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Abstract

The procedures of Donoho� Johnstone� Kerkyacharian and Picard �DJKP� esti�
mate functions by inverting thresholded wavelet transform coe�cients of the data�
The choice of threshold is crucial to the success of the method and is currently
subject to an intense research e�ort� We describe how we have applied the statisti�
cal technique of cross�validation to choose a threshold and we present results that
indicate that its performance for correlated data� Finally� to illustrate the tech�
niques� we apply various wavelet�based estimation methods to some noisy one� and
two�dimensional signals and display the results�

� Introduction

This paper reviews various methods for selecting a threshold for wavelet function estima�
tion� We concentrate our study on threshold selection using cross�validation�

Section � reviews the wavelet transforms that we use for the rest of the paper� Section �
describes various methods of function estimation from noisy data using wavelet methods�
Section � reviews cross�validation in this context� Section � provides an example where
the two�fold cross�validation method performs badly because of the correlation structure
within the data set �Nason �Na�� Na�	 gives examples where the method works well
�
Section � discusses extensions of the cross�validation method to more dimensions� Finally�
Section  gives brief descriptions of work by Wang �Wa�	 and Weyrich and Warhola �WW�	
that improve on and extend the cross�validation methods described in this paper�

� Wavelet overview

Wavelets are functions that are used to represent functions� In all that follows we will be
interested solely in families of wavelets that act as orthonormal bases for various function
spaces� For simplicity we restrict ourselves to the L��R� function space in other words
f � L��R� i� Z �

��
jf�x�j� dx ���

It can be shown �Daubechies �Da�	� Meyer �Me�	� that it is possible to construct a function
��x�� so that if f � L��R� then
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f�x� �
X
k�Z

ck��k�x� �
X

j�J�k�Z

djk�jk�x�� ���

where
ck �

Z
R
f�x���k�x� dx�

and
djk �

Z
R
f�x��jk�x� dx�

where J controls the maximum resolution� The functions �jk�x� are all derived from a
single mother wavelet � by the relation

�jk�x� � �
j
����jx� k�� ���

The derived functions �jk�x� are called wavelets and the mother wavelet is specially chosen
so that the family f�jk�x�g forms an orthonormal basis for L��R�� The functions ��k�x�
are all derived from a function ��x�� known as the father wavelet or scaling function� by
using the dilation and translation formula given in ���� Typically wavelets of class m are
specially constructed so that �Meyer �Me�	��

�orthonormal basis� the set f�jk�x�g forms an orthonormal basis for the space under
consideration�

�regularity� if m � �� ��x� belongs to L��R�� if m � �� ��x� and all its derivatives up
to order m belong to L��R��

�localization� ��x� and all its derivatives up to order m decrease rapidly as x� ���

�oscillation�
R
R x

k��x� dx � � for � � k � m�

The localization property mentioned above extends also to the frequency domain� Typi�
cally wavelets are well�localized in time and frequency� To achieve this wavelets are usually
compactly supported in either the time or frequency domain �but not both so that the
uncertainty principle is obeyed� and decay rapidly in both� The wavelets that we use in
this paper are those created by Daubechies �Da�	 who carefully constructed a series of
mother wavelets �indexed by N� with each mother in the series having regularity propor�
tional to N � Each of Daubechies� wavelets are compactly supported in the time domain�
The expansion given in ��� has a discrete alternative� Given a data set f�� � � � � fn where
n � �J there exists an orthogonal matrix W such that the discrete wavelet transform �jk
is given by

� �Wf�

where � is the n�vector of discrete wavelet coe�cients �jk� j � �� � � � � J � � and k �
�� � � � � �j� In practice� the discrete wavelet transform is performed using an e�cient algo�
rithm that only requires O�n� operations �see Mallat �Ma�	�� The fast algorithm appeared
earlier in the engineering literature as a two�channel subband coder �see Smith and Barn�
well �SB�	 for example�� The inverse discrete wavelet transform is also easy to compute�
The inverse transform may be represented by

f � W T��
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There is a corresponding fast algorithm for this as well� Using the inverse transform
formula it is possible to note that the rows of W correspond to discretized versions of the
mother wavelets at various di�erent scalings and translations� Donoho and Johnstone�DJ�	
note the approximation�

p
nWj�k�i� � �

j
����jt� k�� t � i�n�

Wj�k�i� is the ith element of the �j� k�th row of W � It can be seen that the wavelet
coe�cient �jk quanti�es the contribution of the basis functions Wj�k which are localized
to a spatial interval of size ��j and near frequency �j� In simpler terms �jk indicates the
amount of signal around spatial location ��jk and near frequency �j�

We use the fast algorithm as implemented in SPlus by Nason �Na�	� Use of the SPlus
package allows easy access to the comprehensive statistical facilities of S within an object�
oriented environment�

� Function estimation from noisy data

There are several good reasons why wavelets can be used for estimating functions� The
main reasons are that wavelet shrinkage estimators are�

� nearly minimax for a wide range of loss functions and for general classes of functions�

� simple� practical and fast�

� adaptable to spatial and frequency inhomogeneities�

� readily extendable to high dimensions�

� applicable to various other problems such as density estimation and inverse prob�
lems�

A thorough review of these reasons and justi�cation for them appears in Donoho et

al� �DJKP	�
Estimation by wavelet shrinkage is a simple procedure that computes the wavelet

transform of data� modi�es the transform coe�cients and then inverts the modi�ed coef�
�cients to form the estimate�

��� Estimation and the discrete wavelet transform

Given observed data g�� � � � gn assume the model

gi � f�ti� � �i� ���

where the f�ig is some noise process with variance 	�� ti � i�n and f is the function that
is to be estimated� Then

w � Wg ���

performs the wavelet transform on the noisy data� The wavelet coe�cients are then modi�
�ed by some procedure to form w� and then the inverse transform is performed to obtain�
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�f � W Tw�� ���

where �f is the estimate of f at the points ftig� Donoho and Johnstone �DJ�	 used
wavelets designed for use on an interval devised by Cohen et al� �CDJV	� This paper
uses Daubechies� �Da�	 wavelets with periodic boundary correction� Further details of
this particular transform can be found in Nason and Silverman �NS�	�

The key question in wavelet function estimation is how should the wavelet coe�cients�
w� be modi�ed to form w�� Donoho et al� �DJKP	 advise that shrinking wavelet coe�cients
produces estimates that possess the desirable properties in the list given above� To achieve
shrinkage they propose thresholding the coe�cients� Given a wavelet coe�cient w and a
threshold t � � the hard�thresholded value is given by

Thard�w� t� � w I�jwj � t��

and the soft�thresholded value by

Tsoft�w� t� � sgn�w� �jwj � t� I�jwj � t��

where I is the usual indicator function� This paper considers soft�thresholding although
hard�thresholding is a possible alternative� At the moment there is not much theory
about which method is better �however� in cross�validation the smoothness of the soft�
thresholder aids the optimization procedure�� The question of how coe�cients should be
modi�ed then reduces to� what should the threshold be� The choice is critical� if the
threshold is too small�large then wavelet shrinkage estimators tend to over�under�t the
data� The next section reviews some of the methods that have been suggested to choose
the threshold value�

��� Threshold choosers

The following list describes some of the di�erent methods that have been proposed to
choose the threshold� It does not attempt to compare the methods nor is it a complete

list�

�exact minimax�� A policy that uses precomputed thresholds to minimize a constant
term in the upper bound for the minimax risk of estimating a function using a
thresholded estimator� See Donoho and Johnstone �DJ�	�

�universal�� Donoho and Johnstone �DJ�	 proposed the universal threshold that is in�
corporated into their VisuShrink procedure� The universal threshold is

TUV �
p
�� logn��	� ���

where n is the number of data points and �	 is an estimate of the noise level 	 �typ�
ically a scaled median absolute deviation of the empirical wavelet coe�cients�� One
feature of VisuShrink is that it �guarantees� a noise�free reconstruction although
by doing so it usually under�ts the data �the under�tting was also noticed by Fan
et al� �FHMP	��
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�SURE�� A threshold chooser based on Stein�s �St�	 unbiased risk estimation was pro�
posed by Donoho and Johnstone �DJ�	 and called SureShrink� The SureShrink

chooser speci�es a threshold value tj for each resolution level j in a wavelet trans�
form�

�cross�validation�� The majority of the remainder of this paper concerns cross�validation�
It is a technique that relies on attempting to minimize the prediction error gener�
ated by comparing a prediction based on a subset of the data and comparing it to
the remainder of the data �see later in this paper or Nason �Na�� Na�	� Neumann
and Spokoiny �NS�	� Weyrich and Warhola �WW�	� Wang �Wa�	 and Donoho and
Johnstone �DJ�	��

�false�discovery rate�� One can view the estimation of the true function�s wavelet coef�
�cients as a multiple hypothesis testing problem� Abramovich and Benjamini �AB�	
have adapted Benjamini and Hochberg�s�BH�	 false discovery rate method for use
with wavelets� Instead of choosing a threshold they keep �discard� a wavelet co�
e�cient in the decomposition of the noisy data if a hypothesis test decides that
the coe�cient is non�zero �zero�� A more sophisticated statistical argument is re�
quired for multiple hypothesis testing compared to when only one hypothesis test
is involved� For example� suppose you wish to test the single hypothesis

H� � � � �

versus
HA � � �� �

and test at the usual signi�cance level of P �Reject H�jH� is true� � ����� If� say�
���� coe�cients were to be independently tested at a signi�cance level of ���� then
approximately ����	���� � �� coe�cients would not be zeroed �and for some func�
tions this would be far too many�� The false discovery rate idea can be formulated as
follows� Abramovich and Benjamini �AB�	 consider a situation where there are n hy�
potheses �coe�cients� to be tested� Each hypothesis is of the form Hjk � �jk � �� Of
these hypotheses n� are false� or equivalently the corresponding coe�cients should
be included in the reconstruction� The other n� � n�n� coe�cients are indeed zero
and ideally all the noisy versions should be set to zero� They de�ne R to be the
number of coe�cients that are not zeroed by a given thresholding procedure �and
thus will be included in any reconstruction�� Of these R coe�cients S are correctly
kept in the model and V are kept in by mistake� Clearly R � S � V � The error is
written as Q � V�R and is the proportion of included coe�cients that should have
been zeroed� The False Discovery Rate of Coe�cients �FDRC� is de�ned to be the
expectation of Q� The procedure Abramovich and Benjamini adopt is to include as
many coe�cients as possible whilst controlling the FDRC to be at or below some
level q� They provide an e�cient algorithm to compute which coe�cients to include
and which to discard�

�Bayesian methods�� Vidakovic �Vi�	 adopts a Bayesian approach to the estimation of

� �Wf
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and estimates the means �jk in wjk 
 N��jk� 	
��� Vidakovic obtains prior distri�

butions for 	� and � �that also involve hyperparameters� and with the assumed
conditional distribution just mentioned have

wj� 
 f�wj���

After observing w �the noisy wavelet coe�cient� he tests the hypothesis H� � � � �
versus H� � � �� �� If this hypothesis is �reject� than � is estimated by w� He then
develops some Bayes rules in the testing context that appear similar to the usual
thresholding functions �and called Bayes factor thresholding�� In particular� he
shows that if

wj� 
 DEf�� ��
�����g�
where 
 is a hyperparameter and DE is the double exponential and

� 
 ���� � ���� � �����

is the prior distribution of � �so �� is the probability that � � � and ��� describes
the spread of � when it is not zero�� Then w will be �thresholded� if

��e
�cjwj

��e�cjwj � �� f���c� ����c�g �
�

�
�

where c �
p
�
 and �� and �� are the Laplace transforms of ���w� and ���d��

�Ogden�s methods�� Amongst other ideas Ogden �Og�	 develops two methods for
thresholding a wavelet decomposition of noisy data which he calls selection thresh�

olding and data�analytic thresholding� Selection thresholding is based on hypothesis
testing of coe�cients level�by�level� Given a set of coe�cients at a particular level
Ogden describes a test statistic that if large will prompt the user to include the
largest �in absolute terms� coe�cient into the reconstruction decomposition and
then continue testing the remainder of the coe�cients� If the test statistic is not
large enough �when compared to some critical value� then the threshold is set to be
the absolute value of the largest remaining coe�cient� Data�analytic thresholding is
based on looking at plots of cumulative sums of the squares of the coe�cients at a
particular level� Coe�cients are removed from the level �and marked for inclusion
in the reconstruction� if some test based on Brownian bridge sampling is signi�cant
and then the remaining coe�cients are tested� The test tries to ascertain if the
remaining coe�cients are just white noise� by successively removing the larger coef�
�cients until the test decides that the coe�cients are indistinguishable from white
noise� One important advantage of the data�analytic thresholding is that it does not
separate coe�cients that are close in time� For example� discontinuities can often
cause two adjacent coe�cients to be large �rather than just one� and this method
identify these together� which would not necessarily be possible with other methods
that separate coe�cients and sort according to size�
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� Cross�validation methods

The aim of function estimation in this article is the minimization of the mean integrated
square error �MISE� between the thresholded wavelet estimator �ft�x� and the true function
f�x�� In symbols the threshold t should minimize

M�t� � E
Z n

�ft�x�� f�x�
o�

dx� ��

In practice the function f is not known and so an estimate of M has to be devised� It
is often desirable that a loss function other than MISE be used and this can be easily
achieved by replacing MISE by the appropriate loss in the estimate of M �

Cross�validation is widely used as an automatic procedure to choose a smoothing
parameter in many statistical settings� The following sections describe how the cross�
validation paradigm can be used for choosing the threshold for a wavelet shrinkage esti�
mator�

The classic cross�validation method is performed by systematically expelling a data
point from the construction of an estimate� predicting what the removed value would have
been and comparing the prediction to the value of the expelled point� This simple leave�
one�out procedure cannot be directly applied to wavelet shrinkage estimation because the
discrete wavelet transform using Mallat�s fast algorithm only operates on data sets that
contain a power of � number of elements�

In arti�cial wavelet function estimation problems a data set of length �M is supplied
and leave�one�out would imply performing the fast wavelet transform with �M � � points
which is not possible because �M � � is not a power of two� In practice one is unlikely
to receive a real data set with �M points and there are various ways around the power of
two limitation�

�� truncate or extend the series in some way and pretend that you have �M points�
Section ��� demonstrates a cross�validation method for handling these extended data
sets�

�� devise some method of using wavelet shrinkage estimators for any number of points�
The method is described in Nason �Na�	 but be warned the method is computation�
ally intensive�

�� use some other transform than the pyramidal algorithm� For example� use Kwong
and Tang�s �KT	 W �matrices or Taswell and McGill�s �TM�	 algorithms for data
sets of arbitrary length�

In principle a wavelet method should be able to cope with zero padding better than
non�local schemes because most of the wavelet basis functions of the noisy signal are
completely disconnected from those of the padding�

	�� Two�fold cross�validation

This section describes a cross�validation procedure that can be used to automatically
select a threshold for a wavelet shrinkage estimator based on �M points�
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The procedure works by leaving out half of the data points� This leaves �M�� data
points �a power of two� that are then used to form a wavelet shrinkage estimator using
a particular threshold� The values of the expelled points can then be compared with the
thresholded estimator to form an estimate of prediction error at a particular threshold�
This quantity can be then numerically minimized over values of the threshold�

Two�fold cross�validation algorithm Given data g�� � � � � gn where n � �M � Remove all
the odd�indexed gi from the set� This leaves �M�� evenly indexed gi which are re�indexed
from j � �� � � � � �M��� A function estimate �fEt is then constructed using a particular
threshold t from the re�indexed gj� To compare the function estimator with the left�out

noisy data an interpolated version of �fEt is formed�

�fEt�j �

��
�

�
�

�
�fEt�j�� �

�fEt�j
�

j � �� � � � � n
�
� �

�
�

�
�fEt�� �

�fEt�n��
�

j � n
�
�

���

The estimate �fEt�n
�

is formed from the �rst and last �ft values because f is assumed to be

periodic� The �fOt is computed for the odd indexed points and the interpolant �fOt computed
as above� The full estimate for M�t� compares the interpolated wavelet estimators and
the left�out points�

�M�t� �

n
�X

j��

��
�fEt�j � g�j��

��
�
�
�fOt�j � g�j

���
� ���

Note that the estimate �M relies on two estimates of �ft based upon n�� data points�
From the work of Donoho and Johnstone �DJ�	 it is known that the appropriate threshold
depends on n and asymptotically behaves like TUV�n� �

p
�� logn��	n� This quantity

supplies a heuristic method for obtaining a cross�validated threshold for n data points� If
the threshold for n points is TUV�n� then the threshold for n�� points will be TUV�n���
and therefore

TUV�n� �
�
�� log �

logn

�����
TUV�n���� ����

After the estimate �M�t� has been minimized the correction ���� is applied to obtain the
�nal cross�validated threshold�

	���� A note about two�fold cross�validation Burman �Bu�	 provides a comparative
study of ordinary cross�validation� ��fold cross�validation and repeated learning�testing
methods� The two�fold cross�validation algorithm above is a special case of ��fold cross�
validation where � � �� It is not quite ��fold validation as it is an example of uncontrollable
cross�validation in the sense of Stone �St�	 because ideally ��fold validation requires a
random split into two groups� The ��fold wavelet algorithm above is forced to split the
data into equal halves because of the �M restriction imposed by the fast discrete wavelet
transform�

The correction term introduced above for the two�fold algorithm is rather heuristic�
Burman �Bu�	 introduces proper terms necessary to correct for bias caused by performing
��fold cross�validation rather than ordinary cross�validation� It would be desirable to
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Figure �� Plot of Australian versus US dollar exchange rate data�

repeat Burman�s analyses for the wavelet based ��fold cross�validation� However� such
analyses require a von Mises expansion of

T �z� Fn� �
n
f�x�� �ft�x�

o�
about T �z� F � where z � fx� f�x�g� For the expansion to be possible the functional T �z� ��
has to be von Mises di�erentiable �Ser ing �Se�	�� It is not obvious whether this is the
case for soft�thresholded estimators and seems unlikely for hard�thresholded ones�

� An example

Nason �Na�� Na�	 gives examples where the simple two�fold cross�validation algorithm
works well� This is mainly in the case of normal independent noise� If heavy�tailed or
correlated noise is used then the cross�validation methods do not do so well �although see
the description of Wang�s work in Section ��� also Johnstone and Silverman �JS	��

This section concentrates on exchange rate data of the Australian dollar against the
US dollar� This example is chosen to illustrate two things that can go wrong with the
simple cross�validation scheme proposed in the previous section �although it is hoped
that developments of this and other methods can overcome such problems�� The version
of the real data set is plotted in Figure �� A possible model for this data set is exponential
growth with the occasional negative shock �supposedly some piece of bad news hitting the
market�� Finally� the whole data set is subject to normal independent noise� To model this
idea we create a simulated data set that consists of a randomly selected number of shocks
�according to a Poisson distribution with mean ��� and at each shock there is a negative
jump the size of which is the absolute value of the Student�s t�distribution on � degrees of
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Figure �� Simulation using exchange rate model

freedom� Then normal independent noise was added to the system� Figure � and Figure �
show both the �truth� and a noisy version� The variances of the jumps� normal noise
and exponential growth can all be varied to attempt to mimic the real data set �but of
course� the point of this example is to demonstrate the shortcomings of the cross�validation
method and only provide a barely reasonable model for the data�� Figure � shows a
simulation using the described model and three reconstructions� universal� GlobalSure and
cross�validation �GlobalSure is the SureShrink procedure of Donoho and Johnstone but
altered so that one threshold is chosen for all levels�� All the reconstructions in Figure �
have their advantages and drawbacks� The universal reconstruction is certainly noise�
free but tends to under��t the data� The noise�free character could be extremely useful
in some situations� In this case the universal reconstruction has only detected the large
discontinuity and has a larger estimated l� norm when compared to the GlobalSure and
cross�validation reconstructions �but remember that the purpose of universal thresholding
is to minimize minimax risk� not l� error�� The other two reconstructions have found the
largest two discontinuities and it is arguable whether the cross�validation procedure has
indicated the smallest one� Comparing the cross�validation and GlobalSure procedures the
latter produces a visually preferable estimate and indeed the l� error is slightly smaller�
Compare this example to the simulations performed by Nason �Na�	 where the cross�
validation procedure appeared to be superior in performance to GlobalSure for normal
independent noise� Clearly� for more complex noise structures the ordinary cross�validation
is not very good and Wang�s modi�cation given by �Wa�	 is likely to perform better�

The result of applying the cross�validation method to the original data from Figure �
appears in Figure �� Figure � shows the universal reconstruction which is much smoother�
The original data has large short�term autocorrelations and this destroys the performance
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Figure �� Simulation using exchange rate model plus noise
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Figure �� A noisy signal �a� with three jumps and denoised versions� �b� universal
thresholding �TUV� ����� l� norm������ �c� GlobalSure thresholding �tSURE� ����� l�
norm������� �d� cross�validation �tCV� ���� l� norm������� The vertical dotted lines
indicate the jumps and the dashed lines indicate the true signal� The norm refers to the
estimated l� norm between the true signal and the reconstruction�



�� Nason

Day

R
at

e

0 500 1000 1500 2000

60
70

80
90

Figure �� Cross�validation reconstruction from exchange rate data from Figure � �threshold
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of the cross�validation procedure� By comparison the universal procedure is more robust�

� Cross�validation in more dimensions

The extension of the two�fold cross�validation of Section ��� to k dimensions is achieved
by using the multidimensional DWT of Mallat �Ma�	� As in Section � the cross�validation
algorithmminimizes an estimate of the k�dimensional MISE �the x in equation �� is now a
vector in k�dimensional space�� The next section develops an estimate of the k�dimensional
MISE�


�� �k�fold cross�validation algorithm

Assume now that the k�dimensional data may be denoted by gi������ik with ij � f�� � � � � �Mg
for j � �� � � � � k� Suppose the data are arranged on a �xed equally spaced k�dimensional
hypergrid H� For each of the k subscripts of g it is possible to select either the odd or
evenly subscripted observations� Denote the selection of an even subscript by � and an odd
subscript by �� The selection � or � for each subscript provides a subset of H that is ��k

times the size of H and equally spaced on a subgrid of H� For example� the selection g���
would select all the odd�indexed observations on subscripts � and � and the even�indexed
observations on subscript ��

Let S be the set containing the �k possible binary strings of length k and denote the ith
largest binary string by bi and the subgrid de�ned by bi by Hi� Denote the k�dimensional
wavelet shrinkage estimator with threshold t based on data gbi by

�ft�bi� Denote the quantity
�f jt�bi to be the interpolant of �ft�bi to the grid de�ned by bj by multiple repeats of the
univariate interpolation scheme ���� This interpolation scheme is invariant with respect
to the order in which each univariate interpolant is applied� Then the k�dimensional cross�
validation score is given by�

�M�t� �
X
i�S

X
j�Sni

X
m�Hj

n
�f jt�bi�m�� gbj �m�

o�
�

where the �nal sum is over all indices m in the subgrid Hj�


�� Cross�validation for images

Images are two�dimensional objects and therefore ���fold cross�validation can be used�
This section illustrates the above algorithm using a � 	 � image on the pixel grid in
Figure a� The grid H� is illustrated in Figure b� Mallat�s two�dimensional DWT will
be applied to the data in H� and a thresholded wavelet estimator constructed from it at
threshold t� The estimator is then interpolated�

right to match the H� grid�

down to match the H� grid�

To match H� it is possible to either interpolate the H� grid downwards or the H� grid to
the right ! this demonstrates the invariance with respect to the ordering of the univariate
interpolating procedure� Each of the interpolates � �f �t�b� �

�f �t�b� � and
�f �t�b�� is compared to g���

g�� and g�� using quadratic loss and each component summed to form the part of the
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a. b. c.

Figure � Organization for ���fold cross�validation� a� The �	 � pixel grid H� b� The data
g�� forming the �rst subgrid H� associated with binary string b� � ��� c� The other three
subgrids � H�� �H� and �H� containing data g��� g�� and g�� respectively�

estimate of �M using H� as a starting point for constructing a wavelet estimator� This
procedure is then repeated using H�� H� and H� as starting points and the contributions
are summed to form the �nal �M �


�� An example

Figure � shows the original image that we use for our example� Figure � shows the
original image plus normal independent noise� Figures �� and �� show the universal and
cross�validated reconstructions�


�	 Computational e�ort and optimization

The ��fold algorithm requires O�n� operations� The �k�fold requires Of��n�kg operations
where n is the length of each side of the hypercube H�

The optimization algorithm that is used in all cases is the simple golden section search
as mentioned in Press et al� �PTVF	� The algorithm works extremely well in practice� This
is mainly because the function �M is very nearly convex �to the eye on a large scale it
looks convincingly convex�� Detailed investigation of �M by Nason �Na�	 shows that the
�rst derivative of �M�t� is continuous and linear increasing on intervals de�ned by in�
creasing fjwjkjg where fwjkg are the noisy wavelet coe�cients formed from the transform
of g�� � � � � gn� At the points t � jwjkj the derivative may experience a discontinuity� Na�
son �Na�	 provides heuristics that indicate that although these jumps may be negative
they are usually small �only negative jumps cause non�convexity of �M� and therefore the
zero�derivative point of �M is usually well�determined�
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Figure �� Original Lennon image�

Figure �� Noisy Lennon image �signal to noise ratio is �
�
��
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Figure ��� Universal threshold reconstruction using noisy image in Figure �� The recon�
struction threshold was ��� and the l� norm was �����

Figure ��� Cross�validated threshold using noisy image in Figure �� The reconstruction
threshold was ��� and the l� norm was �����
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� Improved Wavelet Cross�Validation Methods

��� Wang�s method�

Wang �Wa�	 is concerned with data that exhibit long�range dependence� That is data that
obey model ��� but with

Cor��i� �j� � ji� jj��

for � � � � � and dependent �i� By using a wavelet�vaguelette decomposition �WVD� see
Donoho �Do�	� Wang nearly decorrelates fractional Gaussian noise which approximates
long�range dependence processes� The correct procedure for cross�validation �or indeed any
thresholding scheme in this case� is to apply a di�erent threshold tj to each level of the
transform�Wang suggests two methods� one based on a level dependent universal threshold
and one based on a generalization of Nason �Na�	� Wang�s method serves as a general
method for cross�validation for correlated data �see also Johnstone and Silverman �JS	��
Suppose data �g�� � � � � gn� are given with n � �M � Wang�s cross�validation algorithm is as
follows�

�� Select an integer ln and divide the data into �M�ln groups as follows� the �rst
�ln observations g�� � � � � g�ln comprise the �rst group� the next �ln observations
g�ln�� � � � � g�ln�� form the second group and so on�

�� Remove the �rst observation from each group and form a data set of size �M�ln from
the removed observations� Then construct a wavelet estimate �f t� from these points
using a threshold tj � t��H������M�j� where H is the parameter of the fractional
Brownian motion behind the model that Wang assumes� Using the rest of the values
interpolate to obtain �g� corresponding to the �f t� values�

�� Repeat the previous step with the second� third� � � �� up to the �lnth observation
from each group and obtain � �f t�� �g��� � � � � �

�f t�ln � �g�ln ��

�� De�ne

M�t� �
�lnX
l

X
j

h
�f tl �j�� �gl�j�

i�
�

Let tCV be the value of t that minimizes M � Then the cross�validation threshold is
de�ned to be

tCVj �

�
�� ln log �

logn

�� �

�

��H������M�j�tCV

The term multiplying tCV is a bias correction term equivalent to that in ����� except
that there are �ln observations in each group�

Notice that Nason�s �Na�	 cross�validation method is recovered for ln � � and there are
�M�� groups �pairs� consisting of two observations each� This method reduces the e�ect
of inter�observation dependence and hopefully the selected threshold will be closer to the
optimal threshold�
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��� Weyrich and Warhola�s method

Weyrich and Warhola �WW�	 also discuss ordinary cross�validation and introduce a
method of generalized cross�validation for wavelet regression� We only give the briefest of
details here and refer the reader to �WW�	 for a fuller discussion� They de�ne a generalized
cross�validation �GCV� criterion by

GCV ��� �
�
n
jj�In � A�gjj��n
�
n
Tr�In �A�

o
�
�

where A is the operator
A �W��D�W�

where W is the wavelet transform and D� is the thresholding operator� The trace of A is
very simple to compute for the thresholding case and they de�ne the GCV estimator of
the ideal threshold to be that � that minimizes the GCV criterion� They also give details
of two extensions to the basic GCV algorithm�

�� The �rst extension introduces a threshold for each level in the transform� They
then minimize the GCV by altering each level parameter separately and holding the
others constant�

�� They also brie y mention using wavelet packets�

As for Wang� their simulation results appear extremely encouraging�

� Conclusion

We hope that we have convinced the reader that cross�validation methods can make an
important contribution to the estimation of functions using wavelet�based methods� They
are simple to implement and understand� it is possible to utilize measures of �t that are
appropriate to the application and they readily adapt to more than one dimension� It is
likely that more powerful forms of transform such as those based on wavelet basis libraries
will provide an even more adaptive and  exible class of representors and it is probable
that cross�validation methods will still be of use�
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