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Summary. This note presents an alternative to multiple imputation and other ap-

proaches to regression analysis in the presence of missing covariate data. Our recom-
mendation, based on factorial and fractional factorial arrangements, is more faithful to

ancillarity considerations of regression analysis and involves assessing the sensitivity

of inference on each regression parameter to missingness in each of the explanatory
variables. The ideas are illustrated on a medical example concerned with success of

hematopoietic stem cell transplantation in children, and on a sociological example

concerned with socio-economic inequalities in educational attainment.

Key words: ancillarity, EM algorithm, fractional factorial, Hadamard matrix, missing

data, regression

1. Introduction

Analysis of observational data is frequently hindered by observations on some explana-
tory variables being missing. There is a rich literature on this, stemming indirectly from
the self-consistency property of maximum likelihood estimation (Fisher, 1925), which is
perhaps best approached via Efron (1977; 1982, p. 351). This in particular forms the basis
for the EM algorithm (Sundberg, 1974; Dempster et al., 1977) for maximum likelihood
estimation from incomplete data. In a regression context when the missing observations
are on covariates, application of these ideas necessitates specification of a joint proba-
bility model for the vector of responses Y and the matrix of covariates X, which leads
essentially to a probability model for the missing observations. Efficient algorithms are
in fact rather similar to imputation methods, based on an assumption that observations
are missing at random, not to be confused with missing completely at random, an even
stronger assumption.

Modelling aspects of the distribution of X, or indeed the joint distribution of X and Y ,
is in contradiction with the practice of conditioning on X in a regression setting. At least
when data are fully observed, the latter is appropriate based on ancillarity considerations,
since the regression function is a property of the conditional distribution of Y given X,
so that the distribution of X is irrelevant. In fact, when the d-dimensional vector of
regression coefficients is a canonical parameter of an exponential family, the appropriate
conditional calculation for the parameter of interest, the dth coefficient say, conditions on
the realized values of (xT

·1Y, . . . , x
T

·(d−1)Y ), where x·j denotes the jth column of X and xT
·j

is its transpose. This choice both eliminates the nuisance parameters and ensures that the
precision attached to the conclusions is that actually achieved and not an average over
hypothetical, so called recognizably distinct, situations that have not in fact occurred. A
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detailed discussion of these issues is not necessary for present purposes. See Fisher (1956,
§IV.4) or Cox (1958a, 1958b, 1970, §4.2).

This short paper illustrates what we consider to be a more appropriate approach to
presenting conclusions when covariate data are missing. This entails replacing unobserved
entries by rather extreme assignments in such a way that the effect of missingness of each
covariate can be assessed. One of several conclusions emerges: that the missing obser-
vations do not materially affect inference on the aspects of interest; that the missingness
in some variables affects inference on some but not all of the regression coefficients; or
that the missingness is so severe that reliable conclusions are not possible without strong
uncheckable assumptions on the process through which the missingness arises. The focus
is primarily on the main effects of missingness, estimated from a simple fractional factorial
design for the missing entries of X, although in principle interactive effects can also be
assessed, provided that the number of columns of X with missing entries is not imprac-
tically large. The idea appears partially, in less explicit form, in the example application
of Battey, Cox and Jackson (2019).

2. Full and fractional factorial assessments of missingness

Let xi for i = 1, . . . , n be d-dimensional vectors, the transposed rows of an n×d covariate
matrix X and let yi be the associated outcome variables. For a subset I̊ ⊂ {1, . . . , n}
of observations, some entries of xi are missing for reasons that are unknown. The set of
observed vectors are denoted by x̊i, for i = 1, . . . , n. Note that x̊i = xi for i /∈ I̊ and
otherwise x̊i has at least one entry missing.

Suppose that the missing entries arise in m ≤ d of the columns of X̊, where X̊ is
the n × d matrix with x̊T

i as its rows. Consider initially replacing all missing entries

from a single column of X̊ by the maximum or minimum of the observed entries in
that column. This can in principle be done for all 2m combinations of high and low

values, leading to 2m matrices, X̊(c) say, whose transposed rows are denoted by x̊
(c)
i

where c = 1, . . . , 2m indexes a particular column-wise combination of substitutions for
the missing entries of X̊. Associated with these are 2m vectors of regression coefficient

estimates, written β̂(1), . . . , β̂(2m), each in Rd, and their estimated standard errors. For
each entry of the unknown regression coefficient vector, the main effect of missingness of
each variable and any low-order interactive effects can be estimated by the appropriate
factorial contrast.

It is not critical that the maximum and minimum value of each observed column be
used in the combinatorial replacements, only that relatively extreme assignments be made
in order to assess the sensitivity, where “extreme” is calibrated against the data that have
been observed. In Battey, Cox and Jackson (2019) the upper and lower quartiles of any
continuous variables were used, giving a less conservative assessment. A caveat concerns
the situation in which extremity is the reason for the missingness. For instance, if a
measuring device is unable to record observations above or below a certain threshold. In
that case, the analysis would not faithfully reflect the range of conclusions that could have
been reached had the data been available in their entirety.

As elucidated in Appendix A for linear least squares, it cannot be guaranteed in general

that the inaccessible estimate β̂, based on the unobservable matrix X, is contained in

the convex hull of β̂(1), . . . , β̂(2m). The sensitivity analysis to be outlined is a way of
presenting the evidence in incisive form, while being transparent about the limitations
of the data. By contrast, imputation procedures seek to present inferential statements
as if the missing data had been observed. McCullagh (2023, Chapter 14) convincingly
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articulates the matter and concludes that the practice can be rather misleading, a view
that we share. In the present context it is also, at least from one point of view, a violation
of conditionality as noted above.

2.1. Illustration for two columns with missing entries. Suppose for illustrative
simplicity that there are two columns with missing entries among those of the n × d
matrix X. It is helpful to introduce in this illustration a more explicit notation coinciding
with the usual one for factorial designs. Thus, associate with the incomplete columns of
X the factors A,B and a general treatment combination ajbk where j and k take values
zero and one when the corresponding factor is at its high and low level respectively. Thus,
when j = k = 1 the missing entries in both columns are replaced by the maximum of the
column entries that have been observed. The treatment combination of all factors at their
low level is written (1). The four treatment combinations are X(1), X(a), X(b), X(ab) and
what would be called outcome variables in the usual experimental design terminology are

the d-dimensional vectors β̂(1), β̂(a), β̂(b), β̂(ab) and their estimated standard errors. The
effect of missingness in the column associated with A is then summarized by the usual
factorial contrast for the main effect of A, namely 2τ̂A, where

τ̂A = (β̂(ab) + β̂(a) − β̂(b) − β̂(1))/4 (2.1)

and similarly

τ̂B = (β̂(ab) + β̂(b) − β̂(a) − β̂(1))/4

τ̂AB = (β̂(ab) − β̂(b) − (β̂(a) − β̂(1)))/4.

These are not to be interpreted as estimators of any population-level quantities as they are
considered conditionally on the data. The factorial contrast 2τ̂A is the effect of changing
A from its low to its high level, averaged over the levels of B, and 2τ̂AB is the difference
between the effects of changing A when B is at its high level and when it is at its low
level. Effectively, the contrast for variable j is a discrete approximation to the partial

derivative of β̂ with respect to the aspects of x·j that have not been observed, holding all
other such aspects fixed.

2.2. Generalisation to higher-dimensional missingness. If m is small, it is reason-
able to report the (m +

(
m
2

)
) × d dimensional matrix of main effects of missingness and

pairwise interactions. When the number m of covariates subject to missing observations
exceeds 4 or 5, the 2m sets of coefficients from the full factorial is unreasonably large
for presentation, and wasteful for estimating the m main effects of missingness. These
may instead be estimated from a 2m−` fractional factorial arrangement with ` such that
2m−` ≥ m+ 1. For a comprehensive discussion of fractional factorial arrangements, con-
veniently studied using prime power commutative groups of order 2m, see Cox and Reid
(2000, §5.5.2) or Bailey (2008, §13). When interest lies in main effects only, construction
is greatly simplified by using Hadamard matrices, with a Hadamard matrix of dimension
2m being constructed from one of half the size as

H2m =

(
H2m−1 H2m−1

H2m−1 −H2m−1

)
. (2.2)

The 2m rows of the sub-matrix (
H2m−1

−H2m−1

)
,
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after discarding the first column, define the treatment combinations associated with the
full factorial, and the 2m−1 rows of the sub-matrices H2(m−1) and −H2(m−1) , after discard-
ing the first column of each, define the treatment combinations associated with the two
distinct half-replicates of the full factorial system. For instance, with m = 3,

H2m =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


and the assignments associated with the two half-replicates are {X(abc), X(b), X(a), X(c)}
and {X(1), X(ac), X(bc), X(ab)}. Orthogonality of the Hadamard sub-matrices ensures that
each factor is present twice at each level with a different combination of levels for the other
factors.

More generally, for ` such that 2m−` ≥ m+1, there are ` fractions of size 2−` of the full
2m factorial design, and two distinct Hadamard matrices of dimension 2m−` embedded
within a given one of dimension 2m. The last m columns specify (2−`)-replicates of the
full factorial experiment. For example, with m = 5, a full factorial entails 32 treatments.
The highest available degree of fractionation gives two quarter-replicates specified by the
eight rows and last five columns of the two distinct Hadamard sub-matrices of H16 (or
−H16). In view of this, when m is large, the main effects of missingness can be constructed
analogously to equation (2.1) by assigning high and low entries as determined by the last
m columns of a Hadamard matrix of dimension M , say, where M ≥ m+ 1.

Let F ⊂ {1, . . . , 2m} denote a treatment combination associated with, say, a half repli-
cate of the full factorial, as detailed above. The main effects of missingness could be
constructed either from F or its complement F = {1, . . . , 2m}\F. The answers will be
similar provided that appreciable interactive effects are not present. Since appreciable
discrepancies can be checked for, fractional replication provides an internal mechanism
for validating or refuting the reasonableness of the simplified analysis.

Two further comments are helpful. If the Hadamard matrix is not in the standard form
(2.2), the column consisting only of 1 or −1 should be discarded. If M > m + 1, any of
the redundant columns can also be used to estimate main effects, and the conclusions will
be consistent, as these specify the same treatment combinations in different orders.

There results an m×d matrix of main effects of missingness, where the (j, k)th entry is
the effect of missing observations on variable j on the kth estimated regression coefficient.
Whether a particular main effect of missingness is deemed large should be calibrated
against the estimates themselves so as to make the assessment dimension free. This can
be done for both the coefficient estimates and the estimates of standard errors. The ideas
are best illustrated with an example; see §3.

3. Two examples

3.1. A medical example. The ideas are illustrated using publicly available data from
Kalwak et al. (2010) on the success of hematopoietic stem cell transplatation in children.
The measured covariates in this study included treatment modifications and numerous
forms of mismatch between donors and recipients. This was a wide-ranging investigation
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and we focus on one aspect of it. In particular, the binary outcome, coded as {0, 1} =
{unsuccessful, successful} classifies the treatment as unsuccessful if the patient died or
relapsed within the follow-up period. The shortest such period for a surviving patient
was 433 days. The covariate data are summarized in Table 1, where x·j represents the
jth column of the covariate matrix X. Key treatment variables are x·1 to x·4, which
measure whether the stem cells were sourced from bone marrow or peripheral blood and
the relative and absolute concentrations of CD3+ and CD34+ cell doses after infusion.
Variables x·5 to x·8 measure the degree of compatibility between donor and recipient,
with x·5 and x·6 specifying the number of antigens and alleles in which donor and recipient
differ, x·7 indicating whether their blood groups match, and x·5 a measure of serological
compatibility according to cytomegalovirus infection prior to transplantation (the higher
the value, the lower the compatibility). Variables x·9 to x·18 are intrinsic features of the
donor and recipient whose interpretations are mostly clear from Table 1. Exceptions are
x·9 and x·10, indicating presence or absence of cytomegalovirus infection in, respectively,
the recipient and donor of hematopoietic stem cells prior to transplantation, and x·11,
indicating presence of the Rh factor on the recipient’s red blood cells.

Although these data appear to have been carefully collected, a small number of entries
for 10 of the 18 variables are missing for reasons that are unknown. To quantify the effects
of missingness on the estimates of the logistic regression coefficients, we constructed a 16-
dimensional Hadamard matrix and discarded the first 6 columns. Note that 24 is the
smallest power of 2 that is larger than m, and this specifies a 2−6-replicate of the full
factorial, the latter consisting of all 210 treatments. Let H denote the resulting 16 × 10
matrix. Each row of H specifies a combination of values to be assigned to the missing
entries of variables x·2 and x·3, and variables x·5 to x·12. For instance, since the top row
of H consists only of ones, missing entries of x·j are replaced by max{xij : i ∈ I̊}. The
second row of H is an alternating sequence of −1 and 1, specifying that the missing entries
of x·2 be replaced by min{xi2 : i ∈ I̊}, those of x·3 be replaced by max{xi3 : i ∈ I̊}, and
so on.

For each of the 16 combinations of missingness, estimates of the logistic constant param-
eter and 18 regression coefficients were stored, alongside their estimated standard errors.
Let B and S denote the resulting 16×19 matrices. In direct analogy with (2.1), the main
effect of missingness of the kth partially observed variable on coefficient ` is constructed
orthogonally to the other effects as (hT

kb`)/8, where hk is the kth column of H and b` is
the `th column of B. Let EB denote the 10×19 matrix of such effects. The same analysis
using S in place of B produces a matrix ES of main effects of missingness on the standard
error estimates. The entries of EB and ES are best calibrated against the entries of B
and S respectively. For instance, dividing the absolute entries in the `th column of EB by

maxc |β̂(c)
` | produces a dimension-free number, comparable across rows and columns and

between tables for coefficients and standard errors. These are presented in Tables 2 and
3. We do not put forward any definitive thresholds. As in other contexts, the appropriate
exposition presents the evidence in incisive form, avoiding binary decisions to the extent
feasible.

Missingness in variables x·3 and x·8 has an appreciable effect on several of the coefficient

estimates. Some of the standard errors are also affected, particularly those on β̂j , j ∈
{8, 9, 10}. Other standard errors are relatively unaffected by the extreme reassignments of
missing entries, typically varying by less than 5% and in many cases less than 1%. For the

more stable coefficient estimates, namely β̂0, β̂7, β̂13, β̂14, β̂16, and their standard errors,
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covariate description sample range % missing
x·1 stem cell source {0 = marrow, 1 = peripheral blood} 0
x·2 CD3+/CD34+ [0.20− 99.56] 2.67
x·3 CD3+ per kg [0.040− 20.02] 2.67
x·4 CD34+ per kg [0.79− 57.78] 0
x·5 antigen discrepancies {0, 1, 2, 3} 0.53
x·6 allele discrepancies {0, 1, 2, 3, 4} 0.53
x·7 blood group match {0 = mismatch, 1 = match} 0.53
x·8 CMV incompatibility score {0, 1, 2, 3} 8.56
x·9 recipient CMV {0 = absent, 1 = present} 7.49
x·10 donor CMV {0 = absent, 1 = present} 1.07
x·11 recipient Rh factor {0 = absent, 1 = present} 1.07
x·12 recipient body mass [6, 103] 1.07
x·13 previous relapse {0 = no, 1 = yes} 0
x·14 risk group {0 = standard, 1 = high} 0
x·15 disease type {0 = nonmalignant, 1 = malignant} 0
x·16 recipient sex {0 = female, 1 = male} 0
x·17 recipient age (years) [0.60, 20.2] 0
x·18 donor age (years) [18.65, 55.55] 0

Table 1. summary of data.

it is reasonable to interpret the output from an arbitrary treatment assignment from the
factorial combination. Such values are reported in Table 4.

None of the variables studied is statistically significant at typical thresholds, the strongest
suggestion coming from x·7 and x·14. It is also worth noting that none of the omitted
rows from Table 4 would be deemed statistically significant according to their notional
p-values, which are all in excess of 0.39.

The analysis was repeated using a different 2−6 fraction obtained by multiplying the
Hadamard matrix, or equivalently the reduced form H, by minus one. The most notable

differences were on the relative effect of missingness of variable x·3 on β̂2 and β̂7, which
were 0.374 and 0.301 respectively in the second replicate, compared with 0.298 and 0.119
in the first replicate.
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β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10 β̂11 β̂12 β̂13 β̂14 β̂15 β̂16 β̂17 β̂18
x·2 0.1089 0.5169 0.3948 0.1455 0.0593 0.0502 0.1086 0.0285 0.0693 0.0473 0.0524 0.0697 0.0771 0.1277 0.0936 0.0845 0.0757 0.2560 0.0498
x·3 0.0677 0.5609 0.2976 0.5676 0.4488 0.1012 0.0002 0.1194 0.4706 0.5574 0.3038 0.2773 0.0729 0.0269 0.0155 0.1321 0.2632 0.1075 0.4811
x·5 0.0487 0.0367 0.0599 0.0949 0.1875 0.3416 0.2281 0.0995 0.0517 0.0491 0.0382 0.0628 0.0294 0.0752 0.0289 0.3551 0.0157 0.0817 0.0361
x·6 0.0353 0.0514 0.1006 0.0034 0.1829 0.3288 0.5565 0.0394 0.0031 0.0069 0.0136 0.1156 0.1167 0.0875 0.0090 0.0059 0.0227 0.2064 0.0615
x·7 0.0134 0.0143 0.0087 0.0004 0.0367 0.0127 0.0023 0.0779 0.0148 0.0195 0.0326 0.0174 0.0019 0.0435 0.0135 0.0767 0.0121 0.0015 0.0167
x·8 0.0307 0.1179 0.0088 0.0254 0.0436 0.0022 0.0178 0.0389 0.9496 0.8474 0.5734 0.1171 0.0694 0.1603 0.0693 0.3356 0.1270 0.1300 0.0339
x·9 0.1765 0.0987 0.0129 0.0220 0.1336 0.0440 0.0801 0.1110 0.5834 0.7935 0.3536 0.0493 0.0227 0.0906 0.0915 0.4983 0.0806 0.0382 0.1506
x·10 0.0196 0.0342 0.0134 0.0010 0.1635 0.0130 0.0277 0.0157 0.0651 0.0519 0.0590 0.0230 0.0240 0.1004 0.0089 0.1985 0.0477 0.0441 0.0056
x·11 0.1275 0.0249 0.0207 0.0585 0.0097 0.0574 0.0402 0.0150 0.0041 0.0003 0.0092 0.5274 0.0390 0.0014 0.0317 0.2230 0.0860 0.0904 0.0121
x·12 0.0513 0.1529 0.0970 0.0314 0.1482 0.1870 0.1053 0.2996 0.0754 0.0588 0.0335 0.2392 0.3229 0.0589 0.0252 0.1013 0.1039 0.5435 0.0227

Table 2. Absolute main effects of missingness in variable x·j on the estimated logistic regression coefficients β̂k
relative to the maximum absolute coefficient estimate for each column.

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10 β̂11 β̂12 β̂13 β̂14 β̂15 β̂16 β̂17 β̂18
x·2 0.0086 0.0249 0.3772 0.0701 0.0029 0.0001 0.0092 0.0007 0.0668 0.0570 0.0708 0.0067 0.0687 0.0015 0.0082 0.0060 0.0034 0.0595 0.0099
x·3 0.0003 0.0129 0.0515 0.2387 0.0191 0.0083 0.0115 0.0177 0.4602 0.4557 0.2739 0.0094 0.0121 0.0114 0.0085 0.0075 0.0124 0.0169 0.0141
x·5 0.0006 0.0069 0.0013 0.0126 0.0007 0.0043 0.0123 0.0040 0.0077 0.0076 0.0043 0.0014 0.0294 0.0062 0.0019 0.0048 0.0016 0.0119 0.0111
x·6 0.0019 0.0066 0.0112 0.0114 0.0071 0.0022 0.0335 0.0008 0.0003 0.0005 0.0020 0.0001 0.0022 0.0035 0.0005 0.0011 0.0004 0.0086 0.0076
x·7 0.0003 0.0021 0.0003 0.0016 0.0023 0.0016 0.0008 0.0006 0.0222 0.0195 0.0218 0.0003 0.0022 < 10−4 0.0002 0.0012 < 10−4 0.0022 0.0016
x·8 0.0034 0.0044 0.0008 0.0066 0.0111 0.0012 0.0039 0.0057 0.0329 0.0419 0.0120 0.0049 0.0051 0.0098 0.0139 0.0024 0.0054 0.0048 0.0010
x·9 0.0101 0.0012 0.0023 0.0027 0.0122 0.0019 0.0006 0.0024 0.0493 0.0725 0.0333 0.0000 0.0051 0.0100 0.0019 0.0002 0.0008 0.0045 0.0055
x·10 0.0043 0.0002 0.0019 0.0032 0.0013 0.0019 0.0024 0.0032 0.0225 0.0218 0.0275 0.0009 0.0060 0.0016 0.0002 0.0039 0.0006 0.0054 0.0005
x·11 0.0092 0.0008 0.0074 0.0025 0.0017 0.0008 0.0003 0.0032 0.0006 0.0007 0.0019 0.0218 0.0129 0.0010 0.0023 0.0025 0.0033 0.0006 0.0021
x·12 0.0057 0.0092 0.0120 0.0031 0.0150 0.0123 0.0032 0.0196 0.0063 0.0063 0.0042 0.0049 0.0037 0.0020 0.0067 0.0030 0.0017 0.0169 0.0032

Table 3. Absolute main effects of missingness in variable x·j on the standard errors of β̂k relative to the maximum
standard error for each column.
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j β̂j standard error p-value
0 -1.45 1.07 0.176
7 0.384 0.36 0.293
13 0.296 0.57 0.602
14 0.425 0.40 0.293
16 0.154 0.34 0.646

Table 4. estimates and estimated standard errors of logistic regression
coefficients (additive on the logit scale).

3.2. A sociological example. The data to be analysed, from the US National Longitu-
dinal Study of Youth (1979), were used by Battey, Cox and Jackson (2019) to illustrate
different statistical issues to those in the present paper. The binary outcome, coded
as {0, 1}, is enrolment on a four-year-degree-granting institution for at least one year.
Five explanatory variables are: ability, measured as the respondent’s score on the Armed
Forces Qualifying Test, administered to all respondents in the 1981 wave of the survey;
family income in childhood, measured as the log of total net family income in 1979; sex,
as indicated by the respondent; race, recorded by interviewer observation; and whether
respondents were living with at least one parent at the time of the first survey. The
sample was restricted to those respondents who were classified as black or non-black and
non-Hispanic. These data are summarized in Table 5.

covariate description sample range % missing
x·1 sex {1 = male, 0 = female} 0
x·2 AFQT score percentage (0− 100) 4.3
x·3 log income continuous (3.00− 11.23) 51.2
x·4 race {1 = black, 0 = non-black/non-Hispanic} 0
x·5 lives with parent {1 = yes, 0 = no} 5.1

Table 5. summary of data.

With only three variables having missing observations, it is feasible to report the output
from all 23 factorial combinations. However, to illustrate the previous ideas we calculate
the main effects of missingness from the last 3 columns of the 8-dimensional standard
Hadamard matrix. Information analogous to that in Tables 2 and 3 is given in Tables

6 and 7. The coefficient estimate β̂3 is highly unstable and to a lesser extent so is β̂5.
Other coefficients are more secure and, for these, we report the output from an arbitrary
treatment combination in Table 8.

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5
x·2 0.042 0.053 0.154 0.048 0.150 0.322
x·3 0.293 0.012 0.0060 1.008 0.021 0.051
x·5 0.024 0.018 0.0011 0.031 0.0074 0.468

Table 6. Main effects of missingness in variable x·j on the estimated

logistic regression coefficients β̂k relative to the maximum absolute coef-
ficient estimate for each column.
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β̂0 β̂1 β̂2 β̂3 β̂4 β̂5
x·2 0.021 0.032 0.097 0.019 0.031 0.033
x·3 0.625 0.0015 0.0014 0.625 0.0060 0.017
x·5 0.0042 0.0007 0.0007 0.0073 0.0024 0.064

Table 7. Main effects of missingness in variable x·j on the estimated

standard error of β̂k relative to the maximum standard error for each
column.

j β̂j standard error p-value
0 −3.39 0.250 < 10−9

1 −0.366 0.049 < 10−9

2 0.0422 0.0010 < 10−9

4 1.051 0.064 < 10−9

Table 8. estimates and estimated standard errors of logistic regression
coefficients (additive on the logit scale).

4. Discussion

When observations on explanatory variables are missing, a reasonable approach for
general use is to assess the sensitivity of the inference to this missingness. Fragility would
point to limitations of statistical inference on the data at hand. This is in contrast with the
widely deployed strategy of multiple imputation (Rubin, 1987) in which missing entries
are replaced by values drawn multiple times from a distribution, and the estimates and
standard errors averaged. This produces a single answer without warning, regardless of
how sensitive the conclusions may be to aspects that were not observed.

The approach here is semi-descriptive: an acknowledgement that statistics can only
take us so far when the quality of the data is low. Any more formal statistical guarantees
would entail strong assumptions on the process by which the missingness arises. While
conceptually very different, it is possible that aspects of the proposal are operationally
related to tests of the missing completely at random assumption (MCAR).

Appendix A. Some geometric properties of least squares in the full
factorial system

The recommended sensitivity analysis is conditional on the data, and it is not in keeping
with the paper to introduce any mechanism through which the factorial contrasts could
be treated as random. It is, however, of some interest to know how the set of coefficients
arising from the factorial or fractional factorial treatment plan relate to those that would
have been obtained had the data been available in their entirety.

When the number of covariates subject to missing observations is relatively small (less
than four, say), it is feasible and reasonable to report the output from a full factorial
arrangement. The present section provides a geometric characterization of the relation-

ship between the notional regression coefficient estimate, β̂ say, and those observable ones
determined by substitution at each factorial combination of missingness. The discus-

sion is restricted to linear least squares estimates so that β̂ = (
∑
xix

T
i )−1

∑
xiyi and

β̂(1), . . . , β̂(2m) are analogously defined.
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While one might expect the notional coefficient estimate β̂ to reside in the convex hull

of β̂(1), . . . , β̂(2m), this strong property has been neither proved nor refuted in the current
work (see the discussion below Proposition A.1). Instead it has been demonstrated that

β̂ is in the convex hull of a closely related set which cannot be explicitly calculated from
the observed data.

While worth reporting, the connection to §2 is slight, because the geometric result is
much stronger than is required to justify the sensitivity analysis.

The proof of Proposition A.1 is in Appendix B.

Proposition A.1. Provided that w =
∑

i xix
T
i is invertible and the missing entries in

each column of X̊ are not one of the two extreme points from the corresponding column
of X, the notional least squares estimate satisfies

β̂ ∈ conv{w−1w(c)β̂(c) : c = 1, . . . , 2m} ⊂ Rd, (A.1)

where w(c) =
∑

i x̊
(c)
i x̊

(c)T
i and, for a finite set A, conv(A) is the convex hull of A.

Note that X̊(c) = X + P (c), say, where P (c) is a matrix consisting primarily of zeros
except in the positions corresponding to missing entries of X, where they take values

p
(c)
ij = max{xkj : k ∈ I̊} − xij or p

(c)
ij = min{xkj : k ∈ I̊} − xij depending on the assign-

ment prescribed by c. Thus,

w−1w(c) = In + (XTX)−1
[
P (c)TX +XTP (c) + P (c)TP (c)

]
= In +A,

say, where In is the n-dimensional identity matrix. It follows that w−1w(c) − In is pos-
itive semi-definite if A is. Whether this is satisfied is not immediately clear, as some
configurations produce a constituent matrix P (c)TX +XTP (c) that is negative definite.

Since §2 suggests fractional factorial assessments of missingness, it is of some interest
to consider whether a version of (A.1) holds with c varying over a restricted set. Again,
the semi-descriptive assurances of §2 do not hinge on geometric results of this nature,
which are much stronger.

Inspection of the proof of Proposition A.1 reveals that equation (A.1) holds for any

subset K ⊂ {1, . . . , 2m} of the full factorial set such that xi ∈ conv{x̊(c)i : c ∈ K} for all
i. Thus, if one considers K = F for some fractional factorial combination, the above is in

effect a restriction on the values of the missing entries of each xi, since conv{x̊(c)i : c ∈
F} ⊂ conv{x̊(c)i : c = 1, . . . , 2m}. By Caratheodory’s theorem (Lemma B.1),

conv{x̊(c)i : c = 1, . . . , 2m} = conv{si1, . . . , si(d+1)} = conv(Si),

say, where sij are vectors in the finite set {x̊(c)i : c = 1, . . . , 2m}. Let Ci denote the set of
indices c ∈ {1, . . . , 2m} corresponding to Si. Then

β̂ ∈ conv{w−1w(c)β̂(c) : c ∈ K} (A.2)

would hold with K = ∪ni=1Ci.

To explore the strength of the condition xi ∈ conv{x̊(c)i : c ∈ K} when K = F, a set
defining a fractional factorial arrangement, consider m = d so that the index i can be

dropped in conv{x̊(c)i : c ∈ F}, and x̊(c) represents a vertex in the design space. For

instance, with m = d = 3, max{xij : i ∈ I̊} = 1 and min{xij : i ∈ I̊} = 0 for j =

1, 2, 3, the vertices corresponding to F and F are {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and
{(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)} respectively. Figure 1 depicts conv{x̊(c) : c ∈ F} and
conv{x̊(c) : c ∈ F} for these two half-replicates of the 23 factorial.
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Figure 1. Convex hull of the four treatment combinations specified by
the two half-replicates of the 23 factorial.

It is visually clear that the intersection B, say, of conv{x̊(c) : c ∈ F} and conv{x̊(c) : c ∈
F} is rather small, so that xi ∈ B for all i is a strong requirement, especially for large m.
The conclusion is only amplified when higher levels of fractionation are used. It follows
that equation (A.2) will rarely be satisfied simultaneously when K is taken as any of the
relevant fractional factorial sets.

While worth pointing out, this conclusion is immaterial for assessing the sensitivity to
missingness as detailed in §2.

Appendix B. Proofs

B.1. Preliminary lemmata. Proofs of the two important results in convex analysis,
Lemma B.1 and Lemma B.2 can be found in the stated references. These lemmata will
be used in the proof of Proposition A.1, together with Lemma B.3, proved here.

Lemma B.1 (Caratheodory’s convex hull theorem (e.g. Rockafellar, 1970, Theorem
17.1)). Let A be any set of points and directions in Rd, and let C = conv(A). Then
z ∈ C if and only if z can be expressed as a convex combination of d+ 1 of the points and
directions in A (not necessarily distinct).

Lemma B.2 (Krein and Šmulian (1940, Theorem 3)). For sets A and B, denote their
Minskowski sum by A + B = {a + b | a ∈ A, b ∈ B}. Minskowski summation commutes
with the formation of convex hulls, that is: conv(A+ B) = conv(A) + conv(B).

Lemma B.3. Let A and B be finite subsets of Rd and A × B their Cartesian product.
Then conv(A× B) = conv(A)× conv(B).

Proof. One inclusion, conv(A × B) ⊆ conv(A) × conv(B), is evident. To prove the con-
verse, let (a, b) ∈ conv(A) × conv(B). By Lemma B.1, there exists a1, . . . , ad+1 ∈ A and
b1, . . . , bd+1 ∈ B such that a =

∑
j λjaj and b =

∑
j γjbj , where λj , γj ≥ 0 for all j and∑

j λj =
∑

j γj = 1. Write

(a, b) =

(d+1∑
j=1

λjaj ,

d+1∑
j=1

γjbj

)
=

{d+1∑
k=1

γk

(d+1∑
j=1

λjaj

)
,

d+1∑
k=1

λj

(d+1∑
j=1

γjbj

)}
=
∑
j,k

λjγk(aj , bk).
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Since
∑

j,k λjγk = 1, (a, b) ∈ conv(A× B). Thus conv(A)× conv(B) ⊆ conv(A× B). �

B.2. Proof of Proposition A.1.

Proof. Let Xi = {x̊(c)i : c = 1, . . . , 2m} and Mi = {x̊(c)i x̊
(c)T
i : c = 1, . . . , 2m}. By the con-

straint on the missing entries of X̊ relative to the two extremes of the corresponding col-
umn of X, xi ∈ conv(Xi) and (xi, xi) ∈ conv(Xi ×Xi) = conv(Xi)× conv(Xi) by Lemma
B.3. Thus, since the tensor product is a surjective bilinear map from Rd × Rd to Rd ⊗ Rd,
xix

T
i ∈ conv(Mi). By the definition of the Minkowski sum,

∑
i xix

T
i ∈

∑
i conv(Mi)

which is equal to conv(
∑

iMi) by Lemma B.2.

Let Si = {x̊(c)i yi : c = 1, . . . , 2m}. By Lemma B.1 there exists vectors si1, . . . , si(d+1) ∈
Xi such that xi =

∑
j λijsij where

∑
j λij = 1 and λij ≥ 0 for all i ∈ {1, . . . , n} and all

j ∈ {1, . . . , d+1}. It follows immediately that xiyi ∈ conv(Si), and from Lemma B.2 that∑
i xiyi ∈ conv(

∑
i Si).

Let w =
∑

i xix
T
i and w(c) =

∑
i x̊

(c)
i x̊

(c)T
i . By the definition of the least squares

estimator, wβ̂ =
∑n

i=1 xiyi, the right hand side of which belongs to conv(
∑

i Si). Since

for all c ∈ {1, . . . , 2m}, w(c)β̂(c) =
∑n

i=1 x̊
(c)
i yi, it follows that

wβ̂ ∈ conv(Q), (B.1)

where
Q = {w(c)β̂(c) : c = 1, . . . , 2m}.

For any q ∈ conv(Q) there exists q1, . . . , q(d+1) ∈ Q such that q =
∑

j αjqj by Lemma

B.1, where αj ≥ 0 for all j ∈ {1, . . . , d + 1} and
∑

j α = 1. Thus w−1q =
∑

j αjw
−1qj ,

showing that any w−1q for q ∈ Q belongs to

conv{w−1w(c)β̂(c) : c = 1, . . . , 2m}.

The conclusion follows by setting q = wβ̂. �
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