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Some Perspectives on Inference in High
Dimensions
H. S. Battey and D. R. Cox

Abstract. With very large amounts of data, important aspects of statistical
analysis may appear largely descriptive in that the role of probability some-
times seems limited or totally absent. The main emphasis of the present paper
lies on contexts where formulation in terms of a probabilistic model is feasi-
ble and fruitful but to be at all realistic large numbers of unknown parameters
need consideration. Then many of the standard approaches to statistical anal-
ysis, for instance direct application of the method of maximum likelihood,
or the use of flat priors, often encounter difficulties. After a brief discussion
of broad conceptual issues, we provide some new perspectives on aspects of
high-dimensional statistical theory, emphasizing a number of open problems.
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1. INTRODUCTION

In broad terms, probability may be needed to describe a
context in the initial planning phases of an investigation,
in particular to assess measurement methods, and at least
in outline to check that the proposed data are potentially
capable of addressing the questions of concern. Then for
the various later phases of analysis, leading to the presen-
tation of conclusions and their consequences, an implicit
or explicit probability base is typically needed, allowing
incisive exposition of conclusions and some assessment
of their security. The contrast and interplay between prob-
ability as a representation of empirical phenomena and
as a tool for representing uncertainty of knowledge raises
subtleties even with small amounts of data, only enhanced
with delicate changes of emphasis when there are very
large amounts of data.

In the current paper, we restrict ourselves to data for
which the broad form of probabilistic model appropri-
ate for interpretation has been temporarily agreed. We
study situations with n study individuals regarded as in-
dependent and with some common underlying structure.
On each individual there are q variables representing out-
comes and p variables measuring features that could po-
tentially influence the outcome if hypothetically altered,
keeping all other features at their given levels. Even in this
relatively simple context, whenever there is not an exact
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solution, a number of distinct formulations occur accord-
ing to which of (n, q,p) are fruitfully treated as large.
Theoretical questions can then be studied from at least
two perspectives. For what values of (n, q,p) do specific
procedures of analysis being studied give numerical pro-
cedures of acceptable statistical behaviour? When is fur-
ther refinement needed?

2. BROAD CONCEPTUAL ISSUES

2.1 Two Roles of Conditioning

Suppose that we regard as provisionally given a para-
metric probability model for the data specified in terms of
a parameter vector (ψ,λ), where ψ is of specific subject-
matter interest and λ is a vector of nuisance parameters.
Consideration of conditional distributions can arise in two
quite different ways.

First, for arbitrary fixed ψ there may be a minimal suf-
ficient statistic for λ, and then the distribution of the data
conditionally on that statistic does not depend on λ and so
is potentially available for inference about ψ . This is un-
controversial unless the conditional distribution is nearly
degenerate pointing perhaps to inadequacies of the data or
to too demanding a specification.

The second quite distinct possibility is that even though
there are no nuisance parameters, or these have in effect
been eliminated from the discussion, the minimal suffi-
cient statistic is of higher dimension than the parameter
space, the difference in dimensionality being dA, the di-
mension of a statistic A. Then A, part of the minimal suffi-
cient statistic, is called ancillary if its distribution does not
depend on the parameter, ψ . The qualitative interpretation
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is that the observed value a has bearing on the precision
achievable in the particular set of data under analysis, as
contrasted with that in some larger less tightly specified
context.

This is of common relevance in regression type prob-
lems, sometimes even in simple linear regression. Anal-
ysis concerning the regression coefficient is based condi-
tionally on the observed values of the explanatory vari-
ables even if these have a known probability distribution;
precision is to be assessed through the values realized,
not by those that would be observed in some hypothetical
future realizations. In fact, for standard low-dimensional
linear regression, by the form of the minimal sufficient
statistic for the regression coefficients and error variance,
we need condition only on the mean and sum of squares
and products of the explanatory variables. The key point
is to calibrate our assessments of uncertainty by behaviour
in hypothetical repetitions as relevant as is feasible for the
specific data under study. See Buja et al. (2019) for a con-
trary view, rebutted by Davison, Koch and Koh (2019).

2.2 Significance Testing as a Primary Mode of
Inference

This paper concentrates on considerations that arise
when a relatively complicated model is needed, but first
we give a single example illustrating difficulties in a no-
tionally very simple situation which therefore may, possi-
bly unexpectedly, endanger larger problems.

In some forms of bioassay (Bliss, 1935), estimation of
a key property, ED50, of a dose-response function is es-
sentially equivalent to the estimation of the ratio of two
normal means. Here, in an idealized form of the original
problem, observed random variables (Y1, Y2) are indepen-
dently normally distributed with means (μ1,μ2) and unit
variance, and interest lies in ψ = μ2/μ1. Depending on
the data, reasonable conclusions about ψ may be that it
lies in the inside of an interval, the outside of an interval
or the whole real line. The latter is not a vacuous state-
ment but a strong warning about the limitations of the
data. This example exposes difficulties with over-formal
interpretations of the Neyman–Pearson theory, which re-
quire attainment of a prespecified unconditional coverage
probability.

The situation just mentioned, and other similar anoma-
lies, arise naturally in applied contexts. They exhibit a
general formulation in which estimation by some form of
confidence region may unexpectedly be misleading. For
general discussion, primary emphasis should therefore be
on assessing whether the data are consistent with an ar-
bitrarily specified value of the unknown parameter of in-
terest. Often but not always this will lead to confidence
intervals or closed regions.

A central question even in low dimensional situations
concerns the most fruitful and secure summarization of

evidence about a parameter of interest, which may in par-
ticular be scalar. While specification by a series of nested
confidence limits or regions at various levels may often
seem an appealing resolution, it cannot be regarded as a
satisfactory general approach because of the possibility
that in some realizations, specifications by confidence in-
tervals or limits are inappropriate. Therefore, we prefer to
regard as the primary base for interpretation a series of p-
values corresponding to possible values of the parameter
of interest. This may indicate that all possible values are
reasonably consistent with the data, that none is, that val-
ues within certain designated subsets are acceptable, and
so on.

The distinction between applications of and motiva-
tions for various types of significance tests is discussed
in detail by Cox (2020).

3. THREE BROAD ASYMPTOTIC REGIMES

For a preliminary discussion, we do not distinguish be-
tween parameters of direct interest and nuisance param-
eters needed to complete the specification but of no spe-
cial concern. Nor do we differentiate between potential
explanatory variables and outcomes, in effect setting q to
zero. It is then useful to separate the following situations.
As n increases:

(i) p is fixed or p(n)/n → 0;
(ii) p(n)/n → κ ∈ (0,1];

(iii) p(n)/n diverges or tends to a limit greater than
one.

These categorizations belong to formal theory. For any
notional limiting operation, α → α∗ say, applicability of
procedures thus justified often extends to values of α far
from α∗. This is typified by Stirling’s approximation to
the gamma function �(x), remarkably accurate for all
x ≥ 1 in spite of the notional requirement that x → ∞.
A natural question emerges: what are the fundamental
limits of inference, in terms of the maximum permissi-
ble value of κ or similar, beyond which inferential tools
developed under regime (i) deteriorate beyond use? Par-
tial results in specific contexts have been obtained, inter
alia, by Lei, Bickel and El Karoui (2018), Sur and Candès
(2019), Fan, Demirkaya and Lv (2019), Tang and Reid
(2020) and Anastasiou and Reinert (2020).

Regime (i) is commonly referred to as low dimensional,
(ii) as high dimensional and (iii) as ultra-high dimen-
sional. The objective is to produce approximations and
associated statistical recommendations that perform well
for realistic values of (p,n). Thus, if a problem entails
p ≥ n, regime (ii) or (iii) is implicated by a theoretical
analysis for large n.

We focus primarily on the special issues raised by
regimes (ii) and (iii). Inference under regime (i) is
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discussed in detail elsewhere. For instance, Barndorff-
Nielsen and Cox (1994) emphasize Fisherian ideas and
approaches to inference on interest parameters in the pres-
ence of nuisance parameters. Their treatment in Chap-
ters 4–8 involves modifying likelihood-based statistics,
modifying the associated limiting distributions, or both,
such that the distributional approximation holds to a
higher order of accuracy in n than would hold for the un-
modified statistic/distribution pair. Thus, while formally
justified under regime (i), the errors in the distributional
approximations decay, by construction, faster than n−1/2,
the approximation error rate in the central limit theorem.
The implication is that, relative to the number of nui-
sance parameters, a smaller sample size is needed in the
adjusted procedure for an approximation with the same
accuracy as the unadjusted procedure. So-called higher-
order inference is therefore relevant in the types of ap-
plications for which regime (ii) could alternatively be
considered. Tang and Reid (2020) provide some formal
analysis of the extent to which distributional approxima-
tions for modified likelihood procedures, originally justi-
fied under regime (i), continue to hold under regime (ii).

4. INFERENCE IN HIGH DIMENSIONS

4.1 Consequences of Parameterization

When the number of nuisance parameters is apprecia-
ble relative to the number of independent observations,
maximum likelihood may produce severely biased esti-
mators of interest parameters. Bartlett (1937) gave a sim-
ple yet striking example. In a normal theory linear model
the maximum likelihood estimate of the unknown vari-
ance is the residual sum of squares divided by sample size.
In the extreme case of matched pairs with pair-specific
means and equal variances, this would have expectation
one-half the true variance. This example is sometimes re-
ferred to as a Neyman–Scott problem. In view of the con-
nection between maximum likelihood and Bayesian in-
ference with flat priors, together with the extensive use
of Markov chain Monte Carlo to fit large Bayesian mod-
els, Bartlett’s (1937) example highlights the considerable
potential for highly miscalibrated procedures in high di-
mensions.

The analysis of the saturated n = 2k factorial experi-
ment is a helpful further example. Normally distributed
outcomes Y1, . . . , Yn are observed on each of the possi-
bly large number n of treatment combinations and the
corresponding vector of treatment combination means
is denoted by μ. An alternative representation is μ =
H−1τ , where H is a 2k × 2k Hadamard matrix and τ =
(2kτ1,2k−1τ2, . . . ,2k−1τn) where τ1 = μ(1) is the overall
mean and τ2, . . . , τn are contrasts, defined as main effects
and interactions of various orders; each such is a con-
trast of two groups of n/2 observations. See Cox and Reid

(2000, pp. 110–116) for a detailed account of the analy-
sis of 2k factorial experiments. The maximum likelihood
estimator of the mean vector μ is the single observation
Y = (Y1, . . . , Yn)

T while that of the contrasts is the av-
erage of 2k mean differences and has variance 4σ 2/n,
where σ 2 is the common variance of Yi , i = 1, . . . , n.
Thus while the maximum likelihood estimators of the
means are unbiased but inconsistent, the estimators of the
contrasts are consistent at the usual low dimensional para-
metric rate n−1/2, even though there are n − 1 of them.

As an aside, this illustrates a version of Stein’s (1956)
problem. The contrast estimators τ̂2, . . . , τ̂n are indepen-
dent by the orthogonality of the Hadamard matrix and
therefore, on using Markov’s inequality after exponential
transformation, Jensen’s inequality and the moment gen-
erating function of normal random variables,

pr
(

max
2≤j≤n

|τ̂j − τj | > t
)

≤ (n − 1) exp
{−nt2/

(
32σ 2)}

.

This is o(1) provided that t � 2σ {8n−1 log(n)}1/2. Thus,
the vector of contrast estimators is consistent in the maxi-
mum norm but not in the stronger Euclidean norm. How-
ever, this is not the point we wish to emphasize here,
rather that some parameterizations are conducive to good
behaviour while others are not.

The analysis of factorial experiments is not the only ex-
ample illustrating this problem. Consider m normally dis-
tributed matched pairs (Yi0, Yi1) with known unit variance
and means (λi, λi + δ). There are n = 2m observations in
all. Write Z = MY , where Y is n × 1, Z is m × 1 and
E(Z) = 
 = δ1m so that M is the m × n matrix whose
j th row has (1,−1) in its (2j − 1)th and 2j th positions
and zeros elsewhere. Suppose an initial formulation has
E(Y ) = X
, that is, X = (MT M)−1MT and the stan-
dardized information matrix for 
 is XT X = 2I . Now
suppose we make a nonsingular linear transformation in
the parameters, writing � = L
 so that E(Y ) = XL−1�

and the standardized information matrix for � is(
L−1)T

XT XL−1 = 2
(
L−1)T

L−1.

If the errors in the original model are independent and
identically distributed with finite variance and the sum of
squares of the elements of each row of L−1 diverge as n

increases, then, under standard regularity conditions, any
finite subset of components of �̂ is asymptotically nor-
mal. The argument illustrates that there is nothing special
about the matched pair problem in that, for any normal-
theory linear problem with known variance and the num-
ber of parameters increasing proportionally to n, standard
results will apply unless we choose, as is always possi-
ble, to have parameter components that are perverse. The
only special feature of the matched pair problem is that
the perverse components are directly interpretable.

For a more general formalization, let θ be coordinates
of a parameterization, if one exists, in which the (s, s)th
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entry of the associated Fisher information matrix satis-
fies i

(θ)
ss (θ̂ ) = O(n) for all s = 1, . . . , p, where θ̂ is the

maximum likelihood estimate. In other words, we sup-
pose there exists a parameterization in which the vari-
ances of the maximum likelihood estimates decay at the
usual parametric rate. Motivated by the saturated factorial
experiment, consider a linear nonsingular transformation
to ψ = ψ(θ) such that the elements of the transformation
matrix satisfy

(1)
∂θs

∂ψt
= γtsBs, t = 1, . . . , p

where Bs = O(p−1) and γts ∈ {−1,1} for all s. The in-
formation matrix transforms as

i
(ψ)
tt

{
ψ(θ̂)

}
= ∑

s,r

∂θs

∂ψt
i(θ)
sr (θ̂ )

∂θr

∂ψt

= ∑
s

(
∂θs

∂ψt

)2
i(θ)
ss (θ̂ ) + 2

∑
s

∑
r>s

∂θs

∂ψt
i(θ)
sr (θ̂ )

∂θr

∂ψt
.

The first term is
∑

s B2
s i

(θ)
ss (θ̂ ) = O(n2/p2) = O(1) if

p � n. The second is

2
∑
s

∑
r>s

γtsγtrBsBri
(θ)
sr (θ̂ ),

which is O{maxs,r i
(θ)
sr (θ̂ )} almost everywhere in repa-

rameterization space, but can always be made to disap-
pear by suitable choices of the γts terms. This shows that,
starting from a sensible parameterization, formal manoeu-
vres may lead to perverse parameterizations in which the
information does not accumulate with the sample size.

The transformation (1) was chosen by working back-
wards from the contrasts parameterization of the n = 2k

factorial experiment, but the conclusion holds more gen-
erally. On writing θ = τ , the vector comprising the popu-
lation mean and factorial contrasts, and ψ = μ, the vector
of population treatment means, the associated transforma-
tion matrix with entries described by (1) is (∂θ/∂ψ) =
C ◦ H where ◦ denotes the Hadamard product, H is
a Hadamard matrix with entries in {−1,1} and C is a
2k × 2k matrix whose first column entries are 1/2k−1 =
2n−1 = O(p−1) and whose remaining entries are 1/2k =
n−1 = O(p−1).

There are two broad questions:

(a) Why and when do standard inferential procedures
such as maximum likelihood fail in high dimensions? In
what sense do they fail and in which directions of param-
eter space?

(b) What is the resolution to any such failure?

These questions remain mostly unanswered but we pro-
vide some general insights in Section 4.2 and highlight
open problems in Section 5.3.

4.2 Likelihood: Two Sources of Bad Behaviour in
High Dimensions

The previous section illustrates two types of problem
that may arise in high dimensions. One is concentration of
the likelihood function near a wrong point due to the nui-
sance parameters, as exemplified by the maximum likeli-
hood estimator of the variance in Bartlett’s (1937) exam-
ple. The other is failure to concentrate at all, as exempli-
fied by the maximum likelihood estimators of the pairwise
means in the same example with known variance, and by
that of the treatment combination means in the factorial
experiment. Between these two extreme situations a com-
bination of the two aspects operate.

With ψ an interest parameter and λ = (λ1, . . . , λp−1)

a vector of nuisance parameters, let s be a jointly mini-
mal sufficient statistic for (ψ,λ). To allow the situation in
which s does not consist of p separate sufficient statistics
for each parameter, write s = (sψ, s−ψ) = (sj , s−j ) for
j = 1, . . . , p − 1, where sψ is a minimal sufficient statis-
tic for ψ and sj is minimal sufficient for λj . Here we sup-
press the explicit form of randomness and refer instead to
the sensitivity of ψ̂ to perturbations in an arbitrary scalar
component x of the observed data. The total derivative of
ψ̂ with respect to x is

(2)
dψ̂

dx
= ∂ψ̂

∂sψ

dsψ

dx
+

p−1∑
j=1

∂ψ̂

∂λ̂j

∂λ̂j

∂sj

dsj

dx
,

with the obvious changes if any of the terms sψ or sj
(j = 1, . . . , p − 1) are not scalar valued. This isolates two
sources of variation. One is due to sensitivity of the suffi-
cient statistic sψ to perturbations in the data. A second is
due to sensitivity of sufficient statistics sj combined with
sensitivity of ψ̂ to small variations in λ̂j . The latter sit-
uation is characterized by the geometry of the likelihood
function, as illustrated below. A further aspect, strongly
attributable to dimension, is that the second pair of sensi-
tivities might be individually small but collectively large
on summation of p − 1 nuisance parameter contributions.

To understand which coordinates of parameter space
correspond to large values of |∂ψ̂/∂λ̂j |, a geometric il-
lustration is helpful. In low dimensional contexts these
geometric properties of the log likelihood function � are
sources of finite sample bias, which disappears asymptot-
ically.

Large deviations in an estimate of ψ would arise due to
sampling error in other estimates λ̂ = (λ̂1, . . . , λ̂p) if the
corresponding contour {(ψ,λ) : ∇ψ�(ψ,λ) = 0} curves
in the ψ direction as one moves in one or more of the
λ directions. Intuitively, if the contour is (locally) flat as
a function of the nuisance parameter(s), then the maxi-
mum likelihood estimator of ψ is the same regardless of
whether the log likelihood is evaluated at the true value of
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FIG. 1. Contours {(ψ,λ) : ∇ψ�(ψ,λ) = c} for different values of c

for one realization of �, the log likelihood function corresponding to
10 observations from a normal distribution of mean 4 and variance
4. Dashed lines correspond to ψ being the mean parameter and solid
lines to ψ being the variance parameter.

λ or at an estimate. Figure 1 gives one of the simplest il-
lustrations of the problem for estimation of the mean and
variance of a normal distribution. This gives geometric
insight into what is known from simple algebra: estima-
tion of the mean is unbiased for any sample size, while
estimation of the variance suffers small-sample bias. As
is clear from equation (2), unless there are cancellations,
the problem is amplified by there being a large number
of such parameters, as in the normal-theory linear model
with an appreciable number of regression coefficients and
unknown error variance, treated as the interest parame-
ter. For average behaviour of ψ̂ , deviations of λ̂j in both
directions are relevant, so that finite sample bias is exac-
erbated if the curvature is symmetric about λ̂j .

The randomness from the sampling was suppressed
in equation (2), but is captured in essence by the terms
dsψ/dx and dsj/dx. Suppose that X1, . . . ,Xn are inde-
pendent or weakly dependent random variables, not iden-
tically distributed in general. The fluctuations of a statistic
s(X1, . . . ,Xn) around its mean Es(X1, . . . ,Xn) are small
provided that the function s is not too sensitive to any of
the coordinates xi . For bounded s, a two-sided general-
ization of McDiarmid’s inequality (e.g., Vershynin, 2018,
p. 40) provides the following upper bound.

LEMMA 1. Let X1, . . . ,Xn be independent. For all
t > 0,

pr
(∣∣s(X1, . . . ,Xn) − Es(X1, . . . ,Xn)

∣∣ > t
)

≤ exp
(−t2/2v

)
,

where v = supx{
∑n

i=1 |Dis(x)|2} and

Dis(x) = sup
z

s(x1, . . . , xi−1, z, xi+1, . . . , xn)

− inf
z

s(x1, . . . , xi−1, z, xi+1, . . . , xn).

Lemma 1 is unhelpful if s is not a uniformly bounded
function of its arguments. Weaker inequalities, control-
ling only the size of the fluctuations around their mean
rather than their distributions, are usually in terms of the
expected squared Euclidean norm of the gradient of s and
are called Poincaré inequalities. Another simple bound is

(3) var
{
s(X1, . . . ,Xn)

} ≤ E

n∑
i=1

vari
{
s(X1, . . . ,Xn)

}
,

with equality if s is linear, where

vari
{
s(x1, . . . , xn)

}
= var

{
s(x1, . . . , xi−1,Xi, xi+1, . . . , xn)

}
,

is the variance of s with respect to Xi only, the other vari-
ables fixed.

Consider equation (2) for the means and contrasts pa-
rameterization of the n = 2k factorial experiment, treat-
ing a single mean or contrast as the interest parameter ψ

and the remaining parameters as components of λ. Nei-
ther the means nor the contrasts are affected by the geom-
etry of the log likelihood function because the contours
{(ψ,λ) : ∇ψ�(ψ,λ) = 0} are flat in both parameteriza-
tions. However, the sufficient statistics for the contrasts,
being an average of n/2 observations, concentrate in a
O(n−1/2) neighbourhood around their means as n → ∞.
By contrast, the sufficient statistic for the ith mean is sim-
ply Xi and has fluctuations of order O(1) regardless of n.

A referee has remarked that the situation is detectable
through an eigen decomposition of the observed infor-
mation at the estimated parameter vector, indicating or-
thogonal directions in which the information is highest. If
∇θψ(θ̂) has a high multiple correlation with the first few
dominant eigenvectors this would suggest that the data are
informative about ψ . There is likely to be a formulation in
which the directions of principle curvature, important in
differential geometry (Weatherburn, 1957, p. 120), play a
similar role.

The geometric ideas summarized by Fig. 1 relate to a
single realization of the log likelihood function. Under
hypothetical replication, provided that n is large enough
and s(X1, . . . ,Xn) concentrates reasonably about its
mean, the position and curvature of the contour {(ψ,λ) :
∇ψ�(ψ,λ) = 0} will be relatively stable. A more formal
algebraic treatment is based on an expression for finite
sample bias of the maximum likelihood estimator under
regime (i). By Taylor series expansion of a generic com-
ponent �r of the score vector around the true value θ and
evaluation at θ̂ , Barndorff-Nielsen and Cox (1994, p. 150)
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gave an expansion for the r th entry θ̂r of a p-dimensional
vector of maximum likelihood estimates, where p was
treated as fixed. This is of the form (Barndorff-Nielsen
and Cox, 1994, equation 5.25)

θ̂r − θr = irs�s�+ 1

2
νrst �s�t + irsituHst�u�+ · · · ,

where irs is the (r, s)th entry of the inverse expected
information (here we suppress the earlier notation indi-
cating which coordinate system is being used), νrst =
irqisvitzνqvz, where νqvz = ∂3

qvz� and � indicates a drop
in asymptotic magnitude of n−1/2. We use the conven-
tion that symbols appearing both as subscripts and super-
scripts in the same product are summed. Such results are
valid only under ordinary repeated sampling with a fixed
number of parameters.

We now show the largest conceivable magnitude of p as
a function of n such that asymptotic unbiasedness is still
assured without imposing and exploiting sparsity (dis-
cussed in Section 4.4). The bias is

(4) E(θ̂r − θr) = 1

2
irsitu(νstu + 2νst,u) + · · · ,

where νstu = E(∂3
stu�), νst,u = E(∂2

st �∂u�) and evaluation
of all quantities is at the true θ . Suppose, optimistically,
that all elements of the inverse information matrix con-
verge at rate n−1. Then the remainder is of smaller or-
der than the leading term. The leading term in (4) is a
sum over approximately p3/3! combinations of things by
Stirling’s approximation, each of which converges at rate
n−1. A sufficient condition for the estimator to be asymp-
totically unbiased in this setting is then p = o(n1/3).

For an interpretation in terms of known geometric
quantities, use the Bartlett identities (Barndorff-Nielsen
and Cox, 1994, equation 5.7) to write equation (4) as

(5)

E(θ̂r − θr) = −1

2
irsitu

(−1�stu

)

− 1

2
irsitu(νtu,s + νsu,t − νst,u)

+ irsituνst,u + · · · ,

where −1�stu are the coefficients of α-connection with
α = −1. The second term on the right-hand side of (5) is
irsδt

qϒ
q
st where ϒ

q
st = 1

2 iqu(νtu,s + νsu,t − νst,u) is some-
what similar in form to the �

q
st coefficients of Riemannian

connection:

�
q
st = 1

2
iqu

(
∂itu

∂θs

+ ∂isu

∂θt

− ∂ist

∂θu

)
.

4.3 Special Structure in the Likelihood Function

As shown in Section 4.1 and elsewhere (e.g., Sur and
Candès, 2019; Fan, Demirkaya and Lv, 2019), with n

independent observations and p parameters there may

be failure of standard likelihood-based procedures if p

increases proportionally to n in the notional limit as n

tends to infinity. Sensible estimation of interest parame-
ters ψ = (ψ1, . . . ,ψp−pN

) in the presence of nuisance pa-
rameters λ = (λ1, . . . , λpN

) hinges on a reformulation in
which the nuisance parameters play a reduced role. This
is most successful when λ is evaded completely without
loss of information on ψ , which is possible when the joint
density from which the data are drawn admits one of the
following factorizations:

(a) fY (y;ψ,λ) = fV |U(v|u;λ)fU(u;ψ),

(b) fY (y;ψ,λ) = fV |U(v|u;ψ)fU(u;λ),

(c) fY (y;ψ,λ) = fV (v;λ)fU(u;ψ),

where U and V are jointly sufficient statistics for ψ and
λ. Factorization (a) is a case for marginalization with U

sufficient for ψ , (b) is a case for conditioning on U , which
is, here, the sufficient statistic for λ. In (c) the jointly suf-
ficient statistic is two individually sufficient statistics so
that conditioning reduces to marginalization. Weaker fac-
torizations are:

(d) fY (y;ψ,λ) = fV |U(v|u;λ,ψ)fU(u;ψ),

(e) fY (y;ψ,λ) = fV |U(v|u;ψ)fU(u;λ,ψ).

Marginalization is applicable in (d) and conditioning in
(e). However, information on ψ may be lost in either case
because neither U nor V are individually sufficient for ψ

or λ.
Bartlett (1937) proposed conditional likelihood as a

means of avoiding the bias incurred by standard max-
imum likelihood estimation, exemplified by estimation
of the variance in the Gaussian pairs example (see Sec-
tion 4.1). Modified profile likelihood (Barndorff-Nielsen,
1983, 1988) arises as a higher order approximation to
a marginal or conditional likelihood function for the in-
terest parameter ψ when one of these is available (see
Barndorff-Nielsen, 1994). However, its specification re-
lies on the ability to identify an ancillary complement to
the maximum likelihood estimator unless the parameter-
ization is orthogonal for the interest parameter, or can
be made such by an interest-respecting transformation
(see Cox and Reid, 1987). Barndorff-Nielsen (1984) dis-
cusses a constructive approach for identifying such ancil-
lary complements in curved exponential models. In the
specification of the modified directed likelihood root r∗,
used for inference on an interest parameter, conditioning
on an approximate ancillary statistic is somewhat implicit;
see, for example, Brazalle et al. (2007, Chapter 8.4.3). See
Tang and Reid (2020) for a discussion of the extent to
which the properties of r∗, established under asymptotic
regime (i), are valid under regime (ii).

There are, in principle, three types of systematic ap-
proaches for eliminating nuisance parameters, perhaps
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approximately, for a scalar interest parameter. One is to
solve the system of differential equations specified by Cox
and Reid (1987). A second, suitable if one of factoriza-
tion (a)–(c) holds, is to specify a constructive approach for
finding ancillary statistics for the interest or nuisance pa-
rameters. A third strategy is to develop a systematic pro-
cedure for identifying statistics U , V or both such that
one of factorizations (a)–(e) holds. See Battey and Cox
(2020, Section 7.2) for a formulation and some suggested
test cases. To some extent the third goal is achieved im-
plicitly by the tangent exponential model of Fraser and
Reid (1995). See Davison and Reid (2021) for a geomet-
ric account with full bibliographical details. The various
approaches are likely to be related.

4.4 Sparsity

A concept of theoretical and subject-matter importance
in very high dimensional inference problems is sparsity.
This forms part of the statistical model and entails the ex-
istence of many zeros or near-zeros in an unknown inter-
est or nuisance parameter, often after suitable reparame-
terization. McCullagh and Polson (2018) have formulated
a rigorous definition.

There are three roles of sparsity appropriate in different
settings and its implications are contingent on this. A first
role is to encourage fruitful interpretation when there are
a large number of parameters, initially on an equal foot-
ing and potentially of interest, and yet it is likely that few
represent securely established effects of importance. The
second role is to ensure that so-called plug-in estimators
of interest parameters are sensible when they rely on pre-
liminary estimates of p nuisance parameters when p/n

is large. A third role is to ensure stable predictions when
p/n is large. For prediction, all parameters used in the
specification of the model can be viewed as nuisance pa-
rameters and the single interest parameter is the condi-
tional expectation estimated as the prediction. Thus, the
third role is treated here as a special case of the second.

4.4.1 Sparsity for interpretation: Post-selection infer-
ence. In some current areas, notably genomics, the broad
form of probabilistic model may be agreed, but with ap-
preciable uncertainty over details. This leads to an all-
embracing model being specified, inevitably containing a
large number p of regression parameters, many of which
are, in fact, negligible. In other words, the comprehensive
model embraces

∑s∗
k=1 p!/{(p − k)!k!} submodels of size

at most s∗ by requiring most of the parameters to be zero.
In the sparse regression setting, if one fails to account

for the first use of the data for selection of the model, then
the resulting inferential statements are typically invalid.
For instance, in a hypothesis testing context the false dis-
covery rate, in hypothetical replication, of an α-level sig-
nificance test is typically not α. The issue was exposed
in a simple setting by Cox (1975b) and the problem has

experienced renewed interest due to its relevance for ge-
nomics and other modern scientific areas.

An important point is that if the data are relatively com-
plicated, there is no difficulty, in principle, in using them
several or many times to answer different questions, as is
usual in factorial experiments. Serious issues arise when
one asks essentially the same physical question in differ-
ent guises. Thus, when a variable selection procedure like
the lasso (Tibshirani, 1996) is used to indicate a model,
and inference is subsequently performed on the associated
parameters, the inference is miscalibrated unless standard
low-dimensional distribution theory is adjusted for the se-
lection. See Berk et al. (2013), Lockhart et al. (2014), Lee
et al. (2016), Tibshirani et al. (2016) for further detailed
discussion and some suggested resolutions. Among these
are to condition on the selection event, or in other words
on the region of the sample space that would have led to
the same model being selected. Such conditioning is typ-
ically difficult without strong assumptions. A simple but
potentially wasteful solution is to split the sample, using
part of the data to decide upon a model for further analysis
and the rest for inference on the parameters of that model.
This has been shown in some contexts to be dominated by
an approach based on a randomized response. See Tian
and Taylor (2018) and Rasines and Young (2021).

In effect, the approach of implicitly or explicitly con-
ditioning on selection, prescribes singleton sets at zero as
the confidence sets for the unselected variables. An alter-
native viewpoint, somewhat but not completely aligned
with our comments in Section 4.4.2, specifies confidence
sets for all parameters, including those that are not se-
lected by the variable selection procedure, thereby ac-
knowledging imperfections in the initial phase. Some ref-
erences are Zhang and Zhang (2014), Javanmard and
Montanari (2014), van de Geer et al. (2014) and Cai and
Guo (2017). Our view on the appropriate formulation is
summarized in Section 4.4.2.

4.4.2 Sparsity for interpretation: Confidence sets of
models. In the context of the genomics example, for-
mal inference on the values of parameters of an esti-
mated model is arguably less relevant than inference on
the model itself. To report the single model returned by
a single-optimization procedure may be, for substantive
interpretation, rather misleading if there are several or in-
deed many models that are essentially equally compatible
with the data.

Assessment of model adequacy must always be a con-
cern, and while this aspect is exacerbated by the vast num-
ber of possible models in sparse regression problems with
large numbers of potential explanatory variables, classical
ideas due to Fisher (1922) provide insights on the issues.
For an appreciable but not excessive number of variables
(p < 30, say, due to current computational limitations),
the situation was discussed by Cox and Snell (1974, 1989)
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and one resolution is Fisherian (Barndorff-Nielsen and
Cox, 1994, p. 29). On letting z denote a realization of
Z = (Yi, xi)

n
i=1 one specifies, for each sparse model in-

dexed by m, the minimal sufficient statistic Sm for the pa-
rameter vector θ(m) of nonzero components. All models
compatible with the data in the sense that z is not extreme
when calibrated against the distribution of Z | Sm = sm
should be reported as a confidence set of models along-
side the associated confidence statements for θ(m). These
ideas also underpinned the recommendations of Cox and
Battey (2017) who advocate confidence sets of models in
high-dimensional regression problems. When p is of the
order of tens of thousands as in the genomics examples,
it is practically infeasible to check all low-dimensional
models for their compatibility with the data and some pre-
liminary reduction is needed. Cox and Battey (2017) sug-
gest a version of backwards reduction based on partially
balanced incomplete block arrangements (Yates, 1936).
This discards variables for which there is little or no evi-
dence for having a real effect. See Battey and Cox (2018)
for detailed discussion of the aspects raised by this two-
stage procedure.

Our preference for confidence sets of models is not
wholly incompatible with the references given in the last
paragraph of Section 4.4.1, although the conceptual dif-
ferences are substantial.

4.4.3 Sparsity as a mathematical aspect. As indicated
in Section 4.3, nuisance parameters will ideally be elim-
inated by problem-specific manoeuvres without appre-
ciable information loss. There is, however, no generally
applicable strategy for (exactly or approximately) elim-
inating nuisance parameters in high dimensions. It is
widespread practice to replace them by estimates. De-
pending on the objective, this sometimes necessitates a
sparsity assumption in asymptotic regimes (ii) and (iii).

The following simple example is somewhat artificial in
that it is designed to illustrate one particular point, ignor-
ing other aspects such as those indicated in Section 2.1.

One treatment of linear regression in observational
studies considers the data on outcome Y and covari-
ates X = (X1, . . . ,Xp) as realizations of random couples
(Y,X), so that both variables are initially treated as ran-
dom. One then conditions on X, and if X and Y are jointly
normally distributed we obtain

E(Y | X = x) = μY + �T
XY �−1

XX(x − μX),

where μX and μY are the means of X and Y , �XX is
the covariance matrix of the X variables and �XY is the
column of the full covariance matrix of X and Y corre-
sponding to the Y variable. Thus, the linear regression co-
efficient β is equal by definition to

∂E(Y | X = x)

∂xT
= �−1

XX�XY .

If the relationship is not multivariate normal then one
seeks the best linear approximation to E(Y | X = x),
where the approximation error is measured by the ex-
pected squared distance of E(Y | X = x) from Y . This
leads to the same expression β = �−1

XX�XY regardless of
assumptions on the joint distribution of Y and X (see Cox
and Wermuth, 1996, pp. 63–64) but its relevance is small
if the relationship between Y and X is highly nonlinear.

Let βj , the j th element of the vector β , be an in-
terest parameter. Let � = �−1

XX . A natural estimator of
βj = (�−1

XX�XY )j replaces � and �XY by estimates, �̂

and �̂XY say, producing an estimator β̂j of βj . On writing

(6)
β̂j − βj = ‖�j ·‖2‖�̂XY − �XY ‖2t1

+ ∥∥(�̂ − �)j ·
∥∥

2‖�XY ‖2t2,

where �j · denotes the j th row of �, t1 ∈ (−1,1) is the
cosine of the angle between �j · and �̂XY − �XY and
t2 ∈ (−1,1) is the cosine of the angle between (�̂ − �)j ·
and �XY , we see that a sparsity assumption is in general
needed to prevent excessive accumulation of estimation
error from matrix multiplication when p grows with n.

To illustrate the role of sparsity and the scaling con-
ditions that arise in high dimensional problems, we will
consider only the term ‖�̂XY − �XY ‖2 in equation (6).
The permissible scaling of p with n in high dimensional
problems with sparsity is typically logp = o(n). This de-
rives from the use of nonasymptotic deviation bounds
such as Hoeffding’s inequality for weighted sums of sub-
Gaussian random variables or Bernstein’s inequality for
weighted sums of subexponential random variables.

Bernstein’s inequality for mean-zero subexponential
random variables Z̃1, . . . , Z̃n is

(7)
pr

(∣∣∣∣∣
n∑

i=1

aiZ̃i

∣∣∣∣∣ ≥ t

)

≤ 2 exp
{−c min

(
t2/K2‖a‖2

2, t/K‖a‖∞
)}

,

where K is a constant related to the subexponential
tail behaviour of Z̃i . Let (�̂XY )k = n−1 ∑n

i=1 XikYi =
n−1 ∑n

i=1 Zi , say. Suppose initially that one estimates the
kth element of �XY by (�̂XY )k . Provided that the distri-
butions of Xik and Yi have sub-Gaussian tails, the dis-
tribution of Zi − E(Zi) has subexponential tails (see,
e.g., Vershynin, 2018, Lemma 2.7.7). Thus by equa-
tion (7), we have, on setting Z̃i = Zi − E(Zi) and a =
(n−1, . . . , n−1),

pr
{∣∣(�̂XY − �XY )k

∣∣ ≥ t
}

≤ 2 exp
{−c min

(
nt2/K2, nt/K

)}
,

so that

(8)
pr

{
max

k

∣∣(�̂XY − �XY )k
∣∣ ≥ t

}

≤ 2p exp
{−c min

(
nt2/K2, nt/K

)}
.
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The requirement for the right-hand side of (8) to tend is
zero as n tends to infinity is that t � max[{(logp)/n}1/2,

(logp)/n] and convergence of (8) to zero is assured by
the scaling (logp)/n → 0.

Under an assumption that only a small number s∗ of
the entries of �XY are nonzero, one can define an esti-
mator �̃XY that exploits the sparsity and retains the same
elementwise convergence rate as �̂XY , so that

pr
{‖�̃XY − �XY ‖2 ≥ t

}
≤ pr

{
max

k

∣∣(�̂XY − �XY )k
∣∣ ≥ t/s∗}

≤ 2p exp
[−c min

{
n
(
t/s∗)2

/K2, n
(
t/s∗)

/K
}]

.

Thus consistency is assured provided that (s∗ logp)/n →
0. We emphasize that these are upper bounds. Suitable
lower bounds would be needed to show that a better scal-
ing is impossible.

4.4.4 Sparsity-inducing reparameterizations. Under
asymptotic regime (i), Cox and Reid (1987) specified
the set of differential equations whose solution yields an
interest-respecting orthogonal reparameterization. This is
a parameterization in which a single interest parameter
ψ is orthogonal to a vector of nuisance parameters λ.
Orthogonality is meant in the sense of setting the off-
diagonal entries of the Fisher information matrix to zero
in the row corresponding to entry ψ , identically in ψ and
λ or in a weaker sense.

In regime (i), this form of sparsity is sufficient to de-
liver strong properties of the maximum likelihood estima-
tor. In high dimensions, errors introduced into the interest
parameter estimate by estimation of nuisance parameters,
although substantially reduced by parameter orthogonal-
ization, accumulate as p → ∞ because maximum likeli-
hood estimation does not exploit the sparsity.

The sparsity induced by parameter orthogonalization is
an essential condition in some recent papers operating
under regime (iii). See Ning and Liu (2017) and Fang,
Ning and Liu (2017). Parameter orthogonalization is not
explicitly mentioned as a prerequisite, although without
this, plausibility of the conditions is small. The idea of
parameter orthogonality has also resurfaced indirectly in
work aimed at achieving so-called double robustness in
high dimensions; see Chernozhukov et al. (2017).

Ning and Liu’s (2017) adjustment to the score func-
tion to accommodate a high-dimensional nuisance pa-
rameter assumes that there is an estimator of the latter
which is consistent in �1 norm at rate s∗(logp)1/2n−1/2

where n is the sample size, p is dimension and s∗ is the
number of nonzero entries of the parameter vector. Re-
gression settings are considered. Thus, in the notation of
Section 4.4.3, let ψ = βv be the interest parameter, let
λ = β−v be a (p − 1)-dimensional nuisance parameter
and let � denote the log likelihood function, now divided

by n. Ning and Liu’s (2017) decorrelated score function,
evaluated at the true values of the parameters is

(9)
S
(
ψ∗, λ∗) = ∇v�

(
β∗

v , β∗−v

) − w∗T ∇−v�
(
β∗

v , β∗−v

)
where w∗T = J ∗

v,−vJ
∗−1−v,−v.

Asterisks denote true values and the J ∗ quantities are par-
titions of the information matrix J ∗ = J (β∗):

(10)

J (β) =
(

Jv,v Jv,−v

J−v,v J−v,−v

)

=
(
E∇2

v,v�(β) E∇2
v,−v�(β)

E∇2−v,v�(β) E∇2−v,−v�(β)

)
.

For an estimator ŵ of w∗, not discussed here, a mean
value expansion of

(11) Ŝ
(
β∗

v , β−v

) def= ∇v�
(
β∗

v , β−v

) − ŵT ∇−v�
(
β∗

v , β−v

)
around the true value, β∗−v of β−v followed by evaluation
at its estimated value gives, in slightly misleading notation
explained immediately below,

(12)

Ŝ
(
β∗

v , β̂−v

)
= ∇v�

(
β∗

v , β∗−v

) − ŵT ∇−v�
(
β∗

v , β∗−v

)
+ [∇2

v,−v�
(
β∗

v , β−v,α

)
− ŵT ∇2−v,−v�

(
β∗

v , β−v,α

)](
β̂−v − β∗−v

)
.

The notation is inaccurate because β−v,α = αβ̂−v + (1 −
α)β∗−v for α ∈ (0,1) has a different α for each compo-
nent of the 1 × (p − 1) dimensional vector ∇2

v,−v�. The
key to understanding how the decorrelated score remedies
the problems faced by the classical score function in high
dimensions is the observation that

(13)

[∇2
v,−v�

(
β∗

v , β−v,α

) − ŵT ∇2−v,−v�
(
β∗

v , β−v,α

)]
≈ E

[∇2
v,−v�

(
β∗

v , β∗−v

) − w∗T ∇2−v,−v�
(
β∗

v , β∗−v

)]
= J ∗

v,−v − J ∗
v,−vJ

∗−1−v,−vJ
∗−v,−v = 0,

where w∗T = J ∗
v,−vJ

∗−1−v,−v . Hence, provided that w∗ is
sufficiently sparse to avoid excessive noise accumulation,
rate acceleration is possible in equation (12) because two
quantities, both tending to zero with the sample size, are
multiplied together, ultimately giving rise to a tractable
limit distribution of a suitable rescaling of Ŝ(β∗

v , β̂v). To
apply these ideas, β∗

v is replaced by a hypothesized value.
In the linear regression setting, the assumption of spar-

sity of w∗ is essentially that most of the nuisance covari-
ates are uncorrelated with signal variables.

4.5 Supersaturated Designs

Our discussion in this paper applies primarily to data
coming from observational studies. The traditional litera-
ture on the design of experiments has extensive treatment
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of situations in which the number of unknown parame-
ters, p, is less than but quite close to the number, n, of
independent individuals. For the so-called supersaturated
case, p > n, Satterthwaite (1959) suggested randomiza-
tion of factor levels so that in studying the effect of one
factor, the others could be treated as random, an argu-
ment that led to much criticism. Booth and Cox (1962)
suggested systematic supersaturated designs with suitable
properties; there is no record of application. Exact orthog-
onality of all columns of the design matrix simultaneously
is infeasible when p > n. The implication is that certain
treatment effects are aliased meaning, for them, that sta-
tistical analysis is unable to attribute certain significant
effects to one variable over another; thus both should be
reported as possible explanations. More recent work has
built on heavily fractionated factorial designs.

5. DISCUSSION AND OPEN PROBLEMS

5.1 Valid Inference Under Model Misspecification

We have only discussed situations in which the prob-
abilistic model is regarded as correctly specified. To be
meaningful, a specification should be broadly correct for
an interest parameter but could be vaguely specified, or
perhaps even misspecified for the nuisance part of the
model. An example is inference on the interest parameters
of the proportional hazards model (Cox, 1972, 1975a).
The nuisance parameter, the hazard function, requires
specification as a fixed function of time although its de-
tailed functional form is left arbitrary and is conveniently
evaded by partial likelihood.

An example is given by Battey and Cox (2020), to some
extent a reprise of an earlier result due to Lindsay (1985),
in which an estimator of an interest parameter is consis-
tent in spite of an arbitrary degree of misspecification
in the nuisance part of the model. Efficiency loss over
marginal likelihood based on factorization (d) was nev-
ertheless shown to be potentially severe. The latter issues
would affect conclusions of hypothesis tests that do not
implicitly account for the misspecification.

The extent to which these results generalize is unclear.
Analysis of misspecification is complicated by interest
and nuisance parameters being nonorthogonal under arbi-
trary misspecification. Orthogonality of misspecified nui-
sance parameters to interest parameters may indeed be a
requirement for consistency of the interest parameter esti-
mator. If so, an extension of Cox and Reid’s (1987) anal-
ysis to the misspecified situation is likely to be valuable.

5.2 Aspects Not Represented by a Model

Our discussion presupposes that the data are attributable
to a probabilistic model. Some features of data are not al-
ways fruitfully represented in this way. It is, for instance,
common in observational data for some observations on

explanatory variables to be missing for reasons that are
unclear. Battey, Cox and Jackson (2019) recommended a
sensitivity analysis to the missingness by replacing miss-
ing entries of each affected variable by one of two rela-
tively extreme assignments in a full 2m factorial structure,
where m is the number of variables with at least one miss-
ing entry. The analysis is performed for these 2m combi-
nations and the results reported for each. If answers are
stable, strong assurance is provided over the conclusions
but otherwise a range should be reported. This approach is
in contrast to multiple imputation (e.g., Little and Rubin,
2019) in which the missingness mechanism is modelled.
This entails the untestable assumption that observations
are missing at random, not to be confused with missing
completely at random, an even stronger assumption.

5.3 Open Problems

We close with a list of open problems motivated by this
discussion.

1. Given a new statistical inference problem specified
by its likelihood in some special parameterization, how
does one check for anomalies that suggest some or all of
the parameters are better redefined?

2. How does one deduce, from observed quantities
alone, in which directions maximum likelihood will be
formally sensible and in which directions inference will
be seriously misleading? Can the geometric ideas of Sec-
tion 4.2 be operationalized?

3. Suppose that Bartlett’s (1937) matched pairs prob-
lem described in Section 4.1 is now specified in terms of
a (n+ 1)-dimensional parameter, an arbitrary transforma-
tion of the original parameters, for example, the canonical
parameterization of the exponential family. All parame-
ters are wrongly estimated by maximum likelihood. Can
the situation be detected in an arbitrary parameterization
by analysis only of the observed likelihood function? Can
it be deduced that the variance is responsible for the bad
behaviour?

4. Can anything be learnt from situations with multiple
anomalous parameters, as possibly exemplified by regres-
sion at various levels in a standard split-split plot experi-
ment?

The first of the above questions relates to reparameter-
ization while the remaining ones relate to problems that
reparameterization does not solve.

5. Nuisance parameters can sometimes be evaded by
problem specific manoeuvres. Is there a general theory,
able to guide us towards taking ratios in one formula-
tion of the exponential matched pairs problem and con-
ditioning on the pairwise sums in another formulation?
See Battey and Cox (2020) for a description of these two
formulations and the considerations involved in a general
resolution.
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6. There are two types of problem associated with the
previous point. One is to recognize a standard type of sit-
uation when it is presented in disguised form. The other,
possibly more important, is to study problems or classes
of problems where standard tricks are approximately, that
is, only asymptotically, applicable.

7. Is there a geometric representation of conditioning
to evade nuisance parameters, and if so, how is this differ-
ent geometrically from conditioning to ensure relevance?

8. If none of factorizations (a)–(e) holds, what would
be an appropriate notion of approximate factorizability?

9. How could one seek a factorization of the form
(a)–(e) when the likelihood function is unavailable ana-
lytically? See Patel et al. (2019) for an example of such
a situation motivated by a problem in biophysics, and
Shlomovich et al. (2020) for a more general class of ex-
amples arising in the analysis of doubly stochastic point
processes.

10. When there are nuisance parameters two ap-
proaches are to transform the data and to marginalize
or condition based on factorizations (a)–(e) above, or to
find an interest-respecting orthogonal transformation as in
Cox and Reid (1987). Is there a connection between the
two and if so, can it be characterized geometrically?

11. Consider an arbitrary problem in which there are n

observations and p parameters, of which one is an inter-
est parameter and the rest are nuisance parameters. Prin-
ciples of inference suggest reducing the dimension n of
the data to p (sufficiency) and reducing the dimension of
the sufficient statistic, s, to that of the interest parame-
ter by constraining s to the subspace of its sample space
where the maximum likelihood estimate of the nuisance
parameter is fixed, a version of ancillarity. Framed in this
way, the situation in which p > n is precluded. But if
a transformation could be applied to make the problem
depend on the interest parameter and a small set of one-
dimensional summaries of the original nuisance param-
eters, then the p > n problem would have been reduced
to the usual p < n situation for each interest parameter.
Sparsity might still be needed for the generating process
to make sense. Is it possible to construct a theory of in-
ference that is Fisherian when p < n and can be made
Fisherian by suitable transformation when p > n under a
sparsity constraint?

The previous discussion has throughout assumed data
are available on study individuals which share a common
structure but in which the stochastic components for dif-
ferent individuals are mutually independent. Various com-
plications arise if, as may be particularly likely for obser-
vational studies, some aspects of the variation are interre-
lated. In the simplest situations this may leave estimates
based on independence assumptions being reasonable but
with changed, typically inflated, variance. Connected to
this point are the following important questions, relevant
to both low and high dimensional problems.

12. Suppose there are blocks of individuals with dif-
ferent types of relation between and within blocks. If the
structure is not initially clear, how would such anomalies
be detected? The following situations exemplify these is-
sues.

• Data are collected on a suitable sample of adults ar-
ranged in family groups for convenience of data collec-
tion. The family grouping may be of no direct interest
but intra family dependences are, at the least, likely to
inflate errors of estimation as compared with random
sampling.

• There may be similar situations in which the analogue
of family structure is present but not observed. That is,
there are a large number, possibly individually small,
local structures to inflate errors of estimation. In par-
ticular, in large sets of data there may be multiple
sources of local correlation, individually possibly small
but having appreciable cumulative effect.

• A further class of problems arise when the dependence
is totally unstructured, for instance it may arise in resid-
uals due to estimation of a coefficient vector, perhaps
under a misspecified model.

13. Are there ways of estimating the standard errors of
estimators reasonably in the presence of dependent ob-
servations without explicit estimation of the dependency
structure, perhaps by a nuisance parameter formulation?

A referee has pointed out that question 12 is connected
to community detection in the statistical analysis of net-
works literature.

We have largely assumed that a suitable probabilistic
model is given, although discussion of this aspect appears
in Sections 4.4.1, 4.4.2 and 5.1.

14. To what extent is inference on interest parameters
valid when the nuisance part of the model is misspecified?
How does this depend on the model structure and inferen-
tial procedures involved?

15. Are there classes of models and procedures that are
robust to misspecification of nuisance aspects? In what
sense is inference robust? For instance, consistency may
be achievable but efficiency lost.
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