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SUMMARY

This paper is concerned with nonparametric estimation of the intensity function of a point
process on a Riemannian manifold. It provides a first-order asymptotic analysis of the proposed
kernel estimator for Poisson processes, supplemented by empirical work to probe the behaviour 15

in finite samples and under other generative regimes. The investigation highlights the scope for
finite-sample improvements by allowing the bandwidth to adapt to local curvature.
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1. INTRODUCTION

In the analysis of random collections of point events, a fundamental role is played by the 20

intensity function, which determines the first-order properties of a spatial point process and is
an essential component of second order analyses. It provides a complete characterization for the
smaller class of Poisson processes.

Features of spatial point processes, as distinct from those along a time axis, are their inherent
multidimensionality and the need to treat all directions equivalently, in contrast to the direction- 25

ality of one-dimensional time. A further feature, sometimes ignored with little effect due to the
scales involved, are the topological features of the space on which the point events occur.

In the present paper we are concerned with point processes on the surface of a Rieman-
nian manifold, a situation of high relevance in cellular biology and microbiology, where super-
resolution microscopy techniques can record the spatial arrangement of proteins and other 30

molecules of interest on the cellular membranes of cells, bacteria and other microorganisms.
At these scales the topology cannot be ignored, necessitating inferential procedures that adapt
to local curvature. In this microbiological example, knowledge of the intensity functions of, say,
two different molecular processes can guide scientific inference by suggesting possible depen-
dencies between the processes, perhaps to be probed more formally. Alternatively, the intensity 35
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estimates might be used as outcomes, blocking factors or concomitant variables in an experimen-
tal context, concerned with assessing the efficacy of one or more treatments.

Intensity estimation under this framework is unexplored. Recent relevant work is due to Robe-
son et al. (2014), Lawrence et al. (2016) and Møller & Rubak (2016), who considered functional
summary statistics for point processes on the surface of a d-dimensional unit sphere. These sum-40

marize the global properties of the point process. Ward et al. (2021) extended the construction
of such statistics to convex manifolds using the Mapping Theorem (e.g. Kingman, 1993, p.18)
to map the point events on the manifold to the surface of the unit sphere, performed statistical
analysis there using the rotational invariance of the sphere, and mapped the conclusions back to
the manifold of interest. Whilst the present paper is concerned with more general processes and45

manifolds, we must similarly assume the implicit equation g(x1, . . . , xd) = 0 of the manifold is
known in analytic form, or can be well approximated as illustrated in Section 7.

The closest related work is that concerned with nonparametric density estimation from in-
dependent and identically distributed (i.i.d.) observations constrained to the surface of a mani-
fold. Pelletier (2005) extended some of the theory of kernel density estimation to accommodate50

i.i.d. observations on a finite volume boundary-free Riemannian manifold, while Kerkyacharian
et al. (2012) considered so-called needlet density estimation on compact homogeneous mani-
folds, motivated by applications in astrophysics. As with their Euclidean counterparts, the broad
strategies appropriate for kernel density and kernel intensity estimation are rather similar, al-
though the technical differences are considerable, most notably: the point process observations55

cannot be treated as i.i.d.; the number of event observations are, at least in the present context,
treated as random; and the point process is frequently not observed over the entire manifold. The
latter situation necessitates procedures that can seamlessly accommodate both boundary-free
manifolds and manifolds with boundaries.

2. PRELIMINARIES60

Consider a compact d-dimensional Riemannian manifold (M, g) with Riemannian metric ten-
sor g. Our treatment here is coordinate-free, i.e., avoiding a fixed basis in which to express all
calculations. This formulation comes at the expense of greater abstraction but leads to a more
compact notation. Most of the details are deferred to the Supplementary Material along with the
proofs of the main results.65

Let X be a point process overM, most naturally viewed as a random set formed of elements
of M. To distinguish between points in a realization of X and any point in the space M, we
shall refer to the former as events and the latter as points. We use x both to specify points inM
and to index events in X , with the context ensuring no ambiguity.

For any Borel measurable subset B ⊆M, let NX(B) denote the number of events of X in70

B and let dvol denote the d-dimensional Riemannian volume form on M (see Supplementary
Material). The intensity measure is defined as µ(B) = E{NX(B)} and provided that µ is ab-
solutely continuous with respect to dvol, there exists a function ρ :M→ R called the intensity
function such that

µ(B) =

∫
B
ρ(x)dvol(x).

In other words, ρ is the Radon-Nikodyn derivative of the intensity measure with respect to the75

Riemannian volume form. A more precise formalization avoiding ambiguity in the asymptotic
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framework of Section 3 is

ρ(x) = lim
δx→0

vol(δx)−1E{NX(δx)}, (1)

where δx ⊂M is a region centred on x, and the notation δx → 0 means that the geodesic distance
dg :M×M→ R+ between any two elements of δx tends to zero. This is a natural adaptation
of the Euclidean definition of Cressie (2015) and retains all the usual properties. Under the con- 80

straint that X is simple, that is pr{NX(δx) > 1} = o{vol(δx)}, ρ(x)dvol(x) can be interpreted
as the probability of a point occurrence in the infinitesimal volume dvol(x) at x ∈M.

A point process X is said to be homogeneous if ρ is constant overM and otherwise inhomo-
geneous. By Campbell’s theorem (Daley & Vere-Jones, 2010), for any measurable nonnegative
function f :W ⊆M→ R+, 85

E

{ ∑
x∈X∩W

f(x)

}
=

∫
W
f(x)ρ(x)dvol(x). (2)

Poisson processes can be characterized in the same way onM as in Rd. Specifically, X is said
to be a Poisson process with intensity function ρ if, for any Borel measurable subset B ⊆M,
NX(B) is Poisson distributed with mean µ(B) and, for any disjoint Borel measurable subsets
A,B ⊆M, NX(A) and NX(B) are independent random variables. This affords considerable
simplification. In particular, for any measurable non-negative function f :W ⊆M→ R+, 90

Var
{ ∑
x∈X∩W

f(x)

}
=

∫
W
f2(x)ρ(x)dvol(x). (3)

3. INTENSITY ESTIMATION ONM
Estimation of ρ is treated nonparametrically. As in simpler contexts (e.g. Bartlett, 1963; Cox,

1965, for events along a time axis) smoothing is required to achieve acceptable estimation
variance. This entails some form of weighted averaging of nearby points, ideally with tapered
weights for decreasing proximity. Intuitively, in regions of high curvature, neighbouring points 95

appear closer in the Euclidean metric than the arc length of the shortest curve section between
them, constrained to the surface ofM, namely the geodesic distance dg :M×M→ R+. This
renders the standard Euclidean theory of kernel intensity estimation unusable. We pursue the nat-
ural approach of replacing the Euclidean metric in the kernel function by the geodesic distance,
so that the kernel intensity estimator automatically adapts to local curvature. 100

A further complication in this setting is that a kernel function, typically non-compactly sup-
ported, centred at a particular point may not integrate to one over the manifold. This could be
because the manifold has a boundary, or may only be observed over a convex compact subset of
M, a situation that is rather common in practice. A related problem arises when the manifold
is of finite volume and boundary-free. Although this latter issue can be circumvented in certain 105

special cases, for instance by using Fisher’s (1953) density function as a kernel on the sphere or
adopting finitely supported kernels (Pelletier, 2005), for more general manifolds and kernels a
shape correction is needed, in effect to avoid double counting of points in the weighted average.
Conveniently, the boundary correction required in the former situation is operationally the same
as shape correction for finite-volume boundary-free manifolds. All cases can be encapsulated 110

by defining a convex compact subset W of M over which the point process is observed. The
corrections introduced in the forthcoming discussion are then either edge or shape corrections,
the latter corresponding to W =M withM a finite-volume boundary-free manifold.
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The intensity function estimator to be studied in the present paper is

ρ̂h(x) =
∑

y∈X∩W

ch(x, y)
−1

hd
k

{
dg(x, y)

h

}
, (4)

where W is as described above, ch(x, y) is the edge or shape correction and, for Euclidean norm115

‖ · ‖, k is such that k ◦ ‖ · ‖ : Rd → R+ is a symmetric probability density function, specified
for concreteness as Gaussian:

k{dg(·, y)} = (2π)−d/2 exp{−d2g(·, y)/2}.

In direct analogy to the corresponding corrections in Rd (Diggle, 1985; Berman & Diggle, 1989;
van Lieshout, 2012), ch(x, y) is defined either globally or locally as

c
glo
h (x, y) = ch(x) =

1

hd

∫
W
k

{
dg(x, z)

h

}
dvol(z), (5)120

cloc
h (x, y) = ch(y) =

1

hd

∫
W
k

{
dg(z, y)

h

}
dvol(z). (6)

Specifically, the global correction depends only on the point at which the intensity is estimated,
while the local correction adjusts for each event. The resulting estimator (4) is generally biased
in finite samples regardless of which correction is used but, as shown in Proposition 1, the global
version ρ̂glo

h is unbiased for homogeneous point processes. The local version ρ̂loc
h enjoys mass125

preservation for homogeneous and inhomogeneous processes, specifically,∫
W
ρ̂loc
h (x)dvol(x) = NX(W ), (7)

as was demonstrated in the Euclidean case by van Lieshout (2012).
The estimators ρ̂glo

h (x) and ρ̂loc
h (x) are best justified by consideration of their first and second

moment properties, stated as a series of Propositions of varying degrees of technical intricacy,
and culminating in Proposition 3.130

PROPOSITION 1. Let (M, g) be a Riemannian manifold and let X be a homogeneous spatial
point process over M with intensity function ρ(x) = ρ for all x ∈M. Then for any h, ρ̂glo

h is
unbiased for ρ while E{ρ̂loc

h } = ρη with

η =

∫
W

cloc
h ( · , y)−1

hd
k

{
dg(x, y)

h

}
dvol(y).

Proof. This is a special case of the more general result

E{ρ̂•h(x)} =
∫
W

c•h(x, y)
−1

hd
k

{
dg(x, y)

h

}
ρ(y) dvol(y), • ∈ {glo, loc},135

which follows by Campbell’s theorem. The result is immediate on noting the constancy of the
intensity function. �

Although ρ̂loc
h has multiplicative bias η for homogenous processes (and is expected to exhibit

pointwise bias for inhomogeneous processes too) the functional
∫
W ρ̂loc

h (x)dvol(x) is always
unbiased for µ(W ) by taking expectations in (7).140
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PROPOSITION 2. Let (M, g) be a Riemannian manifold and let X be a Poisson process on
M. Then

Var{ρ̂glo
h (x)} = c

glo
h (x, · )−2

∫
W

[
1

hd
k

{
dg(x, y)

h

}]2
ρ(y) dvol(y),

Var{ρ̂loc
h (x)} =

∫
W
cloc
h ( · , y)−2

[
1

hd
k

{
dg(x, y)

h

}]2
ρ(y) dvol(y).

Proof. The result is by direct calculation using (3). � 145

For homogeneous Poisson processes, it follows from Proposition 2 that the variance is not
constant over M even though the intensity function is. This conclusion is equivalent to that
of Rakshit et al. (2019) in the context of homogeneous point processes observed over linear
networks.

Specification of the bandwidth h relies on a notional asymptotic regime in which the expected 150

number of events µ(W ) diverges. As in simpler contexts, the bias and variance are antagonistic
as a function of h, and a suitable compromise between the two must be determined. In assessing
the appropriate scaling of h with the expected number µ(W ) of events, there are some subtleties
that distinguish the present setting from the i.i.d. Euclidean case. In a Euclidean setting, one way
to achieve µ(W )→∞ is to consider an expanding W . This on its own is unsatisfactory, as the 155

concentration of events around an arbitrary x ∈W could remain diffuse, as noted by Cucala
(2008). The expanding W framework is also physically implausible in the context of boundary-
free finite-volume manifolds where W =M.

To ensure the target of inference is stable under the notional limiting operation µ(W )→∞,
the asymptotic properties of a suitably standardized version of (4) are considered, analogously to 160

Cucala (2008). The standardized object of inference is ρ1(x) = ρ(x)/µ(W ), the relative concen-
tration of events at each point ofW ensuring that ρ1 integrates to one overW . The corresponding
estimators are

ρ̂•h,1(x) =
1{NX(W ) 6= 0}

NX(W )

∑
y∈X∩W

c•h(x, y)
−1

hd
k

{
−dg(x, y)

h

}
, • ∈ {glo, loc}, (8)

where 1(A) denotes the indicator function of the event A, and the relationship to the estimator
in (4) is ρ̂•h(x) = NX(W )ρ̂•h,1(x). For Poisson processes the following proposition gives the 165

pointwise asymptotic properties of ρ̂•h,1 for • ∈ {glo, loc}.
PROPOSITION 3. Let (M, g) be a Riemannian manifold. Suppose X is a Poisson process pa-

rameterized by ρ = {ρ(x) : x ∈M} and observed over the bounded windowW ⊆M. Provided
that ρ1 is smooth, for any x ∈W ⊆M and • ∈ {glo, loc},

E{ρ̂•h,1(x)} → ρ1(x), 170

Var{ρ̂•h,1(x)} → 0,

as µ(W )→∞ provided that h→ 0 and µ(W )−1 = o(hd).
This result supplies a degree of reassurance over the behaviour of the proposed estimators, as

the conclusion coincides with that obtained in Euclidean space.
From a technical point of view there are some limitations of this analysis. Firstly, Proposition 175

3 is proved only for Poisson processes. It is supplemented by empirical work in Section 6, which
probes the behaviour in finite samples and for other generative processes. Secondly, the conclu-
sions are first-order asymptotic in nature, and not optimized to exploit the interaction between
the process and the manifold. Since the volume of a ball of radius r at two points x and y on a
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general manifold is not necessarily equal for x 6= y, the expected number of events in such a ball180

is, in general, not constant over the manifold. Intuitively then, an optimal estimator would have
a bandwidth that adapted to the local curvature, thereby producing a better separation between
clustering induced by the process and that induced by the geometry. Similar reasoning would
lead one to allow asymmetric localization via elongated “balls” and so on.

4. PRACTICAL GUIDE TO BANDWIDTH SELECTION185

While Proposition 3 specifies the properties of h under a notional asymptotic regime, and
thereby provides some theoretical reassurance over the proposed intensity estimator, the practical
problem of choosing the bandwidth for a given sample size is always present, as in almost all
areas of nonparametric estimation.

One approach to selecting h is through a critical inspection of intensity plots in order to balance190

local and global features in the data (Møller & Waagepetersen, 2004). Other approaches involve
optimization criteria. Baddeley et al. (2015, p. 176) suggest selecting the h that maximises the
cross-validated Poisson log likelihood, which in the present setting is

`cv(h|X) =
∑
x∈X

log
{
ρ̂−xh (x)

}
−
∫
M
ρ̂h(x) dvol(x), (9)

where ρ̂−zh (x) = h−d
∑

y∈X\{z} k{−dg(x, y)/h}c
−1
h (x, y) is an estimate of ρ constructed as in

(4) but without the observation z ∈ X . Application of Campbell’s Theorem shows `cv is unbiased195

for the log likelihood function

`(ρ;X) =
∑
x∈X

log{ρ(x)} −
∫
M
ρ(x) dvol(x).

A nonparametric bandwidth selection procedure that can be readily extended to the Rieman-
nian setting is given in Cronie & Van Lieshout (2018). On assuming that the intensity function
is positive everywhere onM and applying Campbell’s formula (2) to ρ−1,

E
{∑
x∈X

ρ−1(x)
}
= Vol(W ).

Replacement of ρ by its estimate ρ̂h points to a choice of h that minimizes

F (h) = {T (ρ̂h)− Vol(W )}2 , (10)

where T (ρ̂h) =
∑

x∈X ρ̂
−1
h (x). In addition to being relatively free of modelling assumptions,

(10) is less burdensome to compute than (9). The existence of a minima of F can be shown
by consideration of its continuity and limiting properties. Proposition 4 extends Theorem 1 of200

Cronie & Van Lieshout (2018) toM.
PROPOSITION 4. Let (M, g) be a Riemannian manifold and letX be a point process observed

through a bounded windowW ⊆M. After disregarding the trivial caseX ∩W = ∅, global and
local corrections (5) or (6) both yield T continuous in h ∈ (0,∞). This conclusion also holds
when no correction is used, i.e. c•h(x, y) = 1. In all cases, limh→0 T (ρ̂h) = 0. For correction205

given by (5) and (6) limh→∞ T (ρ̂h) = V ol(W ) and if no correction is used limh→∞ T (ρ̂h) =
∞.

The intermediate value theorem dictates that when ch(x, y) = 1 there exists a minima for
F , whilst if a correction is used a minimum occurs when h→∞. This is consistent with the
Euclidean approach considered by Cronie & Van Lieshout (2018). The recommendation of the210
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present paper is also to optimize F with no correction, including it instead after h has been
selected.

5. NUMERICAL CONFIRMATION IN A TEST CASE

Numerical validity of the proposed procedure is checked empirically using an example in
which standard methods are approximately valid in the limit as a key parameter becomes small, 215

but more generally handled by the approach developed in Section 3.
We consider a Poisson process on the unit square with intensity function

ρ(x1, x2) =
N

2πσ2K
exp

{
−
(x1 − 1

2)
2 + (x2 − 1

2)
2

2σ2

}
,

where N > 0 and K is chosen to ensure the expected number of points in [0, 1]2 is N . With
the unit square considered as the unit subset of the plane x3 = 0 in R3, a Poisson process on a
bounded Euclidean manifold,M =W say, is obtained by rotating the plane x3 = 0 through an
angle of θ about the x2-axis, giving the intensity function

ρW (x1, x2, x3) =

{
ρ{(x21 + x23)

1/2, x2} x3 = x1 tan(θ);
0 otherwise.

The first approach, as described in Sections 3 and 4, involves direct application of the recom-
mended procedure on W to estimate ρW using a local correction. The second, for comparison,
follows a cross-validation approach previously considered in Baddeley et al. (2015), whereby a
standard bivariate Euclidean kernel intensity estimator is first applied to the orthogonal projec-
tion on the plane x3 = 0, with the fitted intensity ρ̂proj then mapped back onto W as

ρ̂W (x1, x2, x3) =

{
ρ̂proj(x1, x2){1 + tan2(θ)}−1/2 x3 = x1 tan(θ);
0 otherwise.

The two situations are depicted in Fig. 1(a).
The sample mean integrated squared error (MISE) of each approach is computed using 10,000

simulated replicates of the point pattern with parameters σ2 = 0.01 and N = 500 for a range of 220

values of θ. Fig. 1(b) shows that the MISE remains constant for increasing θ when estimation
is performed directly on the manifold, whereas the projection approach differs considerably for
large θ, but coincides, as expected, for small θ.

6. SIMULATIONS

Point patterns are simulated on the surface of three ellipsoids of increasing eccentricity: 225

manifolds E1, E2 and E3, respectively. A common local chart used to describe an ellipsoid
E is x ≡ (x1, x2, x3) = {a sin(θ) cos(φ), b sin(θ) cos(φ), c cos(θ)} where θ ∈ [0, π) and φ ∈
[0, 2π). Manifold E1 is a sphere of radius a = b = c = (4π)−1/2, E2 has a = b = 0.8(4π)−1/2,
and E3 has a = b = 0.6(4π)−1/2. To enable comparison, the value of c for E2 and E3 is set to
ensure that they each have unit Riemannian volume measure (surface area). 230

The intensity function is estimated using point patterns sampled from three Poisson pro-
cess models. Details and results for log Gaussian Cox processes and Strauss processes are
presented in Supplementary Materials Section 3, alongside a detailed explanation of how
the processes were simulated in Supplementary Materials Section 4. The three Poisson pro-
cess models considered are: (PP1) homogeneous Poisson process, i.e. with intensity function 235

ρ1(x) = ρ1; (PP2) inhomogeneous Poisson process with log-linear intensity function ρ2(x) =
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Fig. 1. (a) Example point pattern on W (black) with its or-
thogonal projection on the plane x3 = 0 (grey). (b) Sam-
ple mean integrated squared error (MISE) of the intensity
estimate across 10,000 simulations for the projected point

pattern (◦) and working directly on the manifold (×)

exp(3 + α2x1); (PP3) inhomogeneous Poisson process with log-modulation intensity function
ρ3(x) = exp{2 + α3 cos(8x2)}. Parameters ρ1, α2 and α3 each take three values to give a low,
medium and high number of expected events.

The results from this 33 factorial experiment are presented in Table 1, where the last two240

columns display the integrated squared error of the estimate, ‖ρ̂− ρ‖2, averaged over Monte
Carlo replications and standardized by the square of the expected number of events ‖ρ‖2 to
make the rows comparable. The norm is the L2(M) norm, i.e. withM∈ {E1, E2, E3},

‖ρ̂− ρ‖2 =
∫
M
{ρ̂(x)− ρ(x)}2dvol(x)

=

∫ π

0

∫ 2π

0

[
ρ̂
{
ψ−1(θ, φ)

}
− ρ

{
ψ−1(θ, φ)

}]2 {det(gij)}1/2 dθdφ, (11)245

where ψ is the local chart forM and where (gij) is the matrix representation of the metric under
the corresponding local coordinate system. For the chosen chart it can be shown that

det(gij) = sin2(θ)a2b2{1− (1− c2/a2) sin2(θ) cos2(φ)− (1− c2/b2) sin2(θ) sin2(φ)}.

The bandwidth is selected using the two methods outlined in Section 4, referred to here as cross
validation (CV) (Baddeley et al., 2015) and nonparametric (NP) (Cronie & Van Lieshout, 2018).
Intensity function estimates are then computed using the local correction. The integral in (11) is250

computed using a numerical approximation.
In the Poisson setting outlined here, the CV method for bandwidth selection outperforms the

NP method, while inspection of the results for log Gaussian Cox and Strauss processes shows
the opposite is true. This is unsurprising since the CV method is based on a Poisson likelihood.
The simulation results are consistent with the Euclidean analysis considered in Cronie & Van255

Lieshout (2018).

7. APPLICATION TO THE BEILSCHMIEDIA PENDULA DATASET

In applying the proposed estimator to the Beilschmiedia Pendula data set (Hubbell, 1983;
Condit et al., 1996; Condit, 1998), a number of important practical considerations are isolated.
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Table 1. Performance of kernel intensity estimators

Manifold
Poisson Process Expected number {Ê(‖ρ̂− ρ‖2/‖ρ‖2)}1/2
model parameters of events CV NP

E1 PP1 ρ1 = 50 50.00 0.285 0.307
E1 PP1 ρ1 = 150 150.0 0.182 0.220
E1 PP1 ρ1 = 300 300.0 0.128 0.185
E1 PP2 α2 = 10 59.57 0.306 0.598
E1 PP2 α2 = 18 317.2 0.179 0.765
E1 PP2 α2 = 22 802.2 0.141 0.806
E1 PP3 α3 = 3 49.98 0.462 0.624
E1 PP3 α3 = 4 116.1 0.378 0.671
E1 PP3 α3 = 5 280.2 0.305 0.706

E2 PP1 ρ1 = 50 50.00 0.285 0.303
E2 PP1 ρ1 = 150 150.0 0.178 0.224
E2 PP1 ρ1 = 300 300.0 0.137 0.186
E2 PP2 α2 = 10 43.60 0.343 0.538
E2 PP2 α2 = 18 153.8 0.236 0.717
E2 PP2 α2 = 22 313.7 0.183 0.763
E2 PP3 α3 = 3 58.60 0.449 0.562
E2 PP3 α3 = 4 135.9 0.380 0.617
E2 PP3 α3 = 5 326.7 0.303 0.659

E3 PP1 ρ1 = 50 50.00 0.292 0.297
E3 PP1 ρ1 = 150 150.0 0.197 0.229
E3 PP1 ρ1 = 300 300.0 0.147 0.187
E3 PP2 α2 = 10 32.34 0.432 0.511
E3 PP2 α2 = 18 75.05 0.313 0.662
E3 PP2 α2 = 22 123.1 0.279 0.718
E3 PP3 α3 = 3 74.88 0.447 0.478
E3 PP3 α3 = 4 175.7 0.368 0.514
E3 PP3 α3 = 5 423.1 0.290 0.562

Square root of the mean integrated squared error from a 33 factorial experiment. The
mean is taken over 100 Monte Carlo replicates.

These data provide locations of 3605 trees in a 1000m by 500m rectangular sampling region of 260

a tropical rainforest. Each event is characterized by its longitude, latitude and elevation and is
assumed to lie on a two-dimensional Riemannian manifold within R3, inheriting the canonical
metric tensor by the embedding. As with most practical settings, there is no analytical formula
for the manifold. Instead, it was approximated using a 201× 101 regular grid of longitude and
latitude coordinates each with an elevation. Let U be the union of the recorded events and the 265

manifold grid points. The manifold was approximated as a triangular meshM = (U, T ), where
T = {Fm;m = 1, . . . ,M} is the set of triangular faces of the mesh with each element repre-
sented by the three elements of U that form its vertices. This was constructed by implementing
a 2D Delaunay triangular mesh on the longitude and latitude, with each vertex then raised by its
respective elevation. The full mesh and an illustrative subsection are shown in Fig. 3(a) and Fig. 270

3(b), respectively. Including the events as vertices of the triangular mesh aids the computation
of event-to-point geodesic distances, here conducted with the Fast Marching Algorithm (Peyre,
2021).
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Fig. 2. (a) Nonparametric (NP) bandwidth selection criteria
F (h) for the Beilschmiedia Pendula Dataset, plotted with
a log scale y-axis. (b) F (h) in the locality of its minimum,

plotted with a linear scale y-axis.

The kernel intensity estimator of (4) was constructed using the local correction with (6) be-
coming

ch(y) =
1

hd

M∑
m=1

∫
Fm

k

{
dg(z, y)

h

}
dλm(z)

on replacement of dvol(·) by dλm(·) for the surface area element over the mth face of the mesh.
This is approximated by

1

hd

M∑
m=1

k

{
dg(zm, y)

h

}
λm(Fm),

where zm is a representative point of Fm, here computed as the arithmetic average of its three
vertices. At this junction, a second triangular mesh was constructed in an identical manner to the275

first but including {z1, . . . , zM} as additional vertices such that all required geodesic distances
could be computed with the Fast Marching Algorithm.

To avoid modelling the data generating process, only the nonparametric (NP) approach to
bandwidth selection was used. If the CV method was to be applied, the integral in (9) would
instead be approximated as280 ∫

M
ρ̂h(x)dvol(x) ≈

M∑
m=1

ρ̂h(zm)λm(Fm).

As recommended, the bandwidth was selected without correction, which was only applied sub-
sequently in the construction of the kernel intensity estimate. The selection criterion was evalu-
ated at bandwidths h ∈ {1, 2, . . . , 300} in the units of metres. Additional refinement around the
minimizing value of h gave a final bandwidth choice of 57.17 m (2 d.p.). Fig. 2 shows a well
behaved convex function with a pronounced minimum. The resulting NP intensity estimate is285

shown in Fig. 3(c). Fig. 3(d) displays the relative difference between this and a simple alterna-
tive. The latter, written ρ̂flat constructs the intensity estimate on the plane and projects it onto
the landscape using local gradients, as in (Baddeley et al., 2015, p. 176). The elevation scale has
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(b)

(c) (d)

(a)

Fig. 3. (a) Beilschmiedia Pendula events (red dots) on the
triangular mesh representation of the geographical sur-
face. (b) Small portion of (a), depicting the events (red
dots) and constructed triangular mesh. (c) NP intensity
estimate in units m−1 depicted using the presented col-
ormap, shown with the events (black dots). (d) Relative
difference between the estimated intensity directly on the
manifold and estimated intensity assuming a flat surface,

{ρ̂manifold(x)/ρ̂flat(x)} − 1.

been magnified to aid visualization. For a manifold without a boundary, such as a sphere or an
ellipsoid, it is unclear how ρ̂flat could be implemented. 290

8. DISCUSSION AND OPEN PROBLEMS

The constructions presented in the present work have first-order asymptotic guarantees for
the estimation of intensity functions of Poisson processes observed over general Riemannian
manifolds, with or without boundaries. Their properties under other generative point processes
have been assessed by simulation. As discussed in Section 3, intuitive reasoning suggests that the 295

proposed estimator is not optimal in finite samples. A finite-sample theoretical analysis seems
challenging and may involve extension of the classical probability inequalities.
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SUMMARY

The Supplementary Material provides differential geometric background, proofs of the main
results in the paper, and simulations for log Gaussian Cox processes and Strauss processes. 15

1. BACKGROUND ON COORDINATE-FREE DIFFERENTIAL GEOMETRY

1.1. Smooth manifolds
A d-dimensional manifold is a topological space that can be locally approximated at any point

x ∈M by a subset of Rd. That is, for any x ∈M there is an open set Ux ⊂M such that x ∈ Ux,
an open set Vx ⊂ Rd and a map ψx : Ux → Vx that is required to be continuous and bijective with 20

a continuous inverse (a homeomorphism). The pair (Ux, ψx) is called a local chart, or simply a
chart. The purpose of ψx is to attach coordinates to points in Ux, and the purpose of charts is
to allow entire manifolds to be described with injective parameterizations. For instance, a circle
described by the parameterized curve γ : R→ R2 would otherwise be problematic, because the
circle γ(t) = (cos t, sin t) is not homeomorphic to R. In order to obtain an injective parame- 25

terization γ should be restricted, and the whole circle can be recovered by considering at least
two intervals, t ∈ U1 = (0, 2π) and t ∈ U2 = (−π, π), say. A collection of charts {(Uj , ψj)}j∈J
such that∪j∈JUj =M is called an atlas ofM. Thus, for two charts (Ux, ψx) and (Uy, ψy) and a
point z ∈ Ux ∩ Uy ⊂M, on defining vx = ψx(z) and vy = ψy(z), we have vy = ψy ◦ ψ−1x (vx),
where ◦ denotes composition of functions. For any i, j ∈ J such that Ui ∩ Uj 6= ∅, ψi ◦ ψ−1j are 30

called transition maps. These provide a way of transitioning between coordinate systems as-
signed by ψi and ψj .

We restrict attention to orientable manifolds with the property that Jacobian determinants
of the transition maps are all positive. The class of orientable manifolds includes those most
commonly encountered in physical contexts, including spheres and ellipsoids. It excludes certain 35

exotic examples such as Möbius strips and Klein bottles.

C© 2020 Biometrika Trust
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If for any local chart (Ux, ψx), ψx is smooth, i.e. has continuous partial derivatives of all
orders, and has a smooth inverse, then ψx is called a diffeomorphism, ψ−1x is called a local pa-
rameterization ofM around x andM is called a smooth (or differentiable) manifold. It follows
that for overlapping charts, ψi ◦ ψ−1j is a diffeomorphism. In other words the determinants of the40

Jacobians of transformation involved in a change of coordinates are non-zero.
A function f :M→ R is defined to be smooth if and only f ◦ ψ−1 is smooth for every chart

(U,ψ) in the atlas. There are of course many choices of atlas (local parameterizations) and a
function f that is smooth with respect to one atlas is smooth with respect to any (e.g. Lee, 2003).
More generally, the geometric properties of the manifolds are consistent regardless of the choice45

of local parameterization made.
For ψ−1x a local parameterization ofM around x, let ux = ψx(x). The tangent space TxM

to M at x is the space of all tangent vectors v of M at x, where v is defined as a tangent
vector at x if there exists a parameterized curve γ : (−ε, ε)→ Rm such that γ(t) ∈M for all
t ∈ (−ε, ε), γ(0) = x and γ′(0) = {γ′1(0), . . . , γ′d(0)} = v. An equivalent definition of TxM is50

the image of the derivative of ψ−1x at ux, written (Dψ−1x )(ux). Thus, ifM is embedded in Rm,
then (Dψ−1x )(ux) : Rd → Rm and TxM is a d-dimensional subspace of Rm. It is clear in the
latter case that TxM is a vector space of dimension d. This in fact holds even when there is no
embedding space forM. Thus TxM possesses a basis, which changes for every point x on the
manifold.55

1.2. Geodesics and integration on Riemannian manifolds
For a fixed coordinate system, i.e. fixed chart (U,ψ), we may write the local coordinates

for the point x as ψ(x) = {ω1(x), . . . , ωd(x)}, the indices being identifiers, not powers. Define
the infinitesimal squared distance ds2 between two neighbouring points x and x+ dx in this
coordinate system by the inner product60

ds2 = gijdω
idωj =

∑
i,jgijdω

idωj , (S1)

where the first equality uses the Einstein convention of summing over indices that appear in
lower (covariant) and upper (contravariant) positions. The coefficients gij are functions of the
coordinate system used. If the quadratic differential form in (S1) is positive definite, it is called
a Riemannian metric and any manifold characterized by such a metric is called a Riemannian
manifold. In Euclidean space using Cartesian coordinates, ds2 is simply a sum of squared com-65

ponents from each coordinate axis. However (S1) is more general and allows for non-orthogonal
coordinate systems.

A geodesic of a surface in Euclidean 3-space is familiar as a curve whose curvature relative
to the surface is zero at all points. Geodesics on a Riemannian manifold are generalizations of
this as a curve whose first curvature relative to M is zero at all points. They are the shortest70

piecewise continuously differentiable curves between any given pair of points, and the length of
such a curve is called the geodesic distance. We write the geodesic distance between two points
x, y ∈M as dg(x, y).

The natural volume element on an oriented Riemannian manifold of dimension d is the Rie-
mannian volume form or Levi-Civita tensor given, in the aforementioned local coordinates by75

dvol = {det(gij)}1/2dω1 ∧ · · · ∧ dωd,

where dω1 ∧ · · · ∧ dωd is the usual volume element on Rd given by the exterior (or wedge)
product in the coordinates specified by ψ(x) = {ω1(x), . . . , ωd(x)}, and (gij) is the matrix with
(i, j)th entry gij . Clearly ds2, dvol, and any other geometric properties ofM are invariant to the
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choice of coordinate system, and so it is not necessary in the coordinate-free treatment to specify
gij explicitly. 80

Let K be any compact subset ofM. Then the volume of K is

Vol(K) =

∫
K
dvol.

The Riemannian volume form is the analogue of d-dimensional Lebesgue measure on Euclidean
space.

A coordinate-free calculus on manifolds entails the notions of pushforward and pullbacks.
For a smooth map, f : N →M, say, the pushforward defines the corresponding map between 85

the vectors in the tangent spaces and the pullback defines the converse. Along with the loga-
rithmic and exponential maps, to be defined below, this allows operations such as changes of
variables to be formulated on the tangent spaces and mapped back to the manifold. Let γx,v
be the geodesic such that γx,v(0) = x ∈M and γ′x,v(0) = v ∈ TxM. The exponential map is
defined as expx(v) = γx,v(1) ∈M and the logarithmic map as logx(q) = exp−1x (q), q ∈M. 90

Let (U,ψ) be a local chart. The pullback (ψ−1)∗ω of the d-form ω on U can be written as
f(x)dx1 ∧ · ∧ dxd for some f : Rd → R where dx1 ∧ · ∧ dxd = dx, say, is the volume element
on Rd written in terms of the exterior product of the local coordinate system. The integral of ω
on U is ∫

U
ω =

∫
ψ(U)

(ψ−1)∗ω =

∫
ψ(U)

f(x)dx.

2. PROOFS 95

2.1. Preliminary lemmata
LEMMA S1. Suppose that (M, g) is a Riemannian manifold. Consider the edge correction

factors given by Equations (5) and (6) of the main text with a Gaussian kernel

k{dg(·, y)} = (2π)−d/2 exp{−d2g(·, y)/2}.

For fixed x, y ∈M these satisfy

ch(x, y)→ K

(2π)d/2
(h→ 0), 100

hdch(x, y)→ Vol(W )

(2π)d/2
(h→∞),

where K =
∫
Rd exp(−‖x‖2/2)dx <∞.

Proof of Lemma S1. Since the edge correction factors are effectively symmetric in x and y we
need only consider one of Equations (5) and (6). We use Equation (5):

ch(x, y) = ch(x) =
1

hd

∫
W
k

{
dg(x, z)

h

}
dvol(z). (S2)

LetBM(x, r) be a ball of radius r centred at x ∈M, so that by definition the minimum geodesic 105

distance between x and any point inM\BM(x, r) is r. Consider the decomposition of (S2) with
k replaced by the Gaussian kernel:

1

(2πh2)d/2

{∫
W\BM(x,r)

+

∫
W∩BM(x,r)

}
exp

{
−
d2g(x, z)

2h2

}
dvol(z) = I + II,
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say. Then

I ≤ (2πh2)−d/2 exp(−r2/2h2)Vol{W\BM(x, r)} = O{h−d exp(−h2)}.

Gauss’s Lemma (e.g. Carmo, 1992) maps a ball BM(x, r) on M to one on the tangent plane
TxM through the logarithmic map: logx{BM(x, r)} = BTxM(0, r). The calculations below110

entail an additional restriction to W and therefore for typographical reasons we introduce the
set

A(x, r) = logx{BM(x,r) ∩W} = BTxM(0, r) ∩ logx(W ).

A consequence of Gauss’s lemma is that the exponential map is radially symmetric,
i.e. d2g{x, expx(z)} = ‖z‖2. In the control over II, we thus have

1

(2πh2)d/2

∫
W∩BM(x,r)

exp

{
−d2g(x, z)

2h2

}
dvol(z)

=
1

(2πh2)d/2

∫
A(x,r)

exp

[
−d2g{x, expx(z)}

2h2

]
θx{expx(z)}dz

=
1

(2πh2)d/2

∫
A(x,r)

exp

{
−‖z‖2

2h2

}
θx{expx(z)}dz.

As defined in the statement of the lemma, K =
∫
Rd exp(−‖x‖2/2)dx <∞, where115

the finiteness follows from the Nash embedding theorem (Nash, 1956). Observe that
limh→0(1/Kh

d) exp(−‖z‖2/2h2) is a Dirac delta at z. Since θx{expx(z)} depends smoothly on
z, θx{expx(0)} = θx(x) = 1 and is defined over the compact space of BTxM(0, r). The Dirac-
delta property

∫
Rd f(x)δ(dx) = f(0) in the limit as h→ 0 allows us to write the previous dis-

played equation as120

K

(2π)d/2
θx(0) =

K

(2π)d/2
,

as required.
The behaviour as h→∞ is established using a similar arugment to Cronie & Van Lieshout

(2018). For the Gaussian kernel limh→∞ k{dg(x, y)/h} = (2π)−d/2, therefore,

lim
h→∞

hdch(x, y) = lim
h→∞

∫
W

1

(2π)d/2
exp

{
−dg(x, y)

2h2

}
dvol(z)

=

∫
W

1

(2π)d/2

[
lim
h→∞

exp

{
−dg(x, y)

2h2

}]
dvol(z)

=

∫
W

1

(2π)d/2
dvol(z) =

Vol(W )

(2π)d/2
, �

where the second line follows by the dominated convergence theorem.
LEMMA S2. For the Gaussian kernel, the edge correction factors as defined by Equations (5)125

and (6) are continuous in h ∈ (0,∞).
Proof of Lemma S2. If ch(x,y) = 1, the conclusion follows directly.
As before, by symmetry it is sufficient to consider Equation (5). Fix ε, h0 > 0 and with x, z ∈

M both treated initially as fixed, fx(z, h) = (2π)−d/2 exp{−d2g(x, z)/2h2} is continuous in h
by continuity of 1/h2 and exp, since the composition of continuous functions is continuous. It130
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follows that for ε′ = ε/Vol(M) there exists δ > 0 such that |h− h0| < δ implies

|fx(z, h)− fx(z, h0)| < ε′ =
ε

Vol(W )
.

It follows that, for fixed x ∈M∣∣∣∣∫
W
{fx(z, h)− fx(z, h0)}dvol(z)

∣∣∣∣ ≤ ∫
W
|fx(z, h)− fx(z, h0)| dvol(z)

<

∫
W

ε

Vol(W )
dvol(z) = ε.

We have shown that
∫
W fx(z, h) dvol(z) and therefore ch(x, y) is continuous in h ∈ (0,∞). �

2.2. Proof of Proposition 3
Proof. Observe from Equation (8) that ρ̂•h,1(x) is of the form 135

Z(x) =
1{NX(W ) 6= 0}

NX(W )

∑
y∈X∩W

f(x, y).

In order to show pointwise unbiasedness and consistency we require the following identities
given by Cucala (2007) translated to the setting of Riemannian manifolds,

E{Z(x)} =
{

1− e−µ(W )
}∫

W
f(x, y)ρ1(y) dvol(y), (S3)

Var(Z) = A{µ(W )}
∫
W
f2(x, y)ρ1(y) dvol(y)−{∫

W
f(x, y)ρ1(y) dvol(y)

}[
A{µ(W )} − e−µ(W ) − e−2µ(W )

]
, (S4) 140

where X is a Poisson process with intensity function ρ,

A{µ(W )} = E

[
1{NX(W ) 6= 0}

NX(W )

]
,

ρ1(x) = ρ(x)/µ(M) and f :M 7→ R is measurable and nonnegative.
We first show asymptotic unbiasedness. For • ∈ {glo, loc} and from Equation (S3) we have

E
{
ρ̂•h,1(x)

}
=
{

1− e−µ(W )
}∫
M

1(y ∈W )
c−1h (x, y)

hd
k

{
dg(x, y)

h

}
ρ1(y) dvol(y) (S5)

=
{

1− e−µ(W )
}[∫

BM(x,r)
1(y ∈W )

c−1h (x, y)

hd
k

{
dg(x, y)

h

}
ρ1(x) dvol(y) 145

+

∫
M\BM(x,r)

1(y ∈W )
c−1h (x, y)

hd
k

{
dg(x, y)

h

}
ρ1(y) dvol(y)

]

where 0 < r < r∗, r∗ being the global injectivity radius ofM. Applying an identical argument
to that used in the proof of Lemma S1 to show that the first term of Equation (S5) goes to 0, we
can show that the second term here also goes to 0 as h→ 0. Thus we shall focus on the integral
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in the first term,150 ∫
BM(x,r)

1(y ∈W )
c−1h (x, y)

hd
k

{
dg(x, y)

h

}
ρ1(y)dvol(y)

=

∫
BTxM(0,r)

c−1h {x, expx(y)}
(2π)d/2hd

exp

[
−
d2g{x, expx(y)}

2h2

]
g(y)dy

=

∫
BTxM(0,r)

c−1h {x, expx(y)}
(2π)d/2hd

exp

(
−‖y‖

2

2h2

)
g(y)dy = I(h),

say, where g(y) = 1{expx(y) ∈W}ρ1{expx(y)}θx{expx(y)}. By Lemma S1 for any 0 < ε <
K/(2π)d/2 we can find a small enough h′ such that for h < h′, K/(2π)d/2 − ε < ch(x, y) <
K/(2π)d/2 + ε. Setting K ′ = K/(2π)d/2 we have the following lower and upper bounds on
I(h)

155

L(h) =

∫
BTxM(0,r)

1

(2π)d/2hd(K ′ + ε)
exp

(
−‖y‖

2

2h2

)
g(y)dy

< I(h) <

∫
BTxM(0,r)

1

(2π)d/2hd(K ′ − ε)
exp

(
−‖y‖

2

2h2

)
g(y)dy = U(h).

Consider the lower bound,

L(h) =
K

(2π)d/2(K ′ + ε)

∫
BTxM(0,r)

1

Khd
exp

(
−‖y‖

2

2h2

)
g(y)dy

=
K ′

(K ′ + ε)

∫
BTxM(0,r)

1

Khd
exp

(
−‖y‖

2

2h2

)
g(y)dy.

Then, on letting g(0) = 1{expx(0) ∈W}ρ1{expx(0)}θx{expx(0)} = ρ1(x),

lim
h→0

L(h) =
K ′

(K ′ + ε)
g(0) =

K ′

(K ′ + ε)
g(0) =

K ′

(K ′ + ε)
ρ1(x).

An analogous argument for U(h) gives160

K ′

(K ′ + ε)
ρ1(x) < lim

h→0
I(h) <

K ′

(K ′ − ε)
ρ1(x).

Then since this holds for all ε we have

lim
h→0

I(h) = ρ1(y),

and since 1− e−µ(W ) → 1 as µ(W )→∞, asymptotic unbiasedness follows.
By Equation (S4),

Var{ρ̂•h,1(x)} = A{µ(W )}
∫
M

1(y ∈W )
c−2h (x, y)

h2d
k2
{
dW (x, y)

h

}
ρ1(y) dvol(y)165

−

[∫
M

1(y ∈W )
c−1h (x, y)

hn
k

{
dg(x, y)

h

}
ρ1(y) dvol(y)

] [
A{µ(W )} − e−µ(W ) − e−2µ(W )

]
.

(S6)
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Notice that ∫
M

1(y ∈W )
c−1h (x, y)

hn
k

{
dg(x, y)

h

}
ρ1(y) dvol(y)

=
E
{
ρ̂•h,1(x)

}
1− e−µ(W )

= O(1), (h→ 0, µ(W )→∞)

Next consider A{µ(W )}.

A{µ(W )} = E

[
1{NX(W ) 6= 0}

NX(W )

]
=
∞∑
n=1

e−µ(W ){µ(W )}n

n · n!

≤
∞∑
n=1

2e−µ(W ){µ(W )}n

(n+ 1)!
=

2e−µ(W )

µ(W )

∞∑
n=1

{µ(W )}n+1

(n+ 1)!

=
2e−µ(W )

µ(W )

∞∑
n=2

{µ(W )}n

n!
≤ 2e−µ(W )

µ(W )

∞∑
n=0

{µ(W )}n

n!
=

2

µ(W )
,

where the first inequality follows since k ≥ 1 implies 1/k ≤ 2/(k + 1). Thus A{µ(W )} → 0 as
µ(W )→∞, showing that the second line of Equation (S6) tends to 0 as h→ 0 and µ(W )→∞. 170

It only remains to control the integral in the first term of Equation (S6). By Lemma S1, for
any 0 < ε < min{r∗,K/(2π)d/2} there exists a h′ such that for h < h′, 0 < K/(2π)d/2 − ε <
ch(x, y). Consider h < h′ and decompose the integral. As in previous arguments, the integral
overM\BM(x, r) tends to zero. Let K ′ = K/(2π)d/2. Then∫

BM(x,h)
1(y ∈W )

c−2h (x, y)

h2d
k2
{
dg(x, y)

h

}
ρ1(y) dvol(y)

=

∫
BTxM(0,h)

1{expx(y) ∈W}
c−2h {x, expx(y)}

(2π)d/2h2d
exp

(
−‖y‖

2

h2

)
ρ1{expx(y)}θx{expx(y)} dy

≤ 1

(K ′ − ε)2

∫
BTxM(0,h)

1{expx(y) ∈W}
(2π)d/2h2d

exp

(
−‖y‖

2

h2

)
ρ1{expx(y)}θx{expx(y)} dy

≤ 1

(K ′ − ε)2

∫
BTxM(0,h)

1

(2π)d/2h2d
exp

(
−‖y‖

2

h2

)
ρ1{expx(y)}θx{expx(y)} dy

=
1

(K ′ − ε)2

∫
BTxM(0,1)

hd

(2π)d/2h2d
exp

(
−‖z‖2

)
ρ1{expx(hz)}θx{expx(hz)} dz

=
1

hd(K ′ − ε)2

∫
BTxM(0,1)

1

(2π)d/2
exp

(
−‖z‖2

)
ρ1{expx(hz)}θx{expx(hz)} dz.

where we have used a change of variables z = y/h. Both ρ1{expx(hz)} and θx{expx(hz)} 175

are bounded for small h since limh→0 ρ1{expx(hz)} = ρ1(x) and limh→0 θx{expx(hz)} =
1. Since exp(−‖z‖2) ≤ exp(−‖0‖) = 1, the whole integral is bounded h→ 0. Thus,
Var{ρ̂•h,1(x)} → 0 as h→ 0, µ(W )→∞ provided that A{µ(W )}/hd → 0 under the same no-
tional limiting operation. �

2.3. Proof of Proposition 4 180

Proof. Parts of the argument follow Cronie & Van Lieshout (2018).
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By Lemma S2, ρ̂h is continuous in h. Further, since X is non-empty ρ̂h(x) ≥
h−dk{dg(x, x)/h}c−1h (x, y) > 0 so that ρ̂−1h (x) exists and is continuous. Thus T is continuous.

For x ∈ X and • ∈ {glo, loc},

ρ̂•h(x) =
∑

y∈X∩W

1

(2πh2)d/2
exp

{
−d2g(x, y)

2h2

}
c−1h (x, y)

≥
c−1h (x, x)

hd
exp

{
−d2g(x, x)

2h2

}
=

1

hdch(x, x)
, �

where the inequality follows on splitting the sum of positive real numbers into that over185

y = x ∈ X and the remainder, and discarding the latter. The previous display implies ρ̂−1h (x) ≤
hdch(x, x). Thus

T (ρ̂h) ≤ hd
∑

x∈X∩W
ch(x, x).

Consider a particular realization of X . By Lemma S1, edge correction terms tend to
K/(2π)d/2 for K =

∫
Rd exp(−‖x‖2)dx <∞ therefore T (ρ̂h)→ 0 as h→ 0.

Under the notional limiting operation h→∞ we have190

c−1h (x, y)

(2π)d/2hd
exp

{
−d2g(x, y)

2h2

}
→

{
1

Vol(W ) , if ch(x, y) is given by Equation (5) or (6);

0, if ch(x, y) = 1,

by Lemma S1, leading to

T (ρ̂h)→
∑

x∈X

{∑
y∈X 1/Vol(W )

}−1
= Vol(W ), if ch(x, y) is given by Equation (5) or (6);

∞, if ch(x, y) = 1.
195

3. ADDITIONAL SIMULATION RESULTS

3.1. Poisson process
Fig. S1 shows manifolds E1, E2 and E3, together with examples of the log-linear and log-

modulation intensity functions from the simulation study in Section 6 of the main text. Details
on simulating a homogeneous and inhomogeneous Poisson process on the surface of an ellipsoid200

are contained in Sections 4.1 and 4.2, respectively.

3.2. Log-Gaussian Cox Process
The simulation study in Section 6 of the main text is extended to the log-Gaussian Cox process

(LGCP). Point patterns are again simulated on the ellipsoids E1, E2 and E3. Intensity function
estimates are then computed using the cross-validations (CV) (Baddeley et al., 2015) and non-205

parametric (NP) (Cronie & Van Lieshout, 2018) bandwidth selection methods. The intensity
function is estimated from point patterns sampled from three models of LGCP.

To define a LGCP on a manifoldM, first define a Gaussian random field onM. The random
function U :M 7→ R is a Gaussian random field (GRF) if for any n ∈ N, x1, . . . , xn ∈M and
a1, . . . , an ∈ R,

∑n
i=1 aiU(xi) is normally distributed. For GRF U , define random field Z :210
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Fig. S1. Example point patterns of a log-linear and log-
modulation Poisson process with parameters α2 = 18 and
α3 = 4, respectively. The intensity is illustrated with the
heatmap, with yellow representing high intensity and blue

representing low intensity.

M 7→ R as Z(x) = exp{U(x)}. Point process X is then said to be a LGCP onM if X given
Z = z is a Poisson process with intensity z.

A GRF is defined via its mean function µ :M 7→ R and covariance function c :M×M 7→
R. Three models of LGCP are considered, labelled LGCP1, LGCP2 and LGCP3, with respective
mean functions 215

µ1(x) = log(ξ), homogeneous; (S7)
µ2(x) = 4 + 3x1, log-linear; (S8)
µ3(x) = 6 cos(8x2)− 1, log-modulation. (S9)

For all three models the covariance function is of exponential form

c(x, y) = σ2 exp

[
−
{

(x− y)T (x− y)
}1/2

2γ2

]
.

Model parameters ξ, σ2 and γ are varied and the results are presented in Table S1. Note, follow- 220

ing Møller & Waagepetersen (1998), the intensity function of a LGCP with driving random field
exp{U(x)} is

ρ(x) = exp

{
µ(x) +

c(x, x)

2

}
.

Hence, the intensity function of the models considered here will be ρ(x) = exp
{
µ(x) + σ2/2

}
.

Examples from the log-linear (LGCP2) and log-modulation (LGCP3) models on E1, E2 and E3
are presented in Fig. S2. Details on simulating a LGCP on an ellipse are given in Section 4.3. 225



10 S. WARD ET AL.

Fig. S2. Example point patterns of a log-linear and
log-modulation LGCP all with parameters (σ2, γ2) =
(2 log(2), 1/10). The generating GRF U is illustrated with
the heatmap, with yellow representing high intensity and

blue representing low intensity.

3.3. Strauss Process
The final simulation study is analogous to the previous ones only with Strauss processes used

to generate the events.
Strauss and, more broadly, Markov processes have been briefly discussed on general differ-

entiable manifolds in Jensen & Nielsen (2001) albeit with the primary focus being Rn. Let Nlf230

be the set of locally finite point configurations on M, with Nlf the sigma-algebra generated
by sets constructed from Nlf . Furthermore, let Z be a unit rate Poisson process over M with
accompanying measure PZ . A Strauss process is defined to be the point process with density

f(s) ∝ βn(s) exp

−α ∑
{x,y}∈s

1 {dg(x, y) ≤ R}

 (S10)

for s ∈ Nlf , where n(s) is the cardinality of s and β, α,R > 0, such that for F ∈ Nlf

P (F ) =

∫
F
f(s)dPZ(s).

The constraint α > 0 is sufficient for the density to be integrable and dictates the strength of the
repulsive effect between events. The range of this interaction is determined by R.235

The Papangelou conditional intensity for s ∈ Nlf at x ∈M is defined as λ(x, s) = f(s ∪
x)/f(s) (Møller & Waagepetersen, 2004), which for the Strauss process is

λ(x, s) =
f(s ∪ x)

f(s)
= β exp

[
−2α

∑
y∈s

1{dg(x, y) ≤ R}

]
.
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While this natural extension of the Strauss process from Rn to M is formed by replacing
the canonical Euclidean metric with the Riemannian metric overM, it is worth noting that the
induced distance metric dg is no longer stationary. For example, consider Rn endowed with its 240

canonical metric d. For any x, y, z ∈ Rn we have d(x, y) = d(x+ z, y + z), however, this is
a special property of Euclidean space that does not generalize to manifolds. Consequently, a
Strauss process on a manifold is in general non-stationary and need not even be homogeneous.
As a result, there is, in general, no closed-form formula for the intensity function, which is prob-
lematic for calculating the ISE. On noting that the intensity of a point processX with Papangelou 245

conditional intensity λ is given by ρ(x) = E{λ(x,X)} (Møller & Waagepetersen, 2004, Propo-
sition 6.2), it is possible to simulate realizations X1, . . . , XM and thereby approximate ρ by

1

M

M∑
i=1

λ(x,Xi). (S11)

Additionally, E{NX(M)} is estimated as (1/M)
∑M

i=1NXi(M). This replaces the step of cal-
culating the mean number of points using integration, as in the Poisson and LGCP studies.

In order to consider different forms of inhomogeneity beyond that imposed by the Strauss 250

model of (S10), the process is thinned using one of the three following retention probabilities,

p1(x) = 1, pseudo-homogeneous;

p2(x) =
4 + 3x1
4 + 3a

, linear;

p3(x) =
8 + 6 cos(8x1)

14
, modulation,

where a is the minor axis length of the ellipsoid. The three thinning models are labelled as SP1, 255

SP2 and SP3, respectively. Note that SP1 is the original Strauss process and hence referred to as
pseudo-homogeneous owing to the fact that its inhomogeneity is purely metric induced.

Model parameters β, α and R are varied and the results are presented in Table S2. Examples
from the linear (SP2) and modulation (SP3) models on E1, E2 and E3 are presented in Fig. S3.
The number of replicates used to approximate ρ with (S11) is M = 105. Details on simulating a 260

Strauss process on an ellipse are given in Section 4.4.

4. SIMULATING SPATIAL POINT PROCESSES ON MANIFOLDS

4.1. Homogeneous Poisson process on an ellipsoid
Simulation of the more complex processes discussed in this work build on that of the homo-

geneous Poisson process. Let X denote such a process, with intensity ρ ∈ R+ on an ellipsoid, 265

M, having semi-major axis lengths (a, b, c) and surface area Sa,b,c. We first simulate the total
number of points as NX(M) ∼ Poisson(ρSa,b,c). Conditional on the realized value, these points
are distributed uniformly on the surface of the ellipsoid using the rejection sampling technique
discussed in Kopytov & Mityushov (2013). Kopytov & Mityushov (2013) propose to simulate
points under a density f in the local chart of the manifold such that under transformation by the 270

inverse chart, the resulting points are uniform on the original manifold. Without loss of generality
we can consider simulating only over a single chart within the atlas of a manifold, as the mani-
fold can be partitioned into disjoint sets such that each set in the partition is contained within at
least one local chart.

More precisely, let (M, g) be a Riemannian manifold and suppose that uniformly distributed 275

points over the compact set W ⊂M are required. Suppose further that there exists a local chart
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Fig. S3. Example point patterns of a linear and mod-
ulation Strauss process all with parameters (β, α,R) =
(400, 0.1, 0.1). The intensity is illustrated with the
heatmap, with yellow representing high intensity and blue

representing low intensity.

(Ux, ψx) such that W ⊂ Ux for x ∈M and define Vx = ψx(Ux). For ease of exposition, par-
tition Ux such that U(x,1) = W and U(x,2) = Ux \W and restrict attention to the local chart
(W,ψx). Similarly, define V(x,1) = ψ(W ) and V(x,2) = ψ(U(x,2)). Kopytov & Mityushov (2013)
show uniform points over W are obtained by simulating points on V(x,1) = ψ(W ) according to280

the density,

f(z) =

√
det(gij)

Vol(W )
, z ∈ V(x,1) (S12)

and mapping them to W using x = ψ−1(z). To simulate a point z according to Equation S12,
Kopytov & Mityushov (2013) propose a rejection sampling algorithm.

A local chart for the ellipsoid is presented at the beginning of Section 6 in the main
paper, i.e. x ≡ (x1, x2, x3) = {a sin(θ) cos(φ), b sin(θ) cos(φ), c cos(θ)} where θ ∈ [0, π) and285

φ ∈ [0, 2π). Thus,

det(gij) = sin2(θ)a2b2{1− (1− c2/a2) sin2(θ) cos2(φ)− (1− c2/b2) sin2(θ) sin2(φ)}

and points in ψ(M) are sampled according to the density

f(θ, φ) =
[ sin2(θ)a2b2{1− (1− c2/a2) sin2(θ) cos2(φ)− (1− c2/b2) sin2(θ) sin2(φ)}]1/2

Vol(M)
,

using the rejection algorithm of Kopytov & Mityushov (2013). Algorithm S1 gives details.

Algorithm S1. Simulation of a homogeneous Poisson process on an ellipsoid
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Require: intensity ρ, semi-major axis lengths (a, b, c)
Sample N ∼ Poisson(ρSa,b,c)
Set n = 0
While n < N

Sample R ∼ U(0, 1), θ ∼ U(0, π) and φ ∼ U(0, 2π)
If f(θ, φ) > Rmaxθ,φ f(θ, φ)

Set Xn+1 = {a sin(θ) cos(φ), b sin(θ) cos(φ), c cos(θ)}
n = n+ 1

End If
End While

4.2. Inhomogeneous Poisson process on an ellipsoid 290

A realization of an inhomogenous Poisson process can be constructed from a homogeneous
one by the process of independent thinning. This is discussed in the Euclidean case in (Møller &
Waagepetersen, 2004, Section 3.2.3). Similarly, for an inhomogeneous Poisson process defined
over a manifold M with intensity ρ :M 7→ R+ such that ρ0 = supx∈M ρ(x) <∞, we first
simulate a homogeneous Poisson process with intensity ρ0 over M and remove an event at 295

x ∈M with probability 1− p(x) = 1− ρ(x)/ρ0. See Algorithm S2 for implementation when
M is an ellipsoid.

Algorithm S2. Simulation of an inhomogeneous Poisson process on an ellipsoid

Require: intensity ρ(·), semi-major axis lengths (a, b, c)
Calculate ρ0 = supx∈M ρ(x)

Sample homogeneous Poisson process, X̃ , with intensity ρ0 using Algorithm S1
For Xi ∈ X̃

Sample R ∼ U(0, 1)
If R < p(Xi)

Keep Xi

Else
Discard Xi

End If
End For

4.3. Log Gaussian Cox process on an ellipsoid
Let U(x) be a Gaussian random field (GRF) over M. Conditional on the realization u(x), 300

one realization of a log Gaussian Cox process (LGCP) is obtained as a realization of an in-
homogeneous Poisson process with intensity function exp{u(x)}. In view of the discussion
in Section 4.2, the only missing element is simulation of a GRF over M. For the simulation
study considered in the paper this is accomplished by simulating a GRF Ũ(x) over R3 using the
RandomFields (Schlather et al., 2020) package available in R and defining U(x) = Ũ(x) for 305

x ∈M, which is still a GRF but now restricted toM. Since it is not possible to store a GRF as
a function defined over all of points inM, evaluation is on a finite grid of points onM. Specifi-
cally, let I = {i1, . . . , im} for ij ∈M and m ∈ N. The GRF is sampled at the points in I giving
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{U1, . . . , Um} where Uj = U(ij). The GRF overM is then approximated as

U∗(x) =
m∑
j=1

1{Neg(x, ij , I) = 1}Uj , (S13)

where Neg(x, ij , I) = 1 if x’s nearest neighbour defined by the metric g in I is ij and 0 other-310

wise. By appropriate selection of the mean and covariance function, the resulting GRF is almost
surely continuous (see (Møller & Waagepetersen, 2004, Section 5.6.1)) so that U∗(x) is a close
approximation to U(x) for x ∈M provided that the grid is sufficiently granular. The finite chart
I in the simulations from the main paper is defined using equidistantly spaced points in θ ∈ [0, π)
and φ ∈ [0, 2π) for the local chart defined at the beginning of Section 6.315

Algorithm S3. Simulation of a LGCP on an ellipsoid

Require: Finite grid over ellipsoid I , mean function µ(·), covariance function c(·, ·),
and semi-major axis lengths, (a, b, c)

Sample the GRF, U , with mean function µ and covariance function c at points I
Define the approximation U∗ to U as defined by Equation S13
Using Algorithm S2, sample an inhomogeneous Poisson process, X ,

with intensity ρ(x) = exp{U∗(x)}

4.4. Strauss process on an ellipsoid
Simulation of the Strauss process uses a spatial birth-death-move Metropolis Hastings (SB-

DMMH) algorithm. The main difference from the Euclidean case (Møller & Waagepetersen,
2004, Chapter 7) arises from the proposal distribution for whether a birth or move step is initi-320

ated, which is defined overM instead of Rd.
The SBDMMH algorithm has three different Metropolis steps: a birth, death and move step

each with their own Hasting’s ratio. These are briefly discussed in turn. For every step, sup-
pose there is an initial configuration Xi for the point process. The algorithm yields Xi+1.
Let (y1, . . . , yn) ∈Mn be a specific ordering of the points in Xi, where n = NXi(M). For325

example, if there are three points in the pattern then (y1, y2, y3) 6= (y2, y3, y1) even though
{y1, y2, y3} = {y2, y3, y1}. Here, f(·) is the density of a Strauss process, defined up to a constant
of proportionality in (S10).r Move Step: Given a configuration Xi 6= ∅ and denoting ȳ = (y1, . . . , yn), n = NXi(M), to

be a specific ordering of Xi, the move step picks an initial point at random yj ∈ Xi and a330

proposal point y∗ sampled from a proposal distribution qmove,j(ȳ, ·) say, where qmove,j(ȳ, ·) :
M 7→ R+ is a density overM that depends on the current state of the chain,Xi and the initial
choice of point yj . In Algorithm S4 the proposal distribution is uniform over the ellipsoid,
i.e. qmove,j(ȳ, x) = 1/Vol(M), which is operationalized using Kopytov & Mityushov (2013)’s
procedure. The Hasting’s ratio is then constructed as335

rmove,i(ȳ, y
∗) =

f{(Xi \ yi) ∪ y∗}qmove,j{(y1, . . . , yi−1, y∗, yi+1, . . . , yn), yj}
f(Xi)qmove,j(ȳ, y∗)

.

With probability

αshift,i(ȳ, y
∗) = min{1, rmove,i(ȳ, y

∗)},
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y∗ replaces yj and Xi+1 = (Xi \ yj) ∪ y∗, and with the complementary probability yj is re-
tained so that Xi+1 = Xi.r Birth-Death Step: Given a configuration Xi, the birth-death step either adds or removes a
point, or makes no change. Let x be the current state of the Markov chain. Define Nf = {x ⊂ 340

M : nx(M) <∞}, then the birth probability is p : Nf 7→ R, i.e. p(x) denotes the probability
of having a birth given the current state of the chain x. Define qbirth(x, ·) :M 7→ R+ to be
the proposal distribution for the location of a birth. If the current state of the chain is Xi =
x ∈ Nf , a birth step has possibilities Xi+1 = x or Xi+1 = x ∪ y∗ where y∗ is sampled from
qbirth(x, ·). The death probability is 1− p(x), under which, if x = ∅ nothing happens, while if 345

x 6= ∅ then a point in x is selected for removal using the discrete probability qdeath(x, ·). Thus
if a death step is chosen and the current state is not the empty set then the two possibilities are
Xi+1 = Xi or Xi+1 = Xi \ yj if yj is the point chosen for removal.
The Hasting’s ratio for a birth step is

rbirth(Xi, y
∗) =

f(Xi ∪ y∗){1− p(Xi ∪ y∗)}qdeath(Xi ∪ y∗, y∗)
f(Xi)p(Xi)qbirth(Xi, y∗)

,

and so the acceptance ratio for a birth step is αbirth(Xi, y
∗) = min{1, rbirth(Xi, y

∗)}. Thus if a 350

birth step is initiated then Xi+1 = Xi ∪ y∗ with probability αbirth(Xi, y
∗), otherwise Xi+1 =

Xi.
The Hasting’s ratio for a death step is

rdeath(Xi, y
∗) =

f(Xi \ yj)p(Xi \ yj)qbirth(Xi \ yj , yj)
f(Xi){1− p(Xi)}qdeath(Xi, yj)

,

and so the acceptance ratio for a death step is αdeath(Xi, y
∗) = min{1, rdeath(Xi, y

∗)}. Thus
if a death step is initiated then Xi+1 = Xi \ yj with probability αdeath(Xi, y

∗), otherwise 355

Xi+1 = Xi where yj is drawn from qdeath(x, ·).

In order to implement the SBDMMH an initial configuration X0 is needed. The implementa-
tion in the paper simulates X0 as a homogeneous Poisson process with intensity β, where β is
as in (S10). Such an initialization is chosen since EX0 [NX0(M)] ≥ EX [NX(M)]. To show this
let X be the Strauss process of interest. Since α > 0, 360

EX0{NX0(M)} = βVol(M) =

∫
M
βdVol(x) ≥

∫
M
β exp(−2α)dVol(x)

and since

EX

exp
[
−2α

∑
y∈X

1{dg(x, y) ≤ R}
] ≤ exp(−2α)

EX0{NX0(M)} ≥
∫
M
EX

β exp
[
−2α

∑
y∈X

1{dg(x, y) ≤ R}
] dVol(x)

=

∫
M
EX {λ(X,x)} dVol(x) =

∫
M
ρ(x)dVol(x) = EX {NX(M)} .

It follows that the expected number of points of X0 is greater than X and thus a plot of NXi(M)
against the iteration number i helps determine when the Markov chain is close to its stationary
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distribution. As convergence is approached, the plot shows a steady decrease until the true ex-365

pected number of points have been reached. If the Markov chain is instead initiated at X0 = ∅,
a plot of NXi(M) against the iteration number i shows a steady increase. Such plots were in-
spected but not included in the paper.

Algorithm S4 gives a the manifold version of SBDMMH used in the paper, where
qmove,i(ȳ, x) = qbirth(s, x) = 1/Vol(M), qdeath(x) = 1/nx(M), ȳ = (y1, . . . , yn) ∈Mn, s ∈370

Nf , x ∈M and q = 1/2, (the probability for deciding between a move step or a birth/death
step), and p(x) = 1/2 (the probability for deciding between a birth or death step). Algorithm
S4 was used to simulate the pseudo-homogeneous Strauss processes, and inhomogeneity was
introduced by applying independent thinning, as discussed above. The SBDMMH algorithm
was run with a burn-in sample of 106 iterations, and the chain was subsampled every 1000375

iterations thereafter.

Algorithm S4. Simulation of a Strauss process on an ellipsoid

Require: Parameters of Strauss process (β, α,R), 0 ≤ q < 1,
probability of birth or death step p(x), birth proposal distribution qbirth(x, ·),
death proposal distribution qdeath(x, ·), shift proposal distribution qmove,i(ȳ, ·),
and semi-major axis lengths (a, b, c)

Initialise X0 as either a homogenoues Poisson process with intensity β using
Algorithm S1 or set as ∅.

Set i = 0
For i = 1, 2, . . .

Set n = NXi(M) and ȳ to be a specific configuration of Xi

Sample R1, R2, R3 ∼ U(0, 1)
If R1 ≤ q (This is a move step)

Draw J ∼ Uniform({1, . . . , n}), and conditioned on J = j
sample y∗ ∼ qmove,j(ȳ, ·)
If R3 ≤ αmove(ȳ, y

∗)
Set Xi+1 = (y1, . . . , yj−1, y

∗, yj+1, . . . , yn)
Else

Set Xi+1 = ȳ
End If

Else
If R2 ≤ p(x) (This is a birth step)

Sample y∗ ∼ qbirth(Xi, ·)
If R3 ≤ αbirth(Xi, y

∗)
Set Xi+1 = Xi ∪ y∗

Else
Set Xi+1 = Xi

End If
Else (This is a death step)

Sample y∗ ∼ qdeath(x, ·)
If R3 ≤ αdeath(Xi, y

∗)
Set Xi+1 = Xi \ y∗

Else
Set Xi+1 = Xi

End If
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End If
End If

End For
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Table S1. Performance of kernel intensity estimators

Manifold
LGCP Process Expected number {Ê(‖ρ̂− ρ‖2/‖ρ‖2)}1/2
model parameters of events CV NP

E1 LGCP1 (ξ, σ2, γ2) = (10, 2 log(2), 1/10) 20.00 0.924 0.635
E1 LGCP1 (ξ, σ2, γ2) = (50, 2 log(2), 1/10) 100.0 0.988 0.586
E1 LGCP1 (ξ, σ2, γ2) = (10, 2 log(5), 1/10) 50.00 2.211 0.916
E1 LGCP1 (ξ, σ2, γ2) = (50, 2 log(5), 1/10) 250.0 2.771 0.904
E1 LGCP1 (ξ, σ2, γ2) = (10, 2 log(2), 1/50) 20.00 0.484 0.427
E1 LGCP1 (ξ, σ2, γ2) = (50, 2 log(2), 1/50) 100.0 0.496 0.310
E1 LGCP1 (ξ, σ2, γ2) = (10, 2 log(5), 1/50) 50.00 1.025 0.465
E1 LGCP1 (ξ, σ2, γ2) = (50, 2 log(5), 1/50) 250.0 1.770 0.465
E1 LGCP2 (σ2, γ2) = (2 log(2), 1/10) 122.7 1.015 0.568
E1 LGCP2 (σ2, γ2) = (2 log(2), 1/50) 122.7 0.517 0.287
E1 LGCP2 (σ2, γ2) = (2 log(5), 1/10) 306.8 2.222 0.753
E1 LGCP2 (σ2, γ2) = (2 log(5), 1/50) 306.8 2.281 0.460
E1 LGCP3 (σ2, γ2) = (2 log(2), 1/10) 68.86 1.056 0.836
E1 LGCP3 (σ2, γ2) = (2 log(2), 1/50) 68.86 0.683 0.761
E1 LGCP3 (σ2, γ2) = (2 log(5), 1/10) 172.2 2.424 0.977
E1 LGCP3 (σ2, γ2) = (2 log(5), 1/50) 172.2 1.652 0.793

E2 LGCP1 (ξ, σ2, γ2) = (10, 2 log(2), 1/10) 20.00 1.083 0.692
E2 LGCP1 (ξ, σ2, γ2) = (50, 2 log(2), 1/10) 100.0 1.284 0.672
E2 LGCP1 (ξ, σ2, γ2) = (10, 2 log(5), 1/10) 50.00 2.890 1.200
E2 LGCP1 (ξ, σ2, γ2) = (50, 2 log(5), 1/10) 250.0 3.475 1.180
E2 LGCP1 (ξ, σ2, γ2) = (10, 2 log(2), 1/50) 20.00 0.537 0.414
E2 LGCP1 (ξ, σ2, γ2) = (50, 2 log(2), 1/50) 100.0 0.532 0.344
E2 LGCP1 (ξ, σ2, γ2) = (10, 2 log(5), 1/50) 50.00 0.829 0.427
E2 LGCP1 (ξ, σ2, γ2) = (50, 2 log(5), 1/50) 250.0 1.373 0.402
E2 LGCP2 (σ2, γ2) = (2 log(2), 1/10) 118.3 1.135 0.625
E2 LGCP2 (σ2, γ2) = (2 log(2), 1/50) 118.3 0.541 0.293
E2 LGCP2 (σ2, γ2) = (2 log(5), 1/10) 295.7 3.519 1.170
E2 LGCP2 (σ2, γ2) = (2 log(5), 1/50) 295.7 1.411 0.370
E2 LGCP3 (σ2, γ2) = (2 log(2), 1/10) 80.06 2.265 1.026
E2 LGCP3 (σ2, γ2) = (2 log(2), 1/50) 80.06 0.711 0.736
E2 LGCP3 (σ2, γ2) = (2 log(5), 1/10) 200.1 2.426 1.052
E2 LGCP3 (σ2, γ2) = (2 log(5), 1/50) 200.1 1.509 0.777

E3 LGCP1 (ξ, σ2, γ2) = (10, 2 log(2), 1/10) 20.00 0.959 0.722
E3 LGCP1 (ξ, σ2, γ2) = (50, 2 log(2), 1/10) 100.0 0.966 0.650
E3 LGCP1 (ξ, σ2, γ2) = (10, 2 log(5), 1/10) 50.00 1.852 0.960
E3 LGCP1 (ξ, σ2, γ2) = (50, 2 log(5), 1/10) 250.0 2.076 0.937
E3 LGCP1 (ξ, σ2, γ2) = (10, 2 log(2), 1/50) 20.00 0.573 0.464
E3 LGCP1 (ξ, σ2, γ2) = (50, 2 log(2), 1/50) 100.0 0.600 0.363
E3 LGCP1 (ξ, σ2, γ2) = (10, 2 log(5), 1/50) 50.00 1.004 0.487
E3 LGCP1 (ξ, σ2, γ2) = (50, 2 log(5), 1/50) 250.0 1.408 0.447
E3 LGCP2 (σ2, γ2) = (2 log(2), 1/10) 114.4 0.986 0.647
E3 LGCP2 (σ2, γ2) = (2 log(2), 1/50) 114.4 0.579 0.337
E3 LGCP2 (σ2, γ2) = (2 log(5), 1/10) 286.1 2.320 0.976
E3 LGCP2 (σ2, γ2) = (2 log(5), 1/50) 286.1 1.461 0.462
E3 LGCP3 (σ2, γ2) = (2 log(2), 1/10) 103.5 0.962 0.799
E3 LGCP3 (σ2, γ2) = (2 log(2), 1/50) 103.5 0.704 0.683
E3 LGCP3 (σ2, γ2) = (2 log(5), 1/10) 258.8 1.614 0.929
E3 LGCP3 (σ2, γ2) = (2 log(5), 1/50) 258.8 1.646 0.753

Square root of the mean integrated squared error from a 33 factorial experiment. The mean is taken over 100
Monte Carlo replicates.
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Table S2. Performance of kernel intensity estimators

Manifold
SP Process Expected number {Ê(‖ρ̂− ρ‖2/‖ρ‖2)}1/2

model parameters of events CV NP
E1 SP1 (β, α,R) = (400, 0.01, 0.1) 326.9 0.113 0.175
E1 SP1 (β, α,R) = (400, 0.1, 0.1) 158.8 0.105 0.178
E1 SP1 (β, α,R) = (400, 0.01, 0.2) 230.5 0.115 0.172
E1 SP1 (β, α,R) = (400, 0.1, 0.2) 74.07 0.166 0.213
E1 SP2 (β, α,R) = (400, 0.01, 0.1) 177.2 0.177 0.165
E1 SP2 (β, α,R) = (400, 0.1, 0.1) 85.94 0.198 0.195
E1 SP2 (β, α,R) = (400, 0.01, 0.2) 124.8 0.181 0.171
E1 SP2 (β, α,R) = (400, 0.1, 0.2) 40.12 0.286 0.272
E1 SP3 (β, α,R) = (400, 0.01, 0.1) 147.7 0.355 0.594
E1 SP3 (β, α,R) = (400, 0.1, 0.1) 71.85 0.389 0.603
E1 SP3 (β, α,R) = (400, 0.01, 0.2) 104.2 0.385 0.596
E1 SP3 (β, α,R) = (400, 0.1, 0.2) 33.46 0.489 0.628

E2 SP1 (β, α,R) = (400, 0.01, 0.1) 20.00 0.109 0.167
E2 SP1 (β, α,R) = (400, 0.1, 0.1) 100.0 0.109 0.179
E2 SP1 (β, α,R) = (400, 0.01, 0.2) 50.00 0.123 0.178
E2 SP1 (β, α,R) = (400, 0.1, 0.2) 250.0 0.164 0.214
E2 SP2 (β, α,R) = (400, 0.01, 0.1) 118.3 0.173 0.166
E2 SP2 (β, α,R) = (400, 0.1, 0.1) 118.3 0.203 0.201
E2 SP2 (β, α,R) = (400, 0.01, 0.2) 295.7 0.204 0.192
E2 SP2 (β, α,R) = (400, 0.1, 0.2) 295.7 0.280 0.272
E2 SP3 (β, α,R) = (400, 0.01, 0.1) 80.06 0.278 0.406
E2 SP3 (β, α,R) = (400, 0.1, 0.1) 80.06 0.321 0.424
E2 SP3 (β, α,R) = (400, 0.01, 0.2) 200.1 0.315 0.415
E2 SP3 (β, α,R) = (400, 0.1, 0.2) 200.1 0.416 0.468

E3 SP1 (β, α,R) = (400, 0.01, 0.1) 20.00 0.121 0.172
E3 SP1 (β, α,R) = (400, 0.1, 0.1) 100.0 0.123 0.180
E3 SP1 (β, α,R) = (400, 0.01, 0.2) 50.00 0.131 0.177
E3 SP1 (β, α,R) = (400, 0.1, 0.2) 250.0 0.197 0.227
E3 SP2 (β, α,R) = (400, 0.01, 0.1) 114.4 0.184 0.181
E3 SP2 (β, α,R) = (400, 0.1, 0.1) 114.4 0.206 0.204
E3 SP2 (β, α,R) = (400, 0.01, 0.2) 286.1 0.200 0.194
E3 SP2 (β, α,R) = (400, 0.1, 0.2) 286.1 0.280 0.272
E3 SP3 (β, α,R) = (400, 0.01, 0.1) 103.5 0.248 0.251
E3 SP3 (β, α,R) = (400, 0.1, 0.1) 103.5 0.290 0.280
E3 SP3 (β, α,R) = (400, 0.01, 0.2) 258.8 0.267 0.262
E3 SP3 (β, α,R) = (400, 0.1, 0.2) 258.8 0.355 0.340

Square root of the mean integrated squared error from a 33 factorial experiment. The mean is taken over
100 Monte Carlo replicates.


