors of Σ. To derive
the induced distribution over the γi, write W , θTX = θTQΛ1/2V , where V is a standard
normally distributed random vector. We haveW = ‖θTQΛ1/2‖2‖V ‖2R, where R is the cosine
of the angle between V and Λ1/2QT θ, whose density function is given by (Fisher, 1915)

fR(r) = Γ(p/2)√
πΓ{(p− 1)/2}

(1− r2)(p−3)/2, −1 < r < 1,

and ‖V ‖22 is a chi squared random variable with p degrees of freedom, so that D , ‖V ‖2 has
density function

fD(δ) = δp−1 exp(−δ2/2)
2(p/2)−1Γ(p/2)

, δ ≥ 0.

The characteristic function of W is

φW (t) = ER{φD(‖θTQΛ1/2‖2tR)} = ED{φR(‖θTQΛ1/2‖2tD)},

where for any random variable Y , φY (t) = EY (eitY ). Let s = ‖θTQΛ1/2‖2t. Direct calcula-
tion gives

φW (t) = K−1
∫ ∞

0

∫ 1

−1
exp{−δ2/2 + isδr}δp−1(1− r2)(p−3)/2drdδ

' K−1
∫ ∞

0
exp{−δ2/2}δp−1

∫ 1

−1
exp{isδr − (p/2)r2}drdδ, p→∞

where K =
√
π2(p/2)−1Γ{(p− 1)/2}. Since

∫ 1
−1 exp{−(p/2)r} sin(sδr)dr = 0,∫ 1

−1
exp{isδr − (p/2)r2}dr =

∫ 1

−1
exp{−(p/2)r2} cos(sδr)dr

= exp{−(sδ)2/2p}
√

2π
p1/2 −

(∫ −1

−∞
+
∫ ∞

1

)
exp{−(p/2)r2} cos(sδr)dr,

and the remainder terms are ignored for p→∞, leading to

φW (t) ' {1 + (s2/p)}−p/2Γ(p/2)
√

2
Γ{(p− 1)/2}p1/2 , p→∞
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Using Stirling’s formula in the form Γ(k + a)/Γ(k) ' ka for large k,

φW (t) ' (1 + s2/p)−p/2 ' e−s
2/2 (p→∞),

where e−s2/2 = e−(‖Λ1/2QT θ‖2
2/2)t2 is the characteristic function of a centred normal random

variable with standard deviation τ , ‖Λ1/2QT θ‖2. Under this generating mechanism for the
covariates, γi are thus log-normally distributed, with density function

(τγ)−1φ(log γ/τ), (23)

where φ(·) is the standard normal density.
While this formulation is to some extent physically justifiable, the integral (8) does not

appear to have an analytic solution when f(γ) is given by (23). This illustrates that ran-
dom effects models are likely to be driven by mathematical convenience, highlighting the
importance of studies of misspecification.

After completing this paper, we were made aware of a related contribution by Lindsay
(1985). The work showed that straight maximum likelihood estimation (without preliminary
manoeuvres based on the factorizability of the likelihood function) is consistent in a particular
class of incidental parameter models. Specifically, those models for which there is a complete
sufficient statistic Si(ψ) for the nuisance parameter λi, with ψ treated as fixed. This situation
covers the exponential matched pairs problems with multiplicative treatment effect on the
rates (section 3.1) and with additive treatment effect on the rates (section 4) but not the
exponential matched pairs problem with additive treatment effect on the means. Despite
consistency of the maximum likelihood estimator, the standard estimator of the variance of
the maximum likelihood estimator is seriously distorted in these settings, the true variance
typically being appreciably larger than that based on the supposed inverse Fisher information.

Lindsay considered estimation of the interest parameter by parametric random effects
models and showed that the efficiency achievable by the resulting estimator is higher than
straight maximum likelihood provided that a reasonable choice of parametric model for the
random effects is used, even if this random effects distribution is misspecified. The ap-
propriate conditions are essentially that the parameters of the parametric random effects
distribution be orthogonal in the sense of Cox and Reid (1987). Parameter orthogonal-
ity arose in our derivations in sections 3.2 via equation (5) and its derivation in Appendix
A.3. Lindsay (1985) does not discuss the potential for appreciable loss of efficiency over
conditional or marginal likelihood, as opposed to full maximum likelihood, by erroneously
assuming a parametric random effects model. This potential loss of efficiency is illustrated
by our equation (10). The synthesis of Lindsay’s analysis and ours is that, while a random
effects formulation can lead to increased precision over straight maximum likelihood even
when the random effects distribution is misspecified, provided that the parameters of the
random effects distribution are orthogonal to the interest parameters, there is potential for
appreciable loss of efficiency over marginal and conditional likelihood when the corresponding
factorizations of the likelihood function are available.

7.2 Open problems
Issues connected with an appreciable number of nuisance parameters are likely to arise when-
ever a relatively complicated model is needed. In principle, analyses similar to those of sec-
tions 3 – 5 could be performed for other distributions. See Cox (1958) for a binary responses
formulation that parallels the proportional rates model of section 3. Our existing work does
not, however, generalize readily and the detailed calculation required for other distributional
assumptions is likely to be considerable. Nevertheless, some general principles can be ex-
tracted from the previous discussion. Let ψ be an interest parameter and λ be a nuisance
parameter. Either or both may be vectors. One starts from an arbitrary pair of observa-
tions (T,C), or more generally an arbitrary partition, and makes a bijective transformation
(T,C)→ (S,R) such that one of factorizations (i)–(v) holds, where:
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(i) fS,R(s, r;ψ, λ) = fR|S(r|s;λ)fS(s;ψ),

(ii) fS,R(s, r;ψ, λ) = fR|S(r|s;ψ)fS(s;λ),

(iii) fS,R(s, r;ψ, λ) = fR(r;λ)fS(s;ψ),

(iv) fS,R(s, r;ψ, λ) = fR|S(r|s;λ, ψ)fS(s;ψ),

(v) fS,R(s, r;ψ, λ) = fR|S(r|s;ψ)fS(s;ψ, λ).

Factorization (i) requires marginalization with S sufficient for ψ, (ii) requires conditioning
on S, which is now the sufficient statistic for λ. In (iii) the jointly sufficient statistic is two
independent sufficient statistics so that conditioning reduces to marginalization. Marginal-
ization is applicable in (iv), in which R|S is sufficient for λ, and conditioning in (v), in which
S is sufficient for λ, but information on ψ is lost in either case. The exponential proportional
rates model and the exponential additive rates model are examples of factorizations (iv) and
(ii) respectively.

Our suggestion of section 5 provides a unified approach to assessing the joint compatibility
of a model and its parameter values with the data, and is justified in any situation for which
one of factorizations (i)–(v) holds exactly. An important open question is the construction
of appropriate factorizations, exact or approximate, in greater generality. We conclude by
an outline of the considerations involved.

For an arbitrary pair (t, c) of jointly sufficient statistics, write the transformation equa-
tions as s = s(t, c), and r = r(t, c). The transformation is assumed to be bijective so that
t = t(s, r) and c = c(s, r). For factorizations (i), (iii) or (iv) to be true, we require that
fS(s;ψ, λ) = fS(s;ψ), and similarly for (ii) and (v).

The general form of a solution to fS(s;ψ, λ) = fS(s;ψ) is to express the unknown density
of S in terms of the known joint density of T and C. For instance,

fS(s;ψ, λ) = 1
2πi

∫ τ+i∞

τ−i∞
exp{zs(t, c)}Tλ(z)dz,

where τ is anywhere in the strip of convergence of the moment generating function of S and

Tλ(z) =
∫ ∞
−∞

∫ ∞
−∞

exp{−zs(x, y)}fT,C(x, y;ψ, λ)dxdy, z ∈ C.

The only contribution of λ comes from Tλ, so it is sufficient to choose the function s(t, c) to
make Tλ independent of λ, identically in z, ψ and λ. It would be sufficient that independence
be achieved only at points z of singularity, but this is more difficult. There results the
following integral equation, to be solved for s(t, c), identically in z, ψ, and λ:∫ ∞

−∞

∫ ∞
−∞

exp{−zs(t, c)}
{
∂

∂λ
fT,C(t, c;ψ, λ)

}
dtdc = 0. (24)

In the exponential matched pair problem with proportional rates (section 3), equation (24)
becomes

0 =
∫ ∞

0

∫ ∞
0

exp{−zs(t, c)}
{

2λ− λ2(ψt+ c/ψ)
}

exp(−λψt) exp(−λc/ψ)dtdc. (25)

While it is simple to show that s(t, c) = t/c verifies equation (25), recovering the strategy of
section 3.1, a general theory relies on a solution to the integral equation (24) when s(t, c) is
not known a priori.

An alternative general formulation to that based on Laplace transforms uses the joint
density function of S and R. Specifically, for factorization (i), (iii) or (iv) consider

fS(s;ψ, λ) =
∫
R
fS,R(s, r;ψ, λ)dr

=
∫
R
fT,C

{
t(s, r), c(s, r);ψ, λ

}
|det{J(T,C)→(S,R)}|dr,

13



where J(T,C)→(S,R) is the Jacobian of the transformation (T,C) → (S,R). Thus, for the
marginal density to be independent of λ, we require the solution in t(s, r) and c(s, r) of the
set of partial integro-differential equations:∫

R

(
∂t(s, r)
∂s

∂c(s, r)
∂r

− ∂t(s, r)
∂r

∂c(s, r)
∂s

)
∂

∂λ
fT,C

{
t(s, r), c(s, r);ψ, λ

}
dr = 0,∫

R

(
∂t(s, r)
∂r

∂c(s, r)
∂s

− ∂t(s, r)
∂s

∂c(s, r)
∂r

)
∂

∂λ
fT,C

{
t(s, r), c(s, r);ψ, λ

}
dr = 0, (26)

identically in λ and ψ.
In connection with these ideas there are a number of open problems with a differential

geometrical bearing:

1. When there are nuisance parameters two approaches are to transform the data and
marginalize or condition based on factorizations (i)–(v) above, or to find an interest-
respecting orthogonal transformation as in Cox and Reid (1987). It is natural to expect
there to be a connection between the two, and for this to be characterizable geometri-
cally.

2. Is there a geometric representation of conditioning to evade nuisance parameters, and
if so, how is this different geometrically to conditioning to ensure relevance (Amari,
1982)?

3. Differential geometric treatments of asymptotic inference (e.g. Amari, 1982; 1983;
Amari and Kumon, 1983; Kumon and Amari, 1983; Barndorff-Nielsen et al., 1986)
hinge on looking locally in the parameter space of fixed number of dimensions as the
amount of information becomes so large that interest is focused on a small region. As
such it does not seem directly applicable when the dimension of the parameter space
is itself very large which is the situation considered in the present paper. Is there an
extension of these ideas suitable for the incidental parameter problems of the present
paper?

The analysis of section 3.2 also hints at a more general analysis of model misspecification.
There are important open questions. For instance: when is inference on an interest parameter
relatively unaffected by misspecification of the nuisance part of the model? What type of
misspecification is the inference robust to and how does this depend on the structure of the
model and the loss function used for estimation? In what sense is the inference robust? For
instance consistency may be achievable but efficiency lost.
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APPENDIX

A Derivations of key results
A.1 Derivation of equation (9)
The argmax is unchanged by rescaling and subtraction of constants. Dividing by n and
subtracting n−1∑n

i=1 log gθ∗(Ti, Ci) shows that

θ̂ = argmax
v∈Θ

1
n

n∑
i=1

log fv(Ti, Ci)
gθ∗(Ti, Ci)

.
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The summands are identically distributed and of finite expectations, therefore θ̂ converges
almost surely to

θ = (θ1, θ2, θ3) = argmin
v∈Θ

∫ ∞
0

∫ ∞
0

log gθ
∗(x, y)

fv(x, y) gθ
∗(x, y)dxdy.

A.2 Derivation of equation (4)
The second derivative of the log likelihood for the ith pair with respect to ψ is

`i,ψψ = −(α+ 2)
{ 2CiTi
ψ2(ψTi + Ci/ψ + β)2︸ ︷︷ ︸

I1

− C2
i

ψ4(ψTi + Ci/ψ + β)2︸ ︷︷ ︸
I2

+ 2Ci
ψ3(ψTi + Ci/ψ + β)︸ ︷︷ ︸

I3

− T 2
i

(ψTi + Ci/ψ + β)2︸ ︷︷ ︸
I4

}
, (27)

and the two cross-partial derivatives with respect to ψ are

`i,ψα = Ti − Ci/ψ2

(Tiψ + Ci/ψ + β) , `i,ψβ = − (α+ 2)(Ti − Ci/ψ2)
(Tiψ + Ci/ψ + β)2 . (28)

The expectations of both terms in (28) are zero because, for any κ,∫ ∞
0

t

{∫ ∞
0

(tψ + c/ψ + β)−κdc
}
dt = ψ

(κ− 1)

∫ ∞
0

t(tψ + β)−(κ−1)dt, (29)

ψ−2
∫ ∞

0
c

{∫ ∞
0

(tψ + c/ψ + β)−κdt
}
dc = 1

ψ3(κ− 1)

∫ ∞
0

c(c/ψ + β)−(κ−1)dc. (30)

Changing variables to z = tψ and z = c/ψ in (29) and (30) shows that both integrals are
equal to

1
ψ(κ− 1)

∫ ∞
0

z(z + β)−(κ−1)dz,

so that terms cancel when taking expectations in (28). It follows that the Fisher informa-
tion matrix per observation is block diagonal with the relevant block equal to the negative
expectation of (27), specifically

(α+2)
{ 2

(α+ 2)(α+ 3)ψ2︸ ︷︷ ︸
E(I1)

− 2
(α+ 2)(α+ 3)ψ2︸ ︷︷ ︸

E(I2)

+ 2
(α+ 2)ψ2︸ ︷︷ ︸

E(I3)

− 2
(α+ 2)(α+ 3)ψ2︸ ︷︷ ︸

E(I4)

}
= 2(α+ 2)

(α+ 3)ψ2 .

This is (4).

A.3 Derivation of equation (5)
Consider j = 1 and let K be the normalizing constant for the joint density of Ti and Ci.
Then

E1 , E
( Ti
Tiψ + Ci/ψ + β

)
= 1
K

∫ ∞
0

γ2f(γ)
{∫ ∞

0
e−γc/ψ

(∫ ∞
0

te−γtψdt

tψ + c/ψ + β

)
dc
}
dγ.

Direct calculation shows that the inner integral is

ψ−2[γ−1 + eγc/ψeγβ(c/ψ + β)Ei{−γ(c/ψ + β)}],
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so that, changing variables to z = γ(c/ψ + β) gives

E1 = 1
ψ2K

∫ ∞
0

γ2f(γ)
{
γ−1

∫ ∞
0

e−γc/ψdc+ eγβψγ−2
∫ ∞
γβ

zEi(−z)dz
}
dγ

= 1
ψK

∫ ∞
0

f(γ)
{

1 + eγβ
∫ ∞
γβ

zEi(−z)dz
}
dγ.

Now consider

E2 ,
1
ψ2E

( Ci
Tiψ + Ci/ψ + β

)
= 1
ψ2K

∫ ∞
0

γ2f(γ)
{∫ ∞

0
e−γtψ

(∫ ∞
0

ce−γc/ψdc

tψ + c/ψ + β

)
dt
}
dγ.

The inner integral is

ψ2[γ−1 + eγtψeγβ(tψ + β)Ei{−γ(tψ + β)}].

Integrating with respect to t and changing variables to z = γ(tψ + β) in the second term
gives

E2 = 1
K

∫ ∞
0

γ2f(γ)
{
γ−1

∫ ∞
0

e−γtψdt+ eγβψ−1γ−2
∫ ∞
γβ

zEi(−z)dz
}
dγ

= 1
ψK

∫ ∞
0

f(γ)
{

1 + eγβ
∫ ∞
γβ

zEi(−z)dz
}
dγ = E1.

The demonstration is analogous for other j ∈ N, the integrals being identical up to the ψ2

term that arises from the same changes of variables used above.

A.4 Proof of consistency of the maximum likelihood estimator
By the argument following equation (7), it is required to show that the κ that equalizes the
expectation of Ci/{κ2(Tiκ + Ci/κ + β} and Ti/{Tiκ + Ci/κ + β} is κ = ψ, and that these
expectations exist for any κ and ψ bounded away from zero.

Consider

IT , E
( Ti
κTi + Ci/κ+ β

)
= 1
K

∫ ∞
0

γ2f(γ)
∫ ∞

0
e−γc/ψ

(∫ ∞
0

te−γtψdt

tκ+ c/κ+ β

)
dcdγ,

where, as before, K is the normalizing constant for the joint density function of Ti and Ci.
Direct calculation shows that the innermost integral is

eγ(c/κ+β)ψ/κ

κ2

[e−γ(c/κ+β)ψ/κ

γψ/κ
+ (c/κ+ β)Ei{−γ(c/κ+ β)ψ/κ}

]
. (31)

Similarly,

IC ,
1
κ2E

( Ci
Tiκ+ Ci/κ+ β

)
= 1
κ2K

∫ ∞
0

γ2f(γ)
∫ ∞

0
e−γtψ

(∫ ∞
0

ce−γc/ψdc

tκ+ c/κ+ β

)
dtdγ,

and the innermost integral is

κ2eγ(κt+β)κ/ψ
[e−γ(κt+β)κ/ψ

γκ/ψ
+ (κt+ β)Ei{−γ(κt+ β)κ/ψ}

]
. (32)

Changing variables to z = (c/κ+ β) in (31) and s = (κt+ β) in (32) shows that

IT = 1
κK

∫ ∞
0

γ2f(γ)eγβκ/ψ
∫ ∞
β

e−γzκ/ψeγzψ/κ
[e−γzψ/κ
γψ/κ

+ zEi(−γzψ/κ)
]
dzdγ

IC = 1
κK

∫ ∞
0

γ2f(γ)eγβψ/κ
∫ ∞
β

e−γsψ/κeγsκ/ψ
[e−γsκ/ψ
γκ/ψ

+ sEi(−γsκ/ψ)
]
dsdγ.
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If both these integrals exist, the limit of ψ̂ is the unique value of κ that sets IT = IC ,
i.e. κ = ψ. Since the exponential integral Ei(−x) is negative for x > 0, IT and IC are both
upper bounded by (κK)−1 ∫∞

0 f(γ)dγ = (κK)−1 < ∞ for all κ bounded away from zero.
This justifies the previous use of the a strong law of large numbers. Thus ψ̂ converges almost
surely to ψ.

A.5 Derivation of equation (10)
The squared derivative with respect to ψ of the likelihood contribution from the ith pair is

`2
i,ψ = (α+ 2)2(t− c/ψ2)2

(tψ + c/ψ + β)2 .

Taking expectations, E(`2
i,ψ) = T1 + T2 − T3, where

T1 = (α+ 2)2
∫ ∞

0
γ2f(γ)

∫ ∞
0

t2e−γtψ
∫ ∞

0

e−γc/ψdc

(tψ + c/ψ + β)2 dtdγ,

T2 = (α+ 2)2

ψ4

∫ ∞
0

γ2f(γ)
∫ ∞

0
c2e−γc/ψ

∫ ∞
0

e−γtψdt

(tψ + c/ψ + β)2 dcdγ,

T3 = 2(α+ 2)2

ψ2

∫ ∞
0

γ2f(γ)
∫ ∞

0
te−γtψ

∫ ∞
0

ce−γc/ψdc

(tψ + c/ψ + β)2 dtdγ.

Consider T1. A change of variables to z = (tψ + c/ψ + β) leads to∫ ∞
0

e−γc/ψdc

(tψ + c/ψ + β)2 = ψeγβeγtψ
[e−γ(tψ+β)

tψ + β
+ γEi{−γ(tψ + β)}

]
.

The term eγtψ cancels with e−γtψ so that the relevant integrals with respect to t are∫ ∞
0

t2e−γ(tψ+β)

tψ + β
dt = ψ−3[{γ−2 − (β/γ)}e−γβ − β2Ei(−γβ)]

γ

∫ ∞
0

t2Ei{−γ(tψ + β)} = ψ−3
[
γ−2

∫ ∞
γβ

z2Ei(−z)dz

− β2
∫ ∞
γβ

Ei(−z)dz − 2βγ−1
∫ ∞
γβ

zEi(−z)dz
]
.

Integration by parts shows that
∫
zb−1Ei(−z)dz = b−1{zbEi(−z) + Γ(b, z)} and there is the

recursive formula Γ(b+ 1, z) = bΓ(b, z) + zbe−z so that Γ(1, γβ) = e−γβ and∫ ∞
γβ

z2Ei(−z)dz = −1
3 [(γβ)3Ei(−γβ) + {(γβ)2 + 2(γβ) + 2}e−γβ ]∫ ∞

γβ

zEi(−z)dz = −1
2 [(γβ)2Ei(−γβ) + (γβ + 1)e−γβ ]∫ ∞

γβ

Ei(−z)dz = −{γβEi(−γβ) + e−γβ}.

We thus obtain

T1 = (α+ 2)2

ψ2

[1
3 −

2β
3 E(γi)−

β2

3 E(γ2
i )

− β2
∫ ∞

0
γ2f(γ)eγβEi(−γβ)dγ − β3

3

∫ ∞
0

γ3f(γ)eγβEi(−γβ)dγ
]

and an analogous calculation shows that T2 = T1.
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Consider T3. The inner integrals are∫ ∞
0

ce−γc/ψ

(tψ + c/ψ + β)2 dc = −ψ2eγtψeγβ
[
Ei{−γ(tψ + β)}

+ e−γ(tψ+β) + γ(tψ + β)Ei{−γ(tψ + β)}
]
,

and ∫ ∞
0

te−γtψ
∫ ∞

0

ce−γc/ψdc

(tψ + c/ψ + β)2 dt = −eγβ
[
γ−2

∫ ∞
γβ

zEi(−z)dz − βγ−1
∫ ∞
γβ

Ei(−z)dz

+ γ−2e−γβ + γ−2
∫ ∞
γβ

z2Ei(−z)dz − γ−1β

∫ ∞
γβ

zEi(−z)dz
]

Using the previous expression for the integrals of the Ei(z) functions, we obtain

T3 = (α+ 2)2

ψ2

[1
3 −

2β
3 E(γi)−

β2

3 E(γ2
i )

− β2
∫ ∞

0
γ2f(γ)eγβEi(−γβ)dγ − β3

3

∫ ∞
0

γ3f(γ)eγβEi(−γβ)dγ
]
.

Thus T1 = T2 = T3 and E{`2
i,ψ} = T1. In the correctly specified case this is the Fisher

information. On replacing f(γ) by βαγα−1e−γβ/Γ(α) in the expression for T1 we obtain the
result from section 3.2, namely 2(α+ 2)/ψ2(α+ 3).

For the calculation of E(`i,ψψ), it is required to calculate the expectations of the terms
I1 − I4 in equation (27), under misspecification. It is clear from their expressions that these
expectations are related to the above calculations in the following way: E(I4) = (α+2)−2T1,
E(I2) = (α+ 2)−2T2 and E(I1) = (α+ 2)−2T3, but T1 = T2 = T3 so that

E(`i,ψψ) = −(α+ 2)(EI1 − EI2 + EI3 − EI4) = (α+ 2)−1T1 − (α+ 2)EI3.

The missing expectation is

Q , E(I3) = 2
ψ2

{
1 +

∫ ∞
0

f(γ)eγβ
∫ ∞
γβ

zEi(−z)dzdγ
}

= 1
ψ2

{
1 + β2

∫ ∞
0

γ2f(γ)eγβEi(−γβ)dγ − βE(γi)
}
.

On writing R = (α+ 2)−2T1, it follows that

{E(`i,ψψ)}−2E(`2
i,ψ) = T1

(α+ 2)2{T1(α+ 2)−2 −Q}2
= R

(R−Q)2 .

Under the correct specification of the gamma random effects model we also obtain

E(`i,ψψ) = (α+ 2)−1T1 − (α+ 2)Q = 2ψ−2{(α+ 3)−1 − 1} = − 2(α+ 2)
ψ2(α+ 3) ,

as expected.

A.6 Derivation of equation (12)
The Laplace transform of the density of Si at z is

E(e−zSi) = ρ2
i −∆2

(ρi + ∆ + z)(ρi −∆ + z)

18



and the density function of each Si at s is

fSi
(s) = Res

{
exp(zs)(ρ2

i −∆2)
(ρi + ∆ + z)(ρi −∆ + z) ,−(ρi + ∆)

}
+ Res

{
exp(zs)(ρ2

i −∆2)
(ρi + ∆ + z)(ρi −∆ + z) ,−(ρi −∆)

}
= (ρ2

i −∆2){e−(ρi−∆)s − e−(ρi+∆)s}/2∆,

where for a function g(z) z ∈ C, Res{g, a} denotes the residue of g at z = a.
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