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Abstract

This paper develops an approach to inference in a linear regression model when the
number of potential explanatory variables is larger than the sample size. The approach
treats each regression coefficient in turn as the interest parameter, the remaining coeffi-
cients being nuisance parameters, and seeks an optimal interest-respecting transformation,
inducing sparsity on the relevant blocks of the notional Fisher information matrix. The
induced sparsity is exploited through a marginal least squares analysis for each variable, as
in a factorial experiment, thereby avoiding penalization. One parameterization of the prob-
lem is found to be particularly convenient, both computationally and mathematically. In
particular, it permits an analytic solution to the optimal transformation problem, facilitat-
ing theoretical analysis and comparison to other work. In contrast to regularized regression
such as the lasso and its extensions, neither adjustment for selection nor rescaling of the
explanatory variables is needed, ensuring the physical interpretation of regression coeffi-
cients is retained. Recommended usage is within a broader set of inferential statements, so
as to reflect uncertainty over the model as well as over the parameters. The considerations
involved in extending the work to other regression models are briefly discussed.

Some key words: conditionality; confidence sets of models; factorial contrasts; fixed design;
inducement of sparsity; nuisance parameters; parameter orthogonalization.

1 Introduction

We consider inference for the coefficient parameters of a high-dimensional linear regression
model in which the number of potential explanatory variables p is larger than the sample size
n. In this context, the debiased lasso (Zhang and Zhang, 2014; van de Geer et al., 2014)
and decorrelated score (Ning and Liu, 2017) require two sparsity assumptions: a natural one
on the parameter vector, and a less natural one on the inverse Fisher information matrix.
The key contribution of the present paper is an approach that induces sparsity on relevant
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blocks of the notional Fisher information matrix, removing the second assumption without
affecting interpretation of the parameter of interest. The induced sparsity is exploited through a
marginal least squares analysis for each variable, as in a factorial experiment. Since regularized
regression is not used, there is no need to standardize the columns of the covariate matrix to
have unit length. Thus, the physical interpretation of coefficients is retained.

Primary inspiration for the proposal came from the analysis of matched comparison prob-
lems, in which it is sometimes feasible to eliminate a large number of nuisance parameters by
simple operations on the sample space. There are also connections to Cox and Reid (1987)
as discussed in §2. Section 4 provides a more detailed comparison to the debiased lasso and
related proposals.

The remainder of the present section focusses on the broader inferential strategy. Usual
usage of the debiased lasso and its extensions, as described for example in Bühlmann et al.
(2014), involves hypothesis tests for all the parameters followed by a correction for multiple
testing. The conclusion is typically that the null hypothesis of no effect is rejected for a very
small number of variables; the joint explanatory power of sets of variables tends not to be
assessed. The present paper instead proposes confidence intervals for the regression coefficient
parameters as an adjunct to confidence sets of models (Cox and Battey, 2017; Battey and
Cox, 2018), as detailed in §5. The latter papers emphasized the construction of statistically
indistinguishable sets of variables based on their fit to the data, but did not consider inferential
statements about the individual parameters or their associated compatibility with the models in
the confidence set. This strategy is illustrated on a set of gene-expression data from Bühlmann
et al. (2014).

Several quite different approaches to inference in high-dimensional regression have been
proposed. In Lockhart et al. (2014), Lee et al. (2014), and Tian and Taylor (2018) inferential
statements are corrected for variable selection by conditioning on the region of the sample
space that led to the selection being made. Sample-splitting is a simple alternative that avoids
detailed characterization of the selection event. The efficiency loss of sample-splitting was
calculated in a simple example by Cox (1975) and several more elaborate splitting strategies
have been proposed in Rasines and Young (2021) and Leiner et al. (2021). For a different
perspective see Zhao et al. (2021). The approach advocated by Berk et al. (2013), and further
discussed in Leeb et al. (2015), aims instead for inferential statements that are universally
valid under all possible model selection procedures; this leads to highly conservative confidence
regions.

In contrast with much of the earlier literature on this topic, the analysis of §3 is conditional
on X, as would be dictated by ancillarity when p < n. In addition to ancillarity, there are
substantive reasons for preferring a conditional analysis. In observational studies X, although
random, is frequently realized in advance of the response variable Y , in which case it may be
possible to interpret the effect of X on Y as causal. For example X may be information on the
genome or epi-genome, and Y a measure of some condition expected to be caused by changes
in X. However, even in cases where the values of (Yi, Xi)ni=1 are realized contemporaneously,
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it is appropriate to condition on X for studying its association with the outcome variable Y .
Otherwise it would be possible that an inference justified on the basis of its unconditional
properties performed poorly for any given sample of X.

2 Approximate orthogonalization

Let xi be a vector of measurements on p covariates for individual i. Outcomes are assumed to
be generated from a linear regression model

Yi = xTi β + εi, i = 1, . . . n,

where (εi)ni=1 are independent with mean zero and variance τ > 0, and β = (β1, . . . , βp)T is
of dimension p � n, but satisfying the sparsity condition ‖β‖0 =

∑p
u=1 I1{βu 6= 0} = s � p.

The set of signal indices is S = {v : βv 6= 0}. The arbitrary designated interest parameter
is βv, so that the vector β−v of nuisance parameters has elements {β1, . . . , βp}\βv. Let Y =
(Y1, . . . , Yn)T and let X be the matrix whose ith row is xTi . The column of X corresponding
to the interest parameter βv is written xv = (x1,v, . . . , xn,v)T , where indices u, v, w, . . . from
the end of the alphabet distinguish arbitrary columns of X from arbitrary transposed rows.
The remaining columns are those of the n × (p − 1) dimensional matrix, X−v, whose ith row
is xTi,−v. On writing ε = (ε1, . . . , εn)T , the linear regression model is

Y = Xβ + ε = xvβv +X−vβ−v + ε. (1)

If the columns in X−v are orthogonal to xv then a simple regression of Y on xv estimates
βv without bias, this being the motivation for factorial experiments and more elaborate exper-
imental designs. In fact only the columns corresponding to signal variables need be orthogonal
to xv, but it is not known which columns these may be.

Since the parameter β in (1) is unchanged by premultiplication of both sides by an n× n
matrix, for each interest parameter βv a matrix Av is sought such that the columns x̃vw of the
transformed covariate matrix X̃v = AvX are as orthogonal as possible to x̃vv. The parameter
of interest βv is then estimated by simple linear regression of Ỹ v = AvY on x̃vv. The associated
least squares estimator is

β̃v = (x̃vTv x̃vv)−1x̃vTv Ỹ v = (xTv AvTAvxv)−1xTv A
vTAvY. (2)

Under model (1)

E(β̃v) = βv +
∑
w∈Sϑw βw =: βv + bv, (3)

var(β̃v) = (x̃vTv x̃vv)−1x̃vTv AvE(εεT )AvT x̃vv(x̃vTv x̃vv)−1 =: τσvv,
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where

ϑw = ϑw(Av) = (x̃vTv x̃vv)−1x̃vTv x̃vw, (4)

σvv = σvv(Av) = (x̃vTv x̃vv)−2x̃vTv AvAvT x̃vv,

and by the Cauchy-Schwarz inequality, b2
v ≤ ‖β−v‖22

∑
w∈S ϑ

2
w. Since ‖β−v‖2 and S are un-

known, this suggests choosing Av to minimize σvv(Av) +
∑
w 6=v ϑ

2
w(Av), an upper bound

on the observable components of the mean squared error. The relevant objects in terms of
qv = AvTAvxv are

β̃v = (qTv xv)−1qTv Y, (5)

σvv = (qTv xv)−2(qTv qv),

ϑ2
w = (qTv xv)−2(qTv xw)2.

On noting that
(qTv xw)2 = qTv xwx

T
wqv,

the sum of the variance τσvv(qv) and squared potential biasing terms
∑
w 6=vϑ

2
w(qv) is minimized

when qv solves the simple unconstrained optimization problem

argmin
q∈Rn

(qTxv)−2qT (In +
∑
w 6=vxwx

T
w)q.

This estimator, which weights squared bias and variance equally, is a natural choice. However,
a generalization is helpful for gaining geometric insight into the problem and for comparison
with other work. Thus define qv by

qv ∈ Q(δ)
v = argmin

q∈Rn
(qTxv)−2qT (δIn +X−vX

T
−v)q, (6)

for some fixed δ > 0 to be chosen. In §3, such solutions will be shown to exist in closed form
under a condition on X defined below at Proposition 1. If qv ∈ Q(δ)

v , then any non-zero scalar
multiple of qv is also in Q(δ)

v , as can be seen from the form of the objective function. Hereafter,
qv refers to an arbitrary solution to the minimization problem of equation (6) unless otherwise
specified.

The connection to parameter orthogonalization (Cox and Reid, 1987) is that, for Gaussian
linear regression, both approaches seek to induce sparsity on the relevant row and column
of the Fisher information matrix. With βv identified as the interest parameter, a so-called
interest-respecting orthogonal parameterization of model (1) is (βv, η), where

η := XT
−vxvβv +XT

−vX−vβ−v, (7)
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or alternatively, if (XT
−vX−v)−1 exists, (βv, φ), where

φ := (XT
−vX−v)−1η = β−v + (XT

−vX−v)−1XT
−vxvβv, (8)

as orthogonal parameters are only defined up to linear transformation. Expressing (1) in either
of parameterizations (7) or (8) requires p < n. This suggests an alternative to (8) in which
(XT
−vX−v)−1 is replaced by a regularized inverse (δIp + XT

−vX−v)−1, an approach discussed
briefly in §7.

Section 3 derives some theoretical aspects of the above approximate orthogonalization
procedure, particularly the interpretation of qv, which clarifies the relationship between the
present proposal and that of Zhang and Zhang (2014). Proofs of the main results are given in
Appendix A.

Remark 1. For any two parameters βu and βv, the covariance between β̃u and β̃v constructed
according to equations (2) and (6), is

cov(β̃u, β̃v) = τ(qTu xu)−1qTu qv(qTv xv)−1 =: τσuv, (9)

which is known up to τ .

Remark 2. There is a simple transformation of X, X̊v, say, whose columns are exactly or-
thogonal to a given one, x̊vv say. This is X̊v = P̊ vX + Cv where P̊ v = In − (xTv xv)−1xvx

T
v

projects the columns of X into the subspace of Rn orthogonal to xv, and Cv is a matrix of
zeros apart from the column cvv = x̊vv = xv, which replaces the single column of zeros produced
by P̊ vX. Since this transformation to X̊v is not of the form AvX, it is not interest-respecting.
An interest-respecting version could be obtained by projection of X̊v, in a suitable matrix
norm, into the space of matrices of the form AX, where A ∈ Rn×n. This is however much less
convenient than (6), both computationally and theoretically.

A nominal α-level confidence interval for βv is

C̃v(α) = [ β̃v − z1−α/2(τσvv)1/2, β̃v + z1−α/2(τσvv)1/2 ], (10)

where Φ(z1−α) = α. As shown in §3, the confidence interval (10) is valid as n → ∞, to the
extent that qv is successful in orthogonalizing x̃vv to x̃vw for all w ∈ S. The qualification here
is because the objective function in (6) does not ensure x̃vv is exactly orthogonal to x̃vw for all
w ∈ S, only that the cumulative non-orthogonality to x̃vw over w 6= v is small. For some v this
non-orthogonality will concentrate relatively more on the unknown signal indices, resulting in
larger bias for those parameters. However, as shown in Proposition 3, this bias decays rapidly
with the sample size.

One could in principle attempt to identify positions where the signal variables are most
likely to be and adjust the objective function (6) accordingly, a suggestion to which we return
in §7. A variant of this idea has been proposed recently by Li et al. (2021). Since their

5



procedure is based on the debiased lasso (Zhang and Zhang, 2014; van de Geer et al., 2014)
the resulting inference is not scale-invariant, and the theoretical guarantees entail a similar
condition of sparsity of the inverse Fisher information matrix, which in their random design
setting corresponds to sparsity of the inverse covariance matrix of the covariates.

3 Inferential properties

In setting up the objective function

m(q) = (qTxv)−2qT (δIn +X−vX
T
−v)q (11)

in equation (6), δ > 0 was introduced to enable comparison to other work. However, the pro-
cedure is remarkably robust to this choice, a phenomenon discussed in further detail following
Proposition 3.

Let (δIn +X−vX
T
−v) = Mδ, and define

Lδ = Mδ − {xTvM−1
δ xv}−1xvx

T
v . (12)

Proposition 1 specifies the set of solutions Q(δ)
v from (6) in closed form.

Proposition 1. Suppose δ > 0 is such that the eigenvalues of Lδ are non-negative. Then any
qv of the form

qv = a(δIn +X−vX
T
−v)−1xv (13)

is a minimizer of (11), where a is any non-zero real number. If the eigenvalue condition is
violated, then such a qv is a saddlepoint of (11).

Modulo multiplication by a positive scalar, Lδ is the matrix field ∇∇Tm evaluated at any
qv of the form (13). Let z = {xTvM−1

δ xv}−1/2xv so that Lδ = Mδ − zzT . Then

det(Lδ) = (1− zTM−1
δ z)det(Mδ) = 0,

where the first equality is the so-called matrix determinant lemma for determinants of rank one
perturbations and the last equality follows as zTM−1

δ z = 1. Thus, the matrix Lδ has at least
one zero eigenvalue, showing that, if the condition of Proposition 1 is satisfied, m is locally
weakly convex at any qv of the form (13) but not strictly convex (e.g. Boyd and Vandenberghe,
2004). Let

P v(a, δ) = a(δIn +X−vX
T
−v)−1. (14)

so that qv = P v(a, δ)xv. Although any choice of a yields a minimizer of (11), the choice a = δ

improves interpretability of (14) in view of equation (15) of Proposition 2. It is also of some
theoretical value to consider a = δ → 0+.
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Proposition 2. Set a = δ and define X+
−v to be the Moore-Penrose pseudo-inverse of X−v

given in (36) of Appendix A.2. Then

P v(δ, δ) = In −X−v(δIp−1 +XT
−vX−v)−1XT

−v (15)

and
P v := lim

δ→0+
P v(δ, δ) = In −X−vX+

−v (16)

is an orthogonal projection operator that maps any vector in Rn into the left null space of X−v
or, equivalently, the kernel of XT

−v, ker(XT
−v) = {u ∈ Rn : XT

−vu = 0} ⊂ Rn.

This limiting case only serves to supply insight and is of low practical relevance when p > n.
When p < n, X+

−v = (XT
−vX−v)−1XT

−v so that P v = In −X−v(XT
−vX−v)−1XT

−v and (15) can
be viewed as a ridge-regularized version of this projection (Hoerl and Kennard, 1970). See §4
for further discussion.

From (5), (6), and Proposition 4 below, τ−1/2Sn(βv) is an asymptotically pivotal quantity,
where

Sn(βv) := (qTv xv)(β̃v − βv − bv)
(qTv qv)1/2 . (17)

However the confidence intervals in (10) ignore the bias term (qTv xv)bv/(τqTv qv)1/2. While, for
sufficiently small δ, qv effectively minimizes the observable part of an upper bound on b2

v, it
is inevitable that |bv| will be larger for some components βv than for others, due to lack of
knowledge of S. Proposition 3 establishes the behaviour of the bias bv in (3) and the quantity
(qTv xv)bv/(τqTv qv)1/2 as a function of the sample size. The simulations in §6.2 are consistent
with these conclusions.

By Proposition 2, P v(δ, δ)z is a regularized projection of z ∈ Rn into the kernel of XT
−v, so

by construction the elements of XT
−vP

v(δ, δ)z are small and bounded away from zero provided
that δ is. To avoid explicitly quantifying the dependence on n, p and δ, write XT

−vP
v(δ, δ)xv �

h(n, p, δ).

Proposition 3. Let δ > 0 be bounded away from zero. Provided that the non-zero elements of
β−v are bounded, the bias terms in (17) satisfy

bv = O(s/n), and (qTv xv)bv
(τqTv qv)1/2 = O

(
s

n1/2 ·
h(n, p, δ)1/2

δ1/2

)
.

Proposition 3 suggests that one sensible choice of δ would solve the fixed point equation
δ � h(n, p, δ), so that

(qTv xv)bv
(τqTv qv)1/2 = O

(
s

n1/2

)
.

We have found empirically that the stability of the conclusions to the choice of δ is remarkably
high. Such stability can always be checked using the data at hand.

In applying Proposition 3, confidence intervals are based on the asymptotically pivotal

7



quantity V −1/2
n Un(βv), where Vn is an estimator of τ discussed below and

Un(βv) := (qTv xv)(β̃v − βv)
(qTv qv)1/2 . (18)

The validity of this is established via Proposition 3, combined with the limiting distribution
of Sn(βv) derived below. We also see that, for fixed sample size, the bias plays a relatively
larger role for components whose associated variances are smaller. This is visually apparent
from Figure 3 of §6.2.

Proposition 4. Suppose that (εi)ni=1 are independent mean zero random variables of variance
τ and bounded moments of order 2 + γ for some γ > 0. Then

sup
z∈R
|pr{τ−1/2Sn(βv) ≤ z} − Φ(z)| → 0, as n→∞,

where Φ is the standard normal cumulative distribution function. If the above condition holds
with γ = 1,

sup
z∈R
|pr{τ−1/2Sn(βv) ≤ z} − Φ(z)| ≤ Cen, (19)

where C ∈ (0.4097, 0.5606], (qj,v)nj=1 are the elements of qv, and

en =
∑n
j=1 |qj,v|3E|εj |3

(nτ)3/2(qTv qv)3/4 .

With any consistent estimator Vn of the error variance, the limiting normal approximation
to the Studentized statistic V −1/2

n Sn(βv) remains valid by Slutsky’s theorem. Proposition 5
provides more precise quantification.

Proposition 5. Suppose that the conditions of Proposition 4 hold with γ = 1 and let Vn be a
consistent estimator of τ . On writing

pr(|V −1/2
n − τ−1/2| > tn) � rn(tn), (20)

where tn and rn(tn) are both decreasing in n, the normal approximation to the distribution of
V
−1/2
n Sn(βv) has uniform error of order

sup
z∈R
|pr{V −1/2

n Sn(βv) ≤ z} − Φ(z)| ≤ cmax{en, 1− Φ(gn), tngn, rn(tn)}, (21)

where c is a constant that we do not quantify, gn is any nondecreasing sequence such that
tngn = o(1), and en is defined in Proposition 4.

While it is unclear which choice of gn delivers the sharpest bound in (21), a reasonably
tight bound is obtained by choosing gn such that 1 − Φ(gn) is roughly the same order as en.
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By Mill’s ratio
1− Φ(x)
φ(x) ∈

( 1
x+ 1/x,

1
x

)
, x > 0,

where φ is the standard normal density function. Thus, using the approximation en = g−1
n φ(gn)

and solving approximately for gn using Lagrange’s inversion formula (e.g. de Bruijn, 1981,
p.25–29), we obtain

gn =
(
[log(e−2

n )− log{log(e−2
n )}] +O[log{log(e−2

n )}/ log(e−2
n )]

)1/2
,

which is a very slowly growing function of n. Thus, asymptotically, the confidence interval
based on the infeasible statistic V −1/2

n Sn(βv) has nominal coverage probability 1− α, and for
any fixed n the error in this approximation is roughly of order max{en, tngn, rn(tn)}.

4 The debiased lasso

Our proposal is related to inferential methods based on inverting the Karush-Kuhn-Tucker
conditions associated with a lasso solution. In one respect, the most general procedure is that
of van de Geer et al. (2014), which covers penalized likelihood inference. Their debiased lasso
estimator, β̂d say, reduces essentially to the proposal of Zhang and Zhang (2014) in the case
of the linear model. Zhang and Zhang (2014) modified the score equation for the least squares
estimator to zTv (Y − xvβv) = 0, with zv to be chosen. By comparison the estimating equation
that defines β̃v is

x̃vTv (Ỹ v − x̃vvβv) = qTv (Y − xvβv) = 0, with qv = AvTAvxv. (22)

Zhang and Zhang (2014) suggested a bias correction based an a pilot estimator β̂(init)
w of each

nuisance parameter βw:

zTv Y

zTv xv
−
∑
w 6=v

β̂
(init)
w zTv xw
zTv xv

= βv + zTv ε

zTv xv
.

Thus the bias is controlled by

(maxw 6=v |zTv xw|
|zTv xv|

)
‖β̂(init)
−v − β−v‖1 (23)

and Zhang and Zhang (2014) recommended that β̂(init)
−v be taken as the lasso estimator, so

that ‖β̂(init)
−v − β−v‖1 is small with high probability under regularity conditions. They also

recommended that zv be chosen using the lasso, motivated by ordinary least squares when
p < n, where the score equation zTv (Y − xvβv) = 0 holds for the least squares estimator with

zv = x⊥v := (In −X−v(XT
−vX−v)−1X−v)xv,
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i.e., the projection of xv on the orthogonal complement of the space spanned by the columns of
X−v. Equation (15) in Proposition 2 shows the parallels between the two approaches, although
they were derived from different perspectives. In particular, when a = δ our operations on the
sample space, designed to minimize a feasible upper bound on the mean squared error, recover
the ridge regression residual vector for zv, rather than the nodewise lasso residuals from an
`1-constrained linear regression of xv on X−v recommended by Zhang and Zhang (2014) and
van de Geer et al. (2014).

While there is no obvious direct analogue of our quantities bv or (qTv xv)bv/(τqTv qv)1/2, van
de Geer et al. (2014) show that their Studentized test statistic is the sum of a standard normally
distributed random variable and the quantity ∆̃v, satisfying

pr
(
|∆̃v| ≥ 8n

(
sλvλ

τφ2
0‖xv −X−vγ̂v‖2

))
≤ 2 exp(−t2).

Here, φ2
0 is the so-called compatibility constant of the lasso, γ̂v is the nodewise lasso estimator

of the coefficient vector from a regression of xv on X−v with regularization parameter λv, and
λ (chosen as a function of t > 0) is the lasso tuning parameter associated with the regression
of Y on X. They also show that their debiased lasso estimator satisfies

√
n(β̂d − β) = W + ∆

where W is a normal random variable of zero mean and ∆ satisfies ‖∆‖∞ = opr(1). This
theoretical guarantee is established under an assumption of row-sparsity of the inverse Fisher
information matrix. Our result of Proposition 3 shows that bv = O(s/n) without the extra
sparsity condition (beyond sparsity of β) and in a Gaussian setting induces sparsity on the
relevant row and column of the Fisher information matrix, as in Cox and Reid (1987). Thus
our approach seeks to achieve by construction what is implicitly assumed in van de Geer
et al. (2014) and Zhang and Zhang (2014). Inducement of sparsity cannot be accomplished
simultaneously for all parameters, but is achievable by considering each coefficient in turn as
the interest parameter.

Another important advantage of our approach is that it does not require rescaling the
columns of X to unit length, so the physical interpretation of the estimate and confidence
intervals is maintained. Neither the lasso estimator nor its debiased counterpart is invari-
ant to componentwise rescaling, and simulations in §6.1 indicate that the approach is rather
conservative after transformation to the original scale.

Javanmard and Montanari (2014) also consider a version of the debiased lasso estimator
for the linear model. Their estimator is of a similar form to that of van de Geer et al. (2014)
and Zhang and Zhang (2014), namely

β̂JM = β̂lasso + n−1MXT (Y −Xβ̂lasso),

where, in a similar spirit to our proposal, M is chosen to minimize the variance of the resulting
estimator subject to a constraint on the bias. Specifically, M = (m1, . . . ,mp)T , where mv
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solves
mv = argmin

m
mT (n−1∑

iXiX
T
i )m s.t. ‖(n−1∑

iXiX
T
i )m− ev‖∞ ≤ µ,

with ev the zero vector with a 1 in the vth position. Thus M can be viewed as a regularized
inverse of n−1∑

iXiX
T
i . A key difficulty with this proposal is that the tuning parameter µ

needs to decay sufficiently quickly in order that the bias of the estimator (the analogue of our
bv) may be controlled. Javanmard and Montanari (2014) state in their Algorithm 1 that if
any of the constraints is violated, then M should be set to the identity matrix. This seems
problematic since the constraint is used to derive the theoretical guarantees. We found that it
was often violated in examples we tried.

5 Confidence sets of models

5.1 Background

For sparse high-dimensional regression problems, Cox and Battey (2017) emphasised that
several or even many low-dimensional models are likely to fit the data indistinguishably well.
They argued that while an arbitrary choice between them would be reasonable for prediction,
for subject-matter understanding, it is more appropriate to report a confidence set of models.
Our suggested use for the estimates and confidence intervals obtained as described in §2 is as
an adjunct to such confidence sets, the two procedures being performed in isolation, thereby
avoiding issues of post-selection inference.

The first phase in the construction of confidence sets of models is to identify a set of
retained explanatory variables, Ŝ, where |Ŝ| is reasonably large, but considerably less than n.
The model that includes all variables in Ŝ is called the encompassing model. A confidence set
of models, M, is obtained by comparing the fit of the encompassing model to the fit of any
model using s# or fewer variables from Ŝ, and retaining any such models that are statistically
indistinguishable from the encompassing one. The choice of s# is arbitrary and based on an
assumption of sparsity.

The confidence intervals in §2 can be used to refine this large confidence set, M, to a
smaller set R ⊂ M, by removing from M any models which have coefficient estimates that
are not included in the relevant confidence interval (10) (with τ replaced by Vn). Specifically,
if any of the estimated coefficients from fitting a model in M exceed such confidence limits,
this casts doubt on the plausibility of that model. If none of the models in M is consistent
with the collection of confidence intervals, then this suggests that |Ŝ| is too small.

We assume that M is exactly calibrated, i.e. that pr(S ∈ M) = 1 − ϑ. Asymptotic
calibration of M is established under certain conditions in Lewis and Battey (2022). As
discussed in §3, while the individual confidence intervals are all calibrated at their nominal
levels for sufficiently large n, small-sample bias affects inference on some parameters more than
others. The following calculations indicate the implications of this bias on the small-sample
coverage properties of R.
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Let q = q(u) be the proportion of confidence intervals whose coverage probability is below
some acceptable threshold, 1−u say. Since poor calibration is unrelated to whether a variable
is in S, the indices of signal variables can be treated as a simple random sample of size s from
{1, . . . , p}. Thus, the number of poorly calibrated intervals among these s is binomial of index
s and parameter q, and an approximate lower bound on the probability that no signal variable
is excluded fromM is ((1− q)(1− u))s.

The analysis of artificially generated responses and real covariate data in §6.1 have q =
23/4088 = 0.0056 intervals with coverage smaller than 1− u = 0.95 when the nominal level of
our intervals is 0.01, q = 118/4088 = 0.0289 with coverage smaller than 1−u = 0.98 at nominal
level 0.005 and q = 20/4088 = 0.0049 with coverage smaller than 1−u = 0.99 at nominal level
0.001 (see Table 3). Thus, for s = 5, and pr(S ∈ M) = 0.99, the coverage probability of R
using the 0.001-level intervals is approximately ((1− q)(1− u))5(1− ϑ) = 0.9186.

The above arguments would not work for the debiased lasso, as simulations in §6.2 show
that, while the coverage probabilities are high on average, the debiased lasso intervals are more
systematically miscalibrated for signal variables.

Whether the refined set R is more useful than a version ofM whose coverage matches R
depends on q and its associated value of u. This can be assessed through an analysis similar
to that in §6.1.

5.2 Illustration

Bühlmann et al. (2014) describe an investigation to study the association of the response
variable, vitamin B2 production, with the logarithmic expression levels of 4088 genes. In the
sample of size n = 71 the correlation among columns of X ranges from −0.926 to 0.991, with
a mean correlation 0.029. See Bühlmann et al. (2014) for original references.

The first analysis is the estimation of each of the regression coefficients and their confidence
limits at nominal level α = 0.001 using the approximate orthogonalization approach of §2. A
separate analysis was carried out to choose the encompassing model Ŝ and a confidence set of
modelsM. The variables in Ŝ were identified through a series of model fits based on partially
balanced incomplete block arrangements (Yates, 1936; Cox and Battey, 2017). Then each
possible low-dimensional sub-model of Ŝ was tested against the encompassing model using an
F -test at level ϑ = 0.01. Models not rejected by the F -test comprise the confidence setM.

The confidence intervals constructed as described in §2 for the 22 variables in Ŝ are reported
in Table 1 for α = 0.05 and α = 0.001. These have been ordered according to the proportion
of models fromM to which they belong. For comparison, the lasso and the elastic net, fitted
to all 71 observations and tuned to retain 22 variables, find nine and fourteen of the same
variables. These are indicated in the first column of Table 1. Further explanation of Ŝ andM
is provided in Appendix B, including details of error variance estimation and how asymptotic
calibration ofM is ensured.

There are 34555 models in M, but only 773 of these give estimates of the regression
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variable proportion
β̃v

lower limit upper limit lower limit upper limit
index v of models inM (0.05) (0.05) (0.001) (0.001)
2138 0.218 -0.062 -0.382 0.259 -0.599 0.476

2564L,E 0.218 -1.481 -1.801 -1.160 -2.018 -0.943
1516L,E 0.218 0.343 0.022 0.663 -0.195 0.880
1503L,E 0.217 -0.325 -0.646 -0.0050 -0.863 0.212
1639L,E 0.217 -0.406 -0.726 -0.086 -0.944 0.132
1603 0.217 -1.048 -1.368 -0.728 -1.586 -0.510
4008E 0.217 -0.366 -0.686 -0.046 -0.903 0.172
4002L,E 0.216 -0.505 -0.825 -0.185 -1.043 0.033
1069E 0.216 -0.398 -0.718 -0.078 -0.936 0.140
1436E 0.215 -0.463 -0.783 -0.143 -1.001 0.075
3291 0.215 -0.640 -0.960 -0.320 -1.178 -0.102
978 0.214 -0.259 -0.580 0.061 -0.797 0.278

3514L,E 0.214 1.373 1.053 1.694 0.836 1.911
1297L,E 0.213 0.219 -0.102 0.539 -0.319 0.756
1285 0.213 0.172 -0.148 0.493 -0.366 0.710
3808E 0.213 0.677 0.356 0.997 0.139 1.214
1423 0.212 0.043 -0.277 0.363 -0.495 0.581

1278L,E 0.212 0.147 -0.173 0.467 -0.391 0.685
403 0.211 0.902 0.582 1.44 0.365 1.323
1290 0.211 0.189 -0.131 0.510 -0.348 0.727
1303E 0.211 0.187 -0.133 0.507 -0.351 0.725
1312L,E 0.209 0.490 0.169 0.810 0.048 1.027

Table 1: Indices for variables in Ŝ, ordered by prevalence inM, plus 95% and 99.9% confidence
limits for the associated regression coefficients. Superscripts L and E indicate that the variable
was also found by the lasso and the elastic net fitted to the full sample.

coefficients that are compatible with our nominal 99.9% confidence intervals for the individual
parameters in Table 1. Let R denote this set of 773 models. Since the decision to report a
model in R depends on the simultaneous correctness of the associated confidence intervals, a
Bonferroni-type correction should be applied as in §5.1. In fact, to account for a degree of finite-
sample miscalibration of our intervals due to the term bv, we use the argument of §5.1 with q and
the corresponding value of u estimated from Table 3. Thus the effective coverage probability
of R assuming, optimistically, that the coverage probability forM is exactly calibrated at its
nominal level, is approximately 0.9186. For comparison, the size of the model confidence set
based only on a likelihood ratio test at nominal level 1− 0.9186 = 0.0814 is 15084, illustrating
the advantage of our intervals as an adjunct to confidence sets of models. Any choice between
the 773 models in R would require either additional data or subject matter expertise. Table
2 reports central regions of the confidence “distribution” of models (in the sense of Fisher,
1930; Cox, 1958) obtained as a nested sequence of confidence sets at different levels. The full
confidence set of models is reported in the supplementary material.
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1 - - - - - - - - - - - * - * - - - - - * - -
2 - - - - - - - - * - - - - - * - - * - - - -
3 - - - - - - - - * - - - - * - - - * - - - -
4 - - - - - - - - * - - - - - - - * * - - - -
5 - - - - - - - - * - - - - - * - * - - - - -
6 - - - - - - - - * - - * - - * - - * - - - -
7 - - - - - - - - - - - * - * * - - * - - - -
8 - - - - - - - - - - - * - * * - * - - - - -
9 - - - * * - - - - - - * - - - * - - - - - -
10 - - - - - - - - * - - - - * - - - - - - * -
11 - - - * - - - - * - - - * - - - - - - - - -
12 - - - * - - - - - * - - * - - - - - - - - -
13 - - - * - * * - - - - - - - - - - - - - - -
14 - - - - - - - - * - - - - * - - - - - * - -
15 - - - * * - - - - - - - - - - * - - - - - -
16 - - - - - - - - * - - - - - - - * - - - - *
17 - - - - - - - - * - - - - * * - - * - - - -
18 - - * * - - - - - - - - - - - * - - - - - *
19 - - - - - - - - * - - * - * * * - - - - - -
20 - - * - - * - * - - - - - - - - - - - - - -
21 - - - - - - - - * - - - - * * * - - - - - -
22 - - - - - - - - * - - - - * - - - - - * * -
23 - - - - - - - - * - - - - * - - * - - - - *
24 - - - * * - - - * * - - - - - * - - - - - -
25 - - * * - - - - - * - - - - - * - - - - - *
26 - - - - - - - - * - - - - * - - * * - - - -
27 - - - - * * - * - * - - - - - - - - - - - -
28 - - - - - - - - * - - * - * * - - * - - - -
29 - - - * - - - - * - - * - - - - - * - - - *
30 - - - * - - - - * - - * - - * - - - - - - *
31 - - - * - - - - * - - * - - - - - - - * - *
32 - - - - - - - - * - - - - * * - * - - - - *
33 - - - * * - - - * - * - - - - * - - - - - -
34 - - * * - - - - - * - - - * - * - - - - - -

Table 2: Central region of a confidence distribution of models, obtained from successively smaller values
of α. Shading corresponds to (from dark to light): α ∈ {0.5, 0.4, 0.3, 0.2}. The full confidence set of
models R with coverage probability 0.9186 is reported as supplementary material.
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6 Simulations

6.1 Using covariate data from Bühlmann et al. (2014)

In this section we use the covariate data from Section 5.2 to study the coverage and bias in
a moderately realistic example, and compare the results to the debiased lasso. Simulations of
this nature are a helpful adjunct to the analysis above, to assess the security of the results.

We drew indices for five signal variables at random from the index set {1, . . . , p}, giving
S = {313, 689, 724, 1747, 2470}, fixed across 1000 ensuing Monte Carlo replications. In each, an
artificial outcome was generated as Y = Xβ + ε, where ε is a vector of independent standard
normally distributed random variables. The signal strength was 1 for all signal variables. The
assumption of known error variance used here was relaxed in §5.2. Confidence intervals at the
α ∈ {0.05, 0.01, 0.005, 0.001} nominal levels for each of the 4088 coefficients were constructed
as described in §2, and the coverage probabilities and mean lengths for each coefficient were
estimated as simulation averages. Modal and median simulated coverage probabilities over the
4088 variables and the median of the simulated mean lengths are reported in Table 3. Detailed
summary information is depicted in Figure 1, where the coverage probabilities are plotted
against |bv| and mean length. Yellow stars indicate signal variables. As expected, intervals
with higher coverage (1, right) are on average longer, and the actual coverage decreases as the
bias increases, although relatively slowly.

nominal modal median median 1− u
level coverage coverage length 0.9 0.95 0.98 0.99
0.05 0.951 0.942 3.32 0.939 0.228 0 0
0.01 0.989 0.987 4.37 1 0.994 0.839 0.288
0.005 0.989 0.987 4.77 1 0.999 0.971 0.798
0.001 0.995 0.993 5.59 1 1 1 0.995

Table 3: Summary statistics over the 4088 coefficients of the simulated coverage probabilities
and simulated mean lengths for each confidence interval. The last four columns are the values
of 1− q used in the calculation of §5.1.

For comparison, we also recorded the coverage properties and lengths for the debiased
lasso estimator β̂d (van de Geer et al., 2014) which, for the linear model, is essentially the same
estimator as that of Zhang and Zhang (2014). Since lasso-based procedures require the columns
of X to be on the same scale, we standardized them to unit length before constructing the
debiased lasso in the usual way. In order to compare them to our approach, we then converted
the conclusions back to the scale of interest by dividing the value of each entry of β̂d by the
length of the corresponding column of the original X matrix. Estimates of standard errors were
adjusted by dividing them by the square root of this length. While more appropriate than a
debiased lasso analysis on the original scale, the rescaling operation should not be expected to
be adequate, as neither Wald-based inference nor the debiased lasso is invariant to rescaling.
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Figure 1: Real covariate data with artificially generated outcomes: simulated coverage proba-
bilities plotted against the absolute bias |bv| of the estimator with the the mean length of the
confidence interval over Monte Carlo replications indicated by the shading. Nominal levels are
0.05 (left) and 0.01 (right)

Summary statistics are reported in Table 4 and Figure 2. This demonstrates a degree of over-
coverage, with the lengths of each interval tending to be larger than is necessary to achieve
the nominal level (by comparison with Table 3). Section 6.2 gives a further comparison to the
debiased lasso when the explanatory variables are all of similar magnitudes, so that no rescaling
is required. The empirical coverage probabilities in that idealized setting are close to nominal,
although the procedure appears to be systematically miscalibrated for signal variables, which
is problematic for the type of analysis discussed in §5.1.

nominal modal median median 1− u
level coverage coverage length 0.9 0.95 0.98 0.99
0.05 1 0.998 4.29 1 0.996 0.964 0.889
0.01 1 1 5.64 1 1 0.998 0.992

Table 4: Analogue of first two rows of Table 3 for debiased lasso-based confidence intervals.

We close this comparison with a comment on computation. Construction of our confi-
dence intervals for a single component βv only entails construction of qv, which is essentially
instantaneous because of its closed-form solution. The computational burden associated with
construction of a single interval is therefore approximately independent of p. By contrast, spec-
ification of the debiased lasso estimator and its variance estimate for βv entails construction of
the whole matrix Θ̂Lasso from equation (8) of van de Geer et al. (2014). This involves solving p
nodewise lasso regressions, whose tuning parameters are ideally chosen by cross validation as
in the experiments above. Specifically, there are p+ 1000 tuning parameters chosen by cross-
validation involved in the generation of Figure 2, compared to one tuning parameter fixed at
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Figure 2: Analogue of Figure 1 for debiased lasso-based confidence intervals.

δ = 1 across Monte Carlo replicates for Figure 1, since the performance of our approach was
found to be stable with respect to δ, provided that a value extremely close to zero was not
used. The computation of the confidence set M of §5 is computationally more intensive as
this entails checking all sub-models of dimension ≤ s# of the encompassing model for their
compatibility with the data. With s# = 5, computation can be performed within a minute on
a standard computer for |Ŝ| = 22 but computation time increases rapidly with |Ŝ|, and to a
lesser extent with s#.

6.2 A factorial experiment

In this section we assess how coverage properties and lengths of the proposed intervals are
affected by p, n and the correlation between columns ofX. In particular, we seek to understand
the small-sample behaviour of the procedure in various circumstances.

Our Monte Carlo experiment was designed as follows. An X matrix was obtained by
generating each row xTi for i = 1, . . . , n from a normal distribution of mean zero and covariance
matrix ρ1p1Tp + (1− ρ)I, and the columns were each centered to have sample mean zero. The
matrix X was fixed across subsequent Monte Carlo replications, as was a sparse vector β,
consisting of ones in the last five entries and zeros elsewhere. The values of n, p and ρ were
taken at all 23 combinations of high and low levels as in Table 5, the value of n/p being the
same in two of the four configurations at high and low values of ρ. In each replication, a
vector ε of independent standard normally distributed errors was generated anew and a vector
of outcomes constructed as Y = Xβ + ε. Each of the first 1000 entries of β was treated in
turn as the interest parameter and the coverage properties and lengths, obtained as in §6.1,
are reported in Table 5. These set a = δ = 1 in formula (13). Simulations (not reported here)
for a = 1 and δ = n−1, produced identical numbers to those in Table 5 up to three significant
figures.

Table 6 reports point estimates of the main effects of ρ, n and p, from logistic regression of
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modal median proportion with median median 95th p.c.
ρ n p coverage coverage coverage > 0.9 length ϑ2

w ϑ2
w

0.9 70 2450 0.987 0.980 0.922 1.975 0.0065 0.056
0.9 70 1225 0.990 0.980 0.924 2.000 0.0063 0.055
0.9 35 2450 0.986 0.979 0.898 2.786 0.0133 0.118
0.9 35 1225 0.988 0.981 0.937 2.801 0.0133 0.118
0.1 70 2450 0.989 0.870 0.454 0.663 0.0065 0.056
0.1 70 1225 0.987 0.906 0.508 0.671 0.0063 0.054
0.1 35 2450 0.991 0.836 0.415 0.936 0.0135 0.120
0.1 35 1225 0.988 0.917 0.538 0.947 0.0133 0.120

Table 5: Summary statistics for simulated coverage probabilities and mean lengths of α = 0.01
confidence intervals for the first 1000 coefficients (null variables only). The last two columns are
the median and 95th percentile of the 1000× (p− 1) values of ϑ2

w for the first 1000 coefficients.

the coverage probabilities, and linear regression of the length, using the values in Table 5. For
the coverage probabilities, the multiplicative effects are reported, with estimates close to one
indicating a negligible effect on the coverage. The modal coverage probabilities are essentially
unaffected by ρ, n and p, as would be expected, as for most of the coefficients the approximate
orthogonalization is effective and the statistic used is close to the pivotal one. At these small
values of n, an increase from n = 35 to n = 70 reduces the length of the intervals but appears to
have a negligible effect on the median coverage probability, while increasing p has no effect on
the length but multiplies the odds associated with the median coverage probabilities by 0.624.
This is to be expected: in optimizing the composite non-orthogonality over more variables, the
signal variables play a relatively smaller role in the optimization problem. By far the largest
effect on the median coverage is due to ρ. The median length of the confidence intervals also
increases with the correlation, reflecting expression (5) for the variance of β̃v. See Table 7 for
further analysis on the role of n.

Detailed summary information is in Figure 3, where we plot coverage probabilities in each
of the eight settings as a function of the absolute bias |bv|. The z axis indicated by the colour
is the mean length of the intervals over simulations. Coverage probabilities for signal variables
and their associated values of |bv| are represented as yellow stars. As expected in view of §3, the
coverage probabilities associated with the ρ = 0.1 settings decay more sharply with absolute
bias than with ρ = 0.9. The decrease in |bv| for increasing n, as quantified in Proposition 3, is
also reflected in these plots.

Proposition 3 indicates that the procedure is well calibrated asymptotically for all βv. We
confirm this empirically by taking the worst case from Table 5 (p = 2450 and ρ = 0.1) and
considering the performance over a sequence of n values.

The experiments suggest that while the procedure is valuable in settings with high corre-
lations between columns of X, it is relatively less secure in the almost uncorrelated case when
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estimated main effect
response variable ρ n p

modal coverage 0.917 1.000 1.000
median coverage 6.540 1.094 0.624
median length 1.586 −0.790 −0.015

Table 6: Estimated main effects of ρ, n and p on the properties of our α = 0.01 nominal
confidence intervals. Estimated effects of coverage are multiplicative on the odds scale.

n = 62 n = 122 n = 182 n = 242 n = 302

median coverage 0.801 0.886 0.892 0.922 0.951
proportion > 0.9 0.377 0.478 0.492 0.561 0.655
median length 0.925 0.466 0.324 0.257 0.227

Table 7: Properties of confidence intervals for the ρ = 0.1, p = 2450 setting with increasing n.
Nominal level α = 0.01.

the sample size is small. For any given data, we suggest performing preliminary checks as in
§6.1 as an indication of the reliability of the method on the data at hand.

Performance of the debiased lasso on the same data is summarized in Table 8 and Figure
4. Since the equicorrelation matrix used to generate X does not have associated with it a
sparse inverse, a key assumption for the theoretical guarantees of van de Geer et al. (2014) is
violated. Their approach nevertheless performs favourably for variables with no real effect (see
Table 8 which concerns null coefficients only), although it appears to be more systematically
miscalibrated for signal variables, as illustrated in Figure 4.

19



ρ = 0.9 ρ = 0.1

n
hi
gh

,p
hi
gh

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

4

n
hi
gh

,p
lo
w

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

4

n
lo
w
,p

hi
gh

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

4

n
lo
w
,p

lo
w

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3: Coverage probabilities (vertical axis) for each βv plotted against the associated
absolute bias |bv| (horizontal axis) and the mean length of the confidence interval (colour
axis). High and low values of p are 2450 and 1225 and those of n are 70 and 35. Yellow stars
correspond to signal variables.
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Figure 4: Coverage probabilities of debiased lasso confidence intervals (vertical axis) for each
βv plotted against the absolute value of the Monte Carlo average of β̂d

v − βv (horizontal axis)
and the mean length of the confidence interval (colour axis). Yellow stars correspond to signal
variables.
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modal median proportion with median
ρ n p coverage coverage coverage > 0.9 length
0.9 70 2450 1 0.999 1 1.174
0.9 70 1225 1 0.999 1 1.754
0.9 35 2450 1 1 1 2.176
0.9 35 1225 1 1 1 2.398
0.1 70 2450 1 0.999 0.998 0.647
0.1 70 1225 1 0.999 0.993 0.641
0.1 35 2450 0.998 0.966 0.682 0.924
0.1 35 1225 0.999 0.981 0.868 0.930

Table 8: Modal and median Monte Carlo coverage probabilities and the median of the Monte
Carlo mean length of confidence intervals across the first 1000 coefficients (corresponding to
null variables only) for the debiased lasso with tuning parameter chosen by cross-validation.
The nominal coverage probability is 0.99.

7 Concluding remarks and some open problems

We have proposed a new asymptotically unbiased estimator of each component of β in a linear
regression model. Our estimator has a simple closed form formula and effectively no tuning
parameters, since the stability with respect to δ was found to be high. Importantly, the
estimator does not require all columns of X to be on the same scale. Theoretical conclusions
associated with the procedure are confirmed by simulation in §6.2.

We used these estimates and associated confidence intervals to propose an inferential frame-
work based on refined confidence sets of models. The logical argument used in §5 seems new
and is of the following form. Suppose for a possible contradiction that model m is true. This
leads to standard least squares estimates β̂(m) of the low-dimensional vector β(m) associated
with model m. Under model m, β̂(m) is unbiased and consistent for β(m). Let βv be an
arbitrary entry of β(m). To the extent that the orthogonalization makes bv = 0 our confidence
interval for βv is unbiased and consistent for any model. Thus extremity of any entry of β̂(m),
as calibrated by the associated limits of the corresponding confidence interval, contradicts va-
lidity of m. Our intervals are asymptotically calibrated by Proposition 3 but allowance for
finite-sample miscalibration is discussed in §5.1 and §5.2. In contrast, the usual proposed use
of the debiased lasso requires adjustments to the confidence limits on account of the large
number of comparisons.

An alternative to the orthogonalization described in §2 is to first estimate the set of signal
variables, and modify (6) to

qv(Ŝ) ∈
{

argmin
q∈Rn

(qTxv)−2qT (δIn +
∑
w∈Ŝ\{v}xwx

T
w)q

}
, (24)

where qv = qv({1, . . . , p}). This proposal was assessed in simulations (not reported) when Ŝ
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was constructed using the lasso. The coverage properties depended strongly on the lasso tuning
parameter. A tuning parameter could always be found to yield a median coverage probability
close to nominal. However, the coverage probabilities corresponding to the signal variables was
appreciably reduced.

In §5.2 we used a simple estimator of the error variance, obtained as part of the construction
of calibrated confidence sets of models; see Appendix B. A similar approach, following Fan et al.
(2012), could be based on cross-validation. In factorial experiments estimates of the variance
are obtained from the estimates of the null effects: if (εi)ni=1 are normally distributed and the
approximate orthogonalization via equation 6 was completely effective, then

(qTv qv)−1(qTv xv)2β̃2
v (25)

provide estimates of τ . The composite of p such statistics is, however, contaminated by those
corresponding to signal variables and by those for which the optimization problem (6) fails
to orthogonalize x̃vv to x̃vw for one or more w ∈ S. One might however construct a robust
estimator of variance from something like a trimmed mean of these p estimates.

The extent to which the ideas of §2 apply beyond the linear regression model remains
unclear. In a generalized linear model with canonical link we can write the log-likelihood
function in terms of an interest parameter βv as

`(ψ, λ) = φ−1
n∑
i=1

{
Yi(xi,vβv + xTi,−vβ−v)−K(xi,vβv + xTi,−vβ−v)

}
, (26)

and the function that is linear in the true parameter β is

ηi := g(µi) = {(∂/∂η)K}−1{E(Yi)} = xTi β, (27)

with µi = E(Yi). An estimate η̂ = (η̂1, . . . , η̂n)T can be expressed as

η̂ = Xβ + ε = xvβv +X−vβ−v + ε, (28)

where ε captures the error in estimating η. In the linear model η̂ = Y is an estimator of
Xβ with error satisfying E(ε) = 0, so that (28) is a generalization. Following §2 we might
seek a matrix Av that approximately orthogonalizes the vth column, x̃vv, of X̃v = AvX to its
remaining columns, thereby justifying a marginal regression of Avη̂ on x̃vv to provide inference
on βv. The same reparameterization arguments of §2 apply. The challenge is to specify an
estimator η̂, perhaps highly inefficient, but whose properties are sufficiently well understood.

An alternative generalization might be based on the ideas of Cox and Reid (1987). The
possibility for this in the linear model is apparent from equation (8), where the factor multi-
plying βv is the least squares estimate of the coefficient vector in a regression of xv on X−v.
The introduction of δIn would accommodate p > n by replacing this least squares estimate by
a ridge regression estimate (Hoerl and Kennard, 1970) and would yield a parameter approxi-
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mately orthogonal to βv when p > n. Further analysis is needed to understand how far this
idea generalizes, as our preliminary calculations for a logistic regression setting (not reported)
suggested some difficulties. To be useful, any subsequent operation would have to exploit the
induced sparsity in the relevant column of the Fisher information matrix similarly to Ning
and Liu (2017), who assumed such sparsity in the inverse of this matrix without preliminary
parameter-orthogonalizing steps.
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was based on highly efficient and publicly available R code written by Dr. Rajen Shah. The
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(EP/T01864X/1) and the Natural Sciences and Engineering Council of Canada.

A Proofs for Section 3

A.1 Proof of Proposition 1

Proof. Let Mδ = (δIn +X−vX
T
−v) and write the objective function in equation (6) as m = gh,

where g(q) = (qTxv)−2 and h(q) = qTMδq. The associated gradient field evaluated at q is
∇m = ∇(gh) = g∇h+ h∇g, or more explicitly

∇m = 2(qTxv)−2Mδq − 2(qTxv)−3(qTMδq)xv. (29)

Any stationary point, q∗v say, solves

(q∗Tv xv)Mδq
∗
v = (q∗Tv Mδq

∗
v)xv. (30)

Since the right hand side belongs to the one-dimensional subspace of Rn spanned by xv,
we infer by inspection of the left hand side that (δIn +X−vX

T
−v)q∗v spans the same subspace.

Equivalently, there exists an a ∈ R\{0} such thatMδq
∗
v = axv. The matrixMδ is invertible for

any values of n and p and any δ > 0 bounded away from zero, since the minimum eigenvalue
of the Gramian matrix X−vXT

−v is zero and for any eigenvalue-eigenvector pair for X−vXT
−v,

(γk, ξk) say,
(δIn +X−vX

T
−v)ξk = (δ + γk)ξk.

Thus write
q∗v = a(δIn +X−vX

T
−v)−1xv. (31)

Upon substitution into equation (30) we verify that any such choice of a supplies a valid
solution to (30).

This set of solutions consists of local minimizers of m if and only if ∇∇Tm(q∗v) is non-
negative definite for any q∗v of the form given in equation (31). Equivalently zT {∇∇Tm(q∗v)}z ≥
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0 for any z ∈ Rn. Otherwise the solutions q∗v represent other critical points. Let z ∈ Rn. The
corresponding directional derivative, ∇zm(q) := zT (∇m), of m at q is

∇zm(q) = 2(qTxv)−2zTMδq − 2(qTxv)−3(qTMδq)zTxv. (32)

For u, z ∈ Rn,

∇u∇zm(q) = uT {∇(zT∇m)} = −4(qTxv)−3(zTMδq)(uTxv) + 2(qTxv)−2uTMδz

+ 6(qTxv)−4(qTMδq)(zTxv)(uTxv)− 4(qTxv)−3(uTMδq)(zTxv),

so that,
∇z∇zm(q∗v) = 2{xTvM−1

δ xv}−2zT
[
Mδ − {xTvM−1

δ xv}−1xvx
T
v

]
z. (33)

The conclusion follows because, for any function f : Rn → R, zT {∇∇T f(q)}z = ∇z∇zf(q).

A.2 Proof of Proposition 2

Proof. In view of the well known matrix identity

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1,

we see that

P v(a, δ) = a(δIn +X−vX
T
−v)−1 = aδ−1(In −X−v(δIp−1 +XT

−vX−v)−1XT
−v). (34)

On setting a = δ and taking the limit as δ → 0+,

P v = In −X−v lim
δ→0+

(δIp−1 +XT
−vX−v)−1XT

−v = In −X−vX+
−v, (35)

where X+
−v is the Moore-Penrose pseudo-inverse of X−v, the unique matrix satisfying the

equations (Penrose, 1955):

X−vX
+
−vX−v = X−v (X−vX+

−v)T = X−vX
+
−v (36)

X+
−vX−vX

+
−v = X+

−v (X+
−vX−v)T = X+

−vX−v.

It follows from these equations that In −X−vX+
−v is symmetric and equal to its square, from

which we conclude that it is an orthogonal projection operator into the kernel of XT
−v.

A.3 Proof of Proposition 3

Proof. Recall that bv =
∑
w∈Sϑwβw, where ϑw = (qTv xv)−1qTv xw. When (p − 1) > n, there

exists a (p − 1)-dimensional vector b, say, (p − 1) − n entries of which are zero, such that
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xv = X−vb. Thus, on substituting the expression (13) for qv,

bv = {xTv (δIn +X−vX
T
−v)−1xv}−1βT−vX

T
−v(δIn +X−vX

T
−v)−1xv

= {bTXT
−v(δIn +X−vX

T
−v)−1xv}−1βT−vX

T
−v(δIn +X−vX

T
−v)−1xv. (37)

For any (p − 1)-dimensional vector z whose entries are bounded away from zero and of order
h(n, p, δ), to be discussed below, bT z � n · h(n, p, δ). Similarly, by sparsity of β, βT z �
s·h(n, p, δ). Since δ is bounded away from zero, so are the entries ofXT

−vδ(δIn+X−vXT
−v)−1xv =

XT
−vP

v(δ, δ)xv by equation (15). It follows on multiplying and dividing (37) by δ that bv =
O(s/n).

It remains to consider the behaviour of

qTv qv
(qTv xv)2 =

xTv (δIn +X−vX
T
−v)−1(δIn +X−vX

T
−v)−1xv

(xTv (δIn +X−vXT
−v)−1xv)2

=
δxTv δ(δIn +X−vX

T
−v)−1(δIn +X−vX

T
−v)−1xv

(xTv δ(δIn +X−vXT
−v)−1xv)2 .

With b the same vector as defined above, the last line of the previous equation can be written
as

δbTXT
−vP

v(δ, δ)z
(bTXT

−vP
v(δ, δ)xv)2 �

δnh(n, p, δ)
(nh(n, p, δ))2 ,

where z = (δIn +X−vX
T
−v)−1xv and the rate of convergence arises because both XT

−vP
v(δ, δ)z

and XT
−vP

v(δ, δ)xv have entries of order h(n, p, δ). It follows that the term ignored by using
Un(βv) in place of Sn(βv) is

(qTv xv)bv
(τqTv qv)1/2 = O

( s

n1/2 ·
h(n, p, δ)1/2

δ1/2

)
.

A.4 Proof of Proposition 4

Proof. Let qj,v denote the jth entry of qv and write Sn(βv) as
∑n
j=1 ξj , where

ξj := (qTv qv)−1/2qj,vεj .

We have E(ξj) = 0 and var(
∑
j ξj) = τ . To establish a Lindeberg-Feller central limit theorem

(e.g. Kallenberg, 1997, Theorem 4.12) for
∑
j ξj , we need only verify the Lindeberg condition,

i.e., for all η > 0,

lim
n→∞

τ−1
n∑
j=1

E(ξ2
j I1{|ξj | > ητ1/2}) = 0.

Let cn denote a lower bound on qTv qv. Note that cn is bounded away from zero because
otherwise the evaluation of the objective function in (6) at qv is (positive and) unbounded,
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contradicting the definition of qv as a minimizer. Let ζn = ‖qv‖max. Then |ξj | ≤ c−1
n ζn|εj | and

the event {|ξj | > ητ1/2} is contained in the event {|εj | > ητ1/2cnζ
−1
n }. It follows that

τ−1
n∑
j=1

E(ξ2
j I1{|ξj | > ητ1/2}) ≤ τ−1

n∑
j=1

E(ξ2
j I1{|εj | > ητ1/2cnζ

−1
n })

= τ−1(qTv qv)−1
n∑
j=1

q2
j,vE(ε2

j I1{|εj | > ητ1/2cnζ
−1
n })

= τ−1E(ε2
j I1{|εj | > ητ1/2cnζ

−1
n }).

Let δ = ητ1/2cnζ
−1
n . For any γ > 0,

E(ε2
j I1{|εj | > δ}) ≤ E(ε2

jδ
−γ |εj |γ I1{|εj | > δ}) ≤ δ−γE(|εj |2+γ).

Thus, since E(|εj |2+γ) <∞ and ζγn = ‖qv‖γmax = o(‖qv‖γ2) � cγn,

lim
n→∞

τ−1
n∑
j=1

E(ξ2
j I1{|ξj | > ητ1/2}) = lim

n→∞
(ητ1/2cnζ

−1
n )−γE(|εj |2+γ) = 0

and the Lindeberg condition is verified. That ‖qv‖γmax = o(‖qv‖γ2) for any γ > 0 follows from
(13), which ensures that the number of non-zero elements of qv increases with n.

Equation (19) is an application of the Berry-Esseen Theorem for non-identically distributed
random variables (e.g. Petrov, 1995, Chapter 5) with the constant C improved by Tyurin
(2010).

A.5 Proof of Proposition 5

Proof. The second term in the decomposition

sup
z∈R
|pr{V −1/2

n Sn(βv) ≤ z} − Φ(z)| ≤ sup
z∈R
|pr{V −1/2

n Sn(βv) ≤ z} − pr{τ−1/2Sn(βv) ≤ z}|

+ sup
z∈R
|pr{τ−1/2Sn(βv) ≤ z} − Φ(z)| =: I + II, (38)

is bounded by Cen using Proposition 4.
For any t > 0, define the events

E1(t) := {(τ−1/2 − V −1/2
n )Sn(βv) ≤ t},

E2(t) := {|(V −1/2
n − τ−1/2)Sn(βv)| ≤ t}.

On the event {V −1/2
n Sn(βv) ≤ z} ∩ E1(t),

τ−1/2Sn(βv)− t ≤ V −1/2
n Sn(βv) ≤ z.
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Thus {V −1/2
n Sn(βv) ≤ z} ∩ E1(t) ⊆ {τ−1/2Sn(βv) ≤ z + t}, and it follows on writing

{V −1/2
n Sn(βv)} =

{
{V −1/2

n Sn(βv)} ∩ E1(t)
}
∪
{
{V −1/2

n Sn(βv)} ∩ Ec1(t)
}

that
pr{V −1/2

n Sn(βv) ≤ z} ≤ pr{τ−1/2Sn(βv) ≤ z + t}+ pr{Ec1(t)}, (39)

where Ec1(t) denotes the complement of E1(t). Later t will be replaced by a decreasing func-
tion of n, thus control over I in (38) requires an asymptotically matching lower bound on
pr{V −1/2

n Sn(βv) ≤ z} as t→ 0. To this end, consider

V −1/2
n Sn(βv) ≤ τ−1/2Sn(βv) + |(V −1/2

n − τ−1/2)Sn(βv)|,

so
{V −1/2

n Sn(βv) ≤ z} ⊇ {τ−1/2Sn(βv) + |(V −1/2
n − τ−1/2)Sn(βv)| ≤ z} =: A.

Furthermore,
A ⊇ A ∩ E2(t) ⊇ {τ−1/2Sn(βv) ≤ z − t} ∩ E2(t),

so that
pr{V −1/2

n Sn(βv)} ≥ pr{τ−1/2Sn(βv) ≤ z − t}pr{E2(t)} (40)

and equations (39) and (40) together give

sup
z∈R
|pr{V −1/2

n Sn(βv) ≤ z} − pr{τ−1/2Sn(βv) ≤ z}| (41)

≤ sup
z′:|z−z′|≤t

max
{
|pr{τ−1/2Sn(βv) ≤ z′}pr{E2(t)}− pr{τ−1/2Sn(βv) ≤ z}|,

|pr{τ−1/2Sn(βv) ≤ z′} − pr{τ−1/2Sn(βv) ≤ z}|+ pr{Ec1(t)}
}

for any t > 0. Additionally, by Proposition 4 and Taylor series expansion of the standard
normal distribution function,

sup
z,z′:|z−z′|≤t

|pr{τ−1/2Sn(βv) ≤ z′} − pr{τ−1/2Sn(βv) ≤ z}|

� sup
z,z′:|z−z′|≤t

|Φ(z′)− Φ(z)|+ en � t+ en.

As a function of t→ 0, we have

pr{Ec1(t)} � pr{|(V −1/2
n − τ−1/2)Sn(βv)| ≤ t} = 1− pr{E2(t)}

so that pr{E2(t)} → 1 at the same rate in t as pr{Ec1(t)} → 0. Let dn be a decreasing function
and gn a non-decreasing function, both to be specified. For two arbitrary constants c1 and c2,
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consider the event

D := {|(V −1/2
n − τ−1/2)||Sn(βv)| > c1c2dngn} = {D ∩ B} ∪ {D ∩ Bc},

where
B = {|Sn(βv)| ≤ c2gn} = {|τ−1/2Sn(βv)| ≤ τ−1/2c2gn}.

On B, |Sn(βv)/c2gn| ≤ 1, yielding D ∩ B ⊆ {|V −1/2
n − τ−1/2| > c1dn}. Thus

pr{|(V −1/2
n − τ−1/2)Sn(βv)| > c1c2dngn} ≤ pr(|V −1/2

n − τ−1/2| > c1dn) + pr(Bc), (42)

where pr(Bc) � {1−Φ(gn)}+ en by Proposition 4. The conclusion follows by combining (38),
(41) and (42).

B Details of the analysis of §5.2

The cross correlations of all potential explanatory variables were examined and any adjacent
variables whose correlations exceeded 0.95 were treated as a single variable for the purpose of
constructing Ŝ, with the first of each such pair being retained in the analysis. Among the 4088
variables initially present, 61 were discarded on these grounds, leaving 4027 variables.

We implemented a refinement of Cox and Battey’s method, as Battey and Cox (2018)
demonstrated that using all the available data to identify first the encompassing model Ŝ and
then the confidence set of modelsM leads to lower than nominal coverage for the confidence
set of models. Thus we used a sample splitting procedure, which serves to give a better
calibrated setM but also enables unbiased estimation of error variance for construction of the
confidence intervals for components of β. The sample of size n = 71 observations was randomly
partitioned into subsets, I1 and I2, say, of sizes n1 = 35 and n2 = 36. In the terminology of
Cox and Battey (2017), the encompassing model was identified using I1 for the cube reduction
and I2 for the square reduction. The confidence set of models and estimate of error variance
was constructed using I1.

To improve the stability of this sample-splitting procedure, we repeated it 1000 times, re-
randomizing the positions of the variable indices in the cube each time. The subset Ŝ was
taken to be all those variables that survived the two-stage procedure in at least half of these
randomizations. The confidence intervals constructed as described in §2 for the 22 variables
in Ŝ are reported in Table 1. These have been ordered according to the proportion of models
from M to which they belong. For comparison, the lasso and the elastic net, fitted to all 71
observations and tuned to retain 22 variables, find nine and fourteen of the same variables.
These are indicated in the first column of Table 1.

From the variables constituting the models in Table 2, three were the first in a string of
two or more variables whose empirical correlations exceeded 0.95 (see the first paragraph of
this subsection). As far asM is concerned, such variables are essentially interchangeable. The
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affected variables are 1278 (paired with 1279), 1285 (paired with 1286, 1287, 1288 and 1289)
and 4002 (paired with 4003, 4004, 4005 and 4006).
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