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Summary. The year 2022 marked 100 years since R. A. Fisher’s landmark pa-
per on the foundations of statistics, and 50 years since D. R. Cox’s seminal
work on the proportional hazards model. At a one-day meeting in recognition
of the latter, held at the London School of Hygiene and Tropical Medicine, I
attempted to place some of D. R. Cox’s most influential work in its appropri-
ate historical context, reconstructing some of his ideas from unifying principles
and providing a different exposition to that of the original papers. The present
article is an elaboration of that talk. Additional material includes a geometric
explanation of conditional inference in models with binary outcomes, relating
the logistic analysis of matched comparisons presented by Cox (1958c) to the
protracted and sometimes polemical discourse over the analysis of 2 × 2 con-
tingency tables.

Some key words: 2× 2 contingency tables, ancillarity, conditional inference,
logistic regression, nuisance parameters, proportional hazards model.

1. Introduction

The meeting at the London School of Hygiene and Tropical Medicine, organized
by Ruth Keogh, was initially intended as a celebration of 50 years of the propor-
tional hazards model and later converted to a more general scientific memorial
meeting covering the work of D. R. Cox. A heavily condensed summary of some
of his most important work can be found in the IMS obituary (Battey and Reid,
2022) and a more extensive account in the longer obituary by Davison, Isham and
Reid (2022). Personal reflections have appeared in other venues, e.g. issue 5.2 of
the Harvard Data Science Review. The nature of the present article is different,
focussing on a few key developments antecedent to two influential 1972 papers,
and their historical origins and ramifications. Attempts are made to reconstruct
conceptions from first principles, this aspect being purely speculative, based on
the subject’s earlier work and a degree of familiarity with his thought processes
in other contexts.

2. Background to two influential 1972 papers

2.1. An overview of the Fisherian position. In core statistical thought, D. R.
Cox was closely aligned with R. A. Fisher, whose contributions a generation ear-
lier shaped the field’s evolution in a profound way. In a remarkable departure
from the existing conceptual base, Fisher (1922) introduced a large proportion of
the statistical concepts covered in a mainstream undergraduate degree, including
likelihood, sufficiency, consistency, efficiency and information. At the most prim-
itive level, as noted by Stigler (1976), it appears that Fisher was the first to use
the term “parameter” in the general modern sense. By Stigler’s count, there are
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57 occurrences of “parameter” in Fisher’s 1922 paper, to be contrasted with a
single appearance in the works of Karl Pearson in the limited context of normal
distributions (Pearson, 1894). For further historical detail, see Stigler (1976).

Notable elements of commonality between R. A. Fisher’s and D. R. Cox’s sci-
entific outlook, which to some extent characterize the Fisherian position are:

• emphasis on parameters representing important stable aspects of direct
subject-matter relevance;
• presentation of the evidence in incisive form, as opposed to binary deci-

sions;
• preference for an inferential strategy that respects sufficiency and ancil-

larity. (A statistic is sufficient for a parameter ψ if no other statistic that
can be calculated from the same sample provides additional information as
to the value of ψ. When the dimension of the minimal sufficient statistic
exceeds that of ψ, it may be possible to isolate a statistic A, part of the
minimal sufficient statistic, whose distribution does not depend on ψ; A,
if it exists, is ancillary for ψ.)

A consequence of the latter point is an emphasis on exact, rather than asymp-
totic, conditional optimality and distribution theory when appropriate. Notwith-
standing, Fisher was responsible for some of the most influential asymptotic results
in statistics, including the asymptotic distribution of the maximum likelihood esti-
mator (Fisher, 1922) and the extreme-value limit laws (Fisher and Tippet, 1928).
Similarly, Cox recognized that the range of situations in which exact conditional
inference applies is highly limited, and sought to achieve the notional ideal analysis
approximately (section 3.3).

Fisher (1925) introduced the idea of conditioning on an ancillary statistic for
recovery of information lost by using the maximum likelihood estimate in place
of the full data. These ideas were developed over the second quarter of the 20th
century, culminating with Fisher (1956) and Cox (1956, 1958a), who both saw
the primary motivation for conditioning as ensuring relevance, as a means of dis-
tinguishing between samples of the same size that supply differing amounts of
information on the parameter of interest. Intuitively, two samples of the same
size can produce likelihood functions that differ appreciably in shape, and yet are
maximized at the same point.

A compelling familiar example where conditioning on an ancillary statistic is
implicit and not usually questioned is in linear regression, where the error variance
σ2 and regression coefficient vector β specify the conditional density function given
X = x. The normal-theory log-likelihood function, having discarded constants, is

−1
2n log σ2 − (y − xβ)T(y − xβ)

2σ2
,

where

(y − xβ)T(y − xβ) = (y − xβ̂)T(y − xβ̂) + (β̂ − β)TxTx(β̂ − β).

The data enter the log-likelihood only via the residual sum of squares, β̂, and
xTx. Thus when X is treated as random, the dimension of the minimal sufficient
statistic exceeds that of (βT, σ2)T, and xTx by itself carries no information on
either component. In other words A = XTX is ancillary for (σ2, β). A Fisherian



3

analysis conditions on the realized value A = a even if the distribution of X is
known, leading to a variance estimate for β̂ of the form σ̂2(xTx)−1, where σ̂2 is
an estimate of error variance constructed from the residual sum of squares. A
variance estimate for β̂ based instead on EX(XTX), an average over values of A
that could have, but did not occur, would make the analysis less relevant to the
data at hand.

A more difficult example is the analysis of the 2×2 contingency table. For a de-
tailed account of the history, see Yates (1984). In brief, Fisher contended that the
appropriate analysis is conditional on the marginal totals, leading to Fisher’s exact
test (Fisher, 1935). Barnard (1945, 1947) put forward a test which he claimed was
more powerful, then withdrew the procedure (Barnard, 1949), stating that further
reflection had led him to the same conclusion as Fisher. Yates wrote ‘That this
conclusion is still not accepted in many quarters, however, is very evident from
numerous recent publications’ (Yates, 1984). Indeed, this remains the state of
affairs in 2023. For two explicit discussions, see Brown (1990) together with the
rebuttal of Fraser and Reid (1990), and Buja et al. (2019) rebutted by Davison et
al. (2019). Of the 2× 2 table Cox (1984) wrote ‘I accept three main theses [. . . ],
that the test should be conditional, that concentration on achieving preassigning
magic levels like 0.05 rather than calculating p-values is misguided, and that by
and large the power comparisons reported in the literature are irrelevant or worse.’

Section 4 discusses the role of conditioning in the analysis of the 2 × 2 table
from a geometrical point of view, alongside an application of logistic regression
presented by Cox (1958c), which is closely related.

2.2. Conditional inference: D. R. Cox’s input. Conditioning from the stand-
point of ensuring relevance was a topic that D. R. Cox emphasized continually,
starting in 1956 at an invited address at a joint meeting of the Institute of Math-
ematical Statistics and the Biometrics Society. Cox (1958a) chronicles the lecture
in what has become a core reference on the foundations of the subject. Through
a deliberately oversimplified example, the paper gave a compelling demonstration
of the need for conditioning in order to ensure scientific relevance and empha-
sized that such relevance is sometimes incompatible with notions of optimality,
particularly that arising from the Neyman-Pearson theory of most powerful tests.

What is now called ‘the weighing machine example’, although Cox (1958a) did
not use that terminology, is one of inference on the mean µ from one observation
of

Z ∼
{

Y with probability 1/2
X with probability 1/2

,
Y ∼ N(µ, σ2Y )
X ∼ N(µ, σ2X)

,

where σ2X � σ2Y and where we know, for any given realization, which of the two
populations has been sampled. The standard one-sided rejection region at level α
for the null hypothesis µ = 0 is either y > qασY or x > qασX , the power of the
test being

p•(µ) = pr•(• > qασ•) = 1− Φ
{

(qασ• − µ)/σ•
}
, • ∈ {Y,X}

depending on which population has been sampled. The unconditional test that
treats the population indicator as random has rejection region z > qασZ with
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σZ = (σ2Y /2 + σ2X/2)1/2 and power

pZ(µ) = prZ(Z > qασZ) = 1− 1
2Φ
{

(qασZ − µ)/σX
}
− 1

2Φ
{

(qασZ − µ)/σY
}
.

Although irrelevant once the data have been observed, pZ(µ) > pX(µ) for small
µ and µ > qασZ , appearing to show that the unconditional test has higher power
than the conditional procedure in certain regions of the parameter space when the
inaccurate weighing machine in used.

In the Cox (1958a) exposition, the ancillary statistic is the indicator of the
experiment that has actually been performed. Its tangible form distinguishes it
from the abstract constructions that are more commonly required. The simplest
form of mathematical ancillary arises in location models, where the set of pairwise
differences between observations specify the shape of the log-likelihood function
but carry no information about its location (Fisher, 1934). A difficulty is that
exact maximal ancillaries, should they exist, need not be unique (Basu, 1964).
Cox (1971) proposed a means of choosing between alternative ancillary statistics
by attempting to partition most effectively the set of hypothetical realizations
into those that supply relatively more information on the parameter of interest,
and those that are relatively uninformative. Cox (1971) acknowledged a degree of
arbitrariness in his proposed criterion, and later ‘the disturbing possibility [. . . ]
that the choice might depend on the true and unknown value of [the interest
parameter]’ (Barndorff-Nielsen and Cox, 1994, p. 43).

By appeal to Cox’s (1958) example, Fisher’s argument for conditioning on ap-
propriate reference sets is hard to refute. However, there has been considerable dif-
ficulty in pinning down a version of ancillarity that applies seamlessly to all prob-
lems, particularly in the presence of nuisance parameters. Lloyd (1992) pointed
out that approximate ancillary statistics, i.e. ones whose distributions depend very
slightly on the value of the parameter, may achieve the required separation using
the Cox (1971) criterion more effectively than a statistic that is exactly ancil-
lary. Of Lloyd’s example, Cox wrote ‘The example is yet another warning of the
dangers of overemphasizing exact rather than approximate fulfilment of proper-
ties whenever competing requirements are involved’ (Barndorff-Nielsen and Cox,
1994, p. 44). Much work throughout the 1980s and 90s sought to achieve the
appropriate conditioning approximately. References are given in section 3.3.

2.3. Logistic regression: a constructive derivation via sufficiency. The
connection between the previous discussion of conditionality and the development
of logistic regression (Cox, 1958b,c) is clarified in section 2.4.

In the introduction of the paper, Cox (1958b) wrote that the ‘best form’ for
binary outcomes ‘seems to be’ the logistic formulation which ‘has been extensively
used in work on bioassays, notably by Berkson’. He went on to construct a theory
of exact conditional inference for logistic regression, where “exact” is in analogy
with Fisher’s exact test, the distribution of the conditioning statistic in both cases
depending very slightly on the interest parameter.

It seems reasonable to surmise that D. R. Cox did not isolate logistic regression
for detailed study because of its antecedence in bioassays. A possible genesis,
more consistent with his distinctive way of thinking, is in a constructive derivation
from first principles in which one starts from the Bernoulli likelihood function and
matches up minimal sufficient statistics with those of a normal-theory linear model.
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The logistic form is recovered as the unique model that produces such unification
and satisfies the boundary conditions. There are several reasons for forcing the
sufficient statistics to match. Most importantly, simple sufficient statistics allow
a conditional analysis, which both eliminates nuisance parameters and ensures
relevance by attaching to conclusions the precisions actually achieved. A second
reason is that a unified theory has some aesthetic appeal. Not only could binary
and linear regression be framed in the same terms, also Fisher’s exact test was
recovered as a special case. Finally, the choice stabilizes interpretation of the
regression parameters to some extent, in a sense to be made clear.

The normal theory linear model has associated with it simple sufficient sta-
tistics for the regression coefficient vector β = (β1, . . . , βp)

T and unknown error
variance. These are S = xTY , i.e. (Sj)

p
j=1 = (

∑n
i=1 xijYi)

p
j=1 and the residual

sum of squares. Suppose now that (Yi)
n
i=1 are binary, with outcomes conveniently

encoded as {0, 1}. There is no floating dispersion parameter. The following expo-
sition reconstructs the logistic model using the same sufficient statistics (Sj)

p
j=1

as the foundation.
Parametrize the likelihood function in terms of the binomial success probabili-

ties (θi)
n
i=1, where “success” corresponds to yi = 1:

`(θ1, . . . , θn; y1, . . . , yn) =
∏n
i=1θ

yi
i (1− θi)(1−yi), (yi)

n
i=1 ∈ {0, 1}n

and consider which function θi(x
T
i β) : R → [0, 1] produces sufficient statistics for

β of the form (
∑n

i=1 xijyi)
p
j=1. For the sufficient statistic to be a sum, either θi

or (1− θi) must contain an exponential and, in order that the exponential of the
sum be factorable in the likelihood, these probabilities must be equal up to the
exponential term. Sufficiency of (

∑n
i=1 xijyi)

p
j=1 for β thus requires

θi = f(xT
i β)ex

T
i β ∈ [0, 1]

1− θi = f(xT
i β) =

θi

ex
T
i β
∈ [0, 1],

for some function f to be chosen. Enforcing the [0, 1] probability constraint leads
to the logistic law

θi =
ex

T
i β

1 + ex
T
i β
, 1− θi =

1

1 + ex
T
i β
.

The argument is symmetric and these could be defined the other way round, as
would be hoped since the encoding of the binary variables is arbitrary.

2.4. An exact conditional analysis for logistic regression parameters. Let
β = (β1, . . . , βp) be the vector of logistic regression coefficients and suppose βp is
the parameter of interest. The conditional distribution of Sp =

∑n
i=1 xipYi given

S1 = s1, . . . , Sp−1 = sp−1 is (Cox, 1958b, 1970)

pr(Sp = sp | S1 = s1, . . . , Sp−1 = sp−1) =
c(s1, . . . , sp)e

βpsp∑
u c(s1, . . . , sp−1, u)eβpu

,

where c(s1, . . . , sp) is the number of possible realizations of Y1, . . . , Yn such that
the values of S1, . . . , Sp are equal to those actually observed. Cox (1958b) used
this to construct conditional confidence sets for βp. The exposition of Cox (1970)
is both clearer and more general than that of Cox (1958b).
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The statistics S1, . . . , Sp−1 are sufficient for β1, . . . , βp−1 and near-ancillary for
βp. More specifically, S1, . . . , Sp−1 are ancillary in the same loose sense that Fisher
specified in the context of the 2 × 2 table, i.e., if we are given only the values
s1, . . . , sp−1 no conclusions can be drawn about βp without explicit constraints
on the parameter space. By conditioning on S1, . . . , Sp−1, relevance is achieved.
By sufficiency, conditioning also eliminates p − 1 nuisance parameter from the
analysis. Thus, both justifications for conditioning lead to the same conclusion in
the present case.

It is clear that the absence of any discussion of Newton-Raphson and maximum
likelihood fitting from Cox (1958b) was deliberate. Fisher proposed Fisher scor-
ing (an application of the Newton-Raphson algorithm) for solving the maximum-
likelihood estimating equations in 1925 and D. R. Cox would certainly have been
aware of it in 1958.

The conditional analysis of logistic regression was not widely taken up, partly
because calculation of the combinatorial quantity c(s1, . . . , sp) was difficult with
1950s computation, and also because the problem can be degenerate when p is
moderately large relative to the sample size n, yet another motivation for seeking
to achieve the idealized conditioning approximately.

2.5. An exact conditional analysis for canonical exponential-family re-
gression. Another major insight, which is likely to have influenced the propor-
tional hazards work in 1972, was introduced in a little-known paper (Cox, 1968).
In the original notation:

The justification of maximum likelihood methods is asymptotic but
sometimes analogues of at least a few of the “exact” properties of
normal-theory linear models can be obtained. The simplest case is
when the ith observation on the dependent variable has a distribu-
tion in the exponential family (Lehmann, 1959, p. 50)

exp{Ai(y)B(θi) + Ci(y) +D(θi)},

where θi is a single parameter and there is a linear model

B(θi) =
∑
r

xirβr

where the β’s are unknown parameters and the x’s are known con-
stants. Special cases are the binomial, Poisson and gamma dis-
tributions when the linear model applies to the logit transform,
to the log of the Poisson mean and to the reciprocal of the mean
of the gamma distribution. Sufficient statistics are obtained and
in very fortunate cases useful “exact” significance tests for single
regression coefficients emerge.

(Cox, 1968)

The above construction is essentially the generalized linear model with canonical
link. A similar discussion appears as an exercise in Cox (1970), where alternative
link functions for the binary case are also discussed on p. 20. The canonical
versions of Poisson and exponential regression had been proposed much earlier
(Cox, 1955, 1964). Both sets of conclusions from section 2.4, about conditioning
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on S1, . . . , Sp−1 and about the interpretation of ratios of coefficients, apply in this
broader setting of canonical exponential-family regression.

3. 1972

3.1. Elimination of nuisance parameters by partial likelihood. The main
connection of the foregoing to the proportional hazards paper (Cox, 1972) is that
D. R. Cox’s lifelong study of inferential separations, both for the accomplishment
of relevance and the elimination of nuisance parameters, was surely a major aspect
in the inception of the model and its analysis by partial likelihood (Cox, 1972,
1975). The latter, which uses a data-based factorization of the likelihood function,
achieves the same result, namely elimination of the nuisance parameter. In the
case of the proportional hazards model the nuisance parameter is the baseline
hazard function, thus partial likelihood eliminates an infinite-dimensional nuisance
parameter. I am not aware of any other setting in which such a feat has been
performed.

3.2. Incompatibility of the logistic and proportional hazards models.
Suppose that lifetimes Y (x) are generated from a distribution with proportional
hazards determined by covariates x but that only the {alive, dead} = {0, 1} indi-

cator at the end of the study is retained, that is Y̊ (x; t) = I1 {Y (x) ≤ t}, where t
is an arbitrary cut-off for observation, fictitious if survival times are uncensored.
Let βPH and βL be the coefficient vectors (without intercept) in the log-linear
proportional hazards and linear logistic models respectively. Specifically, with
θt(x) = E(Y̊ (x; t)), the proportional hazards (Cox, 1972) and logistic regression
(Cox, 1958b) models are

log
h(t;x)

h0(t)
= α+ xTβPH, (3.1a)

log
θt(x)

1− θt(x)
= αt + xTβL, (3.1b)

where h(t;x) is the instantaneous probability of failure at time t and h0(t) is the
corresponding quantity with covariates at baseline, the baseline hazard function.
That models (3.1a) and (3.1b) are in contradiction is seen most clearly through
the equivalent expressions

pr(Y (x) ≤ t) = 1− exp
(
− exp(α+ xTβPH)

∫ t

0
h0(u)du

)
,

pr(Y (x) ≤ t) =
exp(αt + xTβL)

1 + exp(αt + xTβL)
,

(3.2)

for the proportional hazards and logistic regression models respectively. If time-
to-event data are discretized into more than two categories by taking a sequence
of terminal times, then equation (3.1b) at times t1, . . . , tmax−1 is the proportional
odds model for ordinal outcomes (McCullagh, 1980), which entails the constraint
α1 ≤ α2 ≤ · · · ≤ αtmax−1 to ensure non-negative probabilities.

For binary outcomes, the model

log[− log{1− θt(x)}] = γt + xTβLL,
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γ1 ≤ γ2 ≤ · · · ≤ γtmax−1, replaces the logistic transform of probabilities by a
double-logarithmic transform called the complementary log-log link (McCullagh,
1980). This sacrifices the simple sufficient statistics and consequently the ex-
act conditional significance tests developed for the logistic model by Cox (1958b,
1970).

The four models are related in pairs according to βL = βPO and βLL = βPH,
where βPO is the coefficient parameter of the proportional odds model.

3.3. Closely related developments. McCullagh’s (1980) complementary-log-
log model is a special case of the more flexible extension of Cox’s (1968, 1970)
canonical exponential family regression models usually termed generalized linear
models following the paper by Nelder and Wedderburn (1972), which introduced
the terminology of link functions and emphasized maximum-likelihood fitting by
the Newton-Raphson algorithm applied to the full likelihood function.

Exponential families are very special in their structure. A body of work, per-
haps starting with Fraser (1964) sought to achieve the appropriate condition-
ing approximately, beyond exponential-family canonical form. Important subse-
quent contributions were due to Barndorff-Nielsen and Cox (1979), Cox (1980),
Barndorf-Nielsen (1983), McCullagh (1984), Cox and Reid (1987), Fraser and Reid
(1988), Barndorff-Nielsen (1990), and Fraser (1990). For a helpful review of the
Fraser and Reid line of work, see Davison and Reid (2023). In a recent summary of
some of D. R. Cox’s lesser-known papers, Reid (2024) wrote: “David raises several
points that he feels need further work: e.g. he writes that ‘the conceptual basis
for the choice between alternative test statistics needs clarification’. In my view
this was essentially solved by the development of the so-called r∗-approximation
by Barndorff-Nielsen (1990) and Fraser (1990), but I must say that David firmly
disagreed with me about this.”

4. A geometric illustration of conditional inference

4.1. Pearson’s and Fisher’s analyses for the 2× 2 table. From at least one
point of view, the simplest type of setting to which logistic regression applies was
presented by Cox (1958c) in the form of a matched-pair assessment of treatment
effect on a binary outcome. For this, a geometric representation is feasible, cast
alongside an older formulation for multivariate binary outcomes, advocated by
Pearson and forcefully criticized by Fisher.

The term pure contingency table refers in the 2 × 2 case to a situation with
two binary outcomes (Z1, Z2), each encoded as {0, 1} and treated on an equal
footing. In the classical Pearsonian examples, the two variables have equal status
and the problem is bivariate. In section 4.2, an arguably more relevant situation is
considered in which one variable is an outcome and the other considered potentially
explanatory.

From a total of n randomly sampled individuals, a pure contingency table
records the number in each of the four combinations of levels in a 2 × 2 con-
tingency table of the form

N00 N01 N0·
N10 N11 N1·
N·0 N·1 n

, (4.1)
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where Nj · = Nj0 +Nj1 (j = 0, 1) are the marginal totals at each level for variable
1, N·k = N0k + N1k are those for variable 2 and N·0 + N·1 = N0· + N1· = n.
The table can always be normalized such that the entries are proportions. Thus
write π̂ = (π̂00, π̂01, π̂10, π̂11) for the vector of empirical probabilities for the four
cells, which belongs to a three-dimensional subspace S3 of R4 due to the unit-sum
constraint on the proportions; the same constraint holds for the vector of true
probabilities π = (π00, π01, π10, π11).

The classic statistical problem, dating back at least to Pearson (1900), is to
assess independence of (Z1, Z2), for which a necessary and sufficient condition is
that the probability of each joint event is equal to the corresponding product of
marginal probabilities, i.e. πjk = (πj0+πj1)(π0k+π1k) for all four combinations of
j and k. The independence condition holds if ψ, the cross-product ratio, is equal
to 1, where

ψ = (π00π11)/(π01π10) (4.2)

(e.g. Cox and Hinkley, p. 393). This independence constraint defines a two-
dimensional subspace S⊥ ⊂ S3, depicted as the curved manifold in Figure 1.
This geometric representation is due to Fienberg and Gilbert (1970).

Fisher argued that, for assessment of the null hypothesis ψ = 1, it is the relative
probabilities of the different configurations subject to the observed row and column
totals Nj · = nj · and N·k = n·k that characterize the reference distribution against
which the observed data should be calibrated. The basis for this is that the row
and column totals are ancillary for ψ in the sense that knowledge of these by
themselves carry no information on ψ. The qualifier “by themselves” covers the
situation in which explicit constraints can be made on the parameter space for
ψ, allowing a degree of information about its value to be recovered. It is in fact
only necessary to condition on one of each of the row and columns totals, which
determines the other two.

Figure 1 overlays the marginal total constraint in the unconstrained sample
space for π̂ and the independence constraint ψ = 1 in the unconstrained parameter
space for π. By construction, the observed π̂ belongs to the one-dimensional
subspace indicated by the thick black line, which crosses the ψ = 1 subspace
S⊥ at a single point. Fisher argued that the null distribution constrained to the
line should be used to assess compatibility of the observed data with the null
hypothesis, as opposed to the null distribution in the larger space S3.

4.2. Cox’s logistic analysis in the context of the 2 × 2 table. Two broad
forms of conditioning are that implicit in the formulation of a model, which should
incorporate known physical constraints in the data generating process, and the
more abstract form arising from inferential considerations. The discussion in sec-
tion 4.1 concerned the latter and was free of modelling assumptions.

In the application of logistic regression to the analysis of a matched-pair design
(Cox, 1958c), the sample space is constrained at once to π̂0· = 0.5, π̂1· = 0.5 by the
balance of the design, even without considerations of ancillarity. This subspace of
the sample space, SMP say, is depicted alongside S⊥ from section 4.1 in Figure 2.

Since SMP is also a subspace of the parameter space for π, a geometric rep-
resentation of the statistical model is also feasible. The left panel of Figure 2
parameterizes the probabilities of the two outcomes as p0, (1−p0) for the controls
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Figure 1. The two-dimensional surface is the constraint ψ = 1
in S3 (viewed as the parameter space for for π), imposed by the
independence hypothesis. The black line is the constraint on S3
(viewed as the sample space for π̂) imposed by the marginal totals
π̂1· = 0.6, π̂·1 = 0.4.

and p1, (1 − p1) for the treated individuals. Division by 2 is needed to convert
these to the scale of π. Then the algebraic form of the cross-product ratio (4.2)
coincides with the odds ratio

ψ =
p1/(1− p1)
p0/(1− p0)

=:
p11/p10
p01/p00

,

where the notation on the right hand side is for ease of comparison to (4.2).
The two systems of straight lines on the plane correspond to regions of the

parameter space for π over which pj is constant (j = 0, 1). The intersection
SMP ∩ S⊥ is the one-dimensional subspace p0 = p1. For comparison, the right
panel uses the logistic parameterization

α 7→ eα

1 + eα
= p0, (α, β) 7→ eα+β

1 + eα+β
= p1,

the curved contours on the plane indicating the regions of the parameter space for
π over which β is constant while α varies. At β = 0, p0 = p1 as before but in the
(α, β) parameterization, β has the interpretation of a treatment effect.

The situation can be considered as a single contingency table in n observations
with row totals n/2, as depicted in Figure 3 for particular values of the column
totals. The corresponding thick black lines represent one-dimensional subspaces
S1 ⊂ S2 containing the observed value of π̂, for which the distribution of the
relevant statistic, viewed as a random variable constrained to S1, does not depend
on α.

Now suppose, as in the Cox (1958c) formulation, that there are pair-specific
nuisance parameters representing, for instance, genetic differences between the
twins. Had data on covariates been available, these might have been modelled
as αi = xT

i γ, leading to the usual logistic formulation, but the present approach
treats them more flexibly as fixed arbitrary constants. Thus for the ith matched
pair, with binary outcomes (Yi0, Yi1), the probabilities conditional on treatment
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Figure 2. The subspace S2 ⊂ S3 associated with the matched
pair design in two parameterizations. Left: no parametric model
for the effect of treatment (p0, p1) ∈ [0, 1]2; right: logistic model
for the effect of treatment (α, β) 7→ exp(α + β)/{1 + exp(α + β)}
for (α, β) ∈ (−∞,∞)2.

Figure 3. Subspaces S1 ⊂ S2 of the matched-pair plane, deter-
mined by conditioning on the column totals for three different
pairwise tables in n observations with π̂·1 = 0.1, π̂·1 = 0.8 and
π̂·1 = 0.6.

group are

p
(i)
00 = 1/(1 + eαi) p

(i)
01 = eαi/(1 + eαi)

p
(i)
10 = 1/(1 + eαi+β) p

(i)
11 = eαi+β/(1 + eαi+β)

In contrast to the notation in section 4.1, Yi0 and Yi1 for pair index i represent
the same binary outcome, and the numeric subscript refers to conditioning on the
value of the treatment variable.

Since the αi are distinct, the situation is best considered as n/2 separate con-
tingency tables in 2 observations with row totals 1. In this case, only four tables
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are possible for each pair, and there is no continuous path between extreme tables
with the same marginal totals on which a physically-achievable table can reside.

The column total N
(i)
·1 in the single-pair analogue of (4.1) is the pair total Yi0+Yi1,

which is sufficient for αi.

5. Question and answer

An audience member asked whether I was aware of David’s position on the
Birnbaum (1962) paper. A slightly more considered answer than that given in my
lecture follows.

Birnbaum (1962) purportedly showed that the sufficiency principle, which states
that two data sets having the same value of the minimal sufficient statistic should
yield the same inference, and the conditionality principle, which states that one
should condition on an ancillary statistic if this exists, jointly imply the likelihood
principle. The latter is problematic because the likelihood principle is typically
rejected by non-Bayesians, and indeed is incompatible with many of the standard
methods of non-Bayesian inference. The implication of this result, if it is accepted,
is that Fisherian conditional inference is self-contradictory, and adoption of the
Fisherian position inevitably leads to the Bayesian paradigm.

I asked David what he made of this in 2020, after reading a paper by Mayo
(2014) and several discussions of it (e.g. Dawid, 2014; Evans, 2014, Fraser, 2014),
some of which appeared at first sight to be logically sound yet mutually contra-
dictory. David’s somewhat hazy recollection was that Birnbaum had ultimately
recanted on his earlier position. Evans (2014) attempts to explain some of the
apparent contradiction, highlighting discrepancies among the definitions of ancil-
larity used in the different proofs. One aspect of this, although only a partial
depiction, is whether one reduces by sufficiency first, taking as ancillary statistics
only components of the minimal sufficient statistic, which was David’s position. In
the Fraser and Reid line of work, the initial reduction by sufficiency is not explicit.
Instead, the approximate ancillary conditioning is achieved through a projection
onto the space tangent to the ancillary manifold at the point where the data are
observed, the ancillary manifold being the subspace of Rn on which the ancillary
statistic is fixed at its observed value. Conveniently, this tangent space can be
constructed without explicitly constructing the ancillary manifold. Furthermore,
the projection is unique to the order of approximation considered, apparently re-
solving any ambiguity in the choice of ancillary statistic. See Davison and Reid
(2023) for an accessible introduction to the original papers.

A referee has pointed out a note in Cox (2006, p. 62), in which David cites
confusions between the weak and strong likelihood principles among the sources
of paradox.
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