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Abstract

We show how a recently developed wavelet packet modelling methodology could be useful for infant sleep state
classification using heart rate data. The suggested approach produces adequate classification rates when applied to
recordings from an infant who was placed to bed at night at different ages. As well as classification, this approach
gives us valuable information about the relationship between sleep state and heart rate. The statistical model tells us
which sorts of wavelet packets of heart rate are most important for classifying sleep state.
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1 INTRODUCTION

This article concentrates on the interesting medical problem of infant sleep state classification using heart rate data.
It utilises the recent methodology of Nason & Sapatinas (2001) which advocates the non-decimated wavelet packet
transform (NWPT) to model a response time series in terms of a (possibly) non-stationary explanatory time series; it
is assumed that both time series have the same finite length. The suggested computational technique transforms the
explanatory time series into a NWPT representation resulting in a situation having more “variables” than observations.
Then, statistical variable selection techniques are sought to identify which wavelet packets (variables) are useful for
modelling the response time series. The selected statistical model usually provides valuable information about which
components in the explanatory time series drive the response time series.

The article is organised as follows: Section 2 provides a detailed history of the medical problem studied here and
describes the actual data set used in our analysis. In Section 3, we give a brief description of (discrete) wavelets and
wavelet packets and a brief explanation of the wavelet packet modelling methodology of Nason & Sapatinas (2001). In
Section 4, we show how the NWPT representation of heart rate (the explanatory time series) could be useful for infant
sleep state (the response time series) classification. In particular, a non-sophisticated variable selection technique is
first adapted to tackle the problem of having more variables than observations. This step, although somewhat rough
and ready, is computationally fast and provides an adequate initial dimension reduction prior to the exploration of
standard statistical classification techniques. Furthermore, a linear discriminant analysis on the selected variables
(non-decimated wavelet packets) produces adequate sleep state classification rates when applied to recordings from an
infant who was placed to bed at night at different ages. As well as classification, this approach gives us valuable
information about the relationship between sleep state and heart rate. The statistical model tells us which sorts
of wavelet packets of heart rate are most important for classifying sleep state. Moreover, to evaluate the success
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rates obtained with the above approach, the antedependence modelling method from Krzanowskiet al. (1995) was
adapted. This, more sophisticated and computational demanding, approach has been recently developed to perform
discrimination when the number of variables is larger than the number of observations. It is shown that the first and
second order antedependence models also produce adequate sleep state classification rates and improve on the ones
obtained (on the same infant) by combining the rough variable selection technique with linear discriminant analysis.
Some concluding remarks are made in Section 5.

2 BACKGROUND MATERIAL AND THE DATA SET

In this section, we give a detailed account on the history of the medical problem and describe the actual date set used
in our analysis.

2.1 THE HISTORY OF THEPROBLEM

Sleeping and waking states are ubiquitous behavioural characteristics already present during fetal life and which
continue to develop during post-natal life. Duringadulcy, sleep consists of two distinct types which alternated within
a 90 minute cycle. If awoken during periods associated withrapid eye movements(REM sleep) volunteers reported
vivid dreams but not during other periods of sleep, which are labelled asnon-rapid eye movements(non-REM sleep)
(see Dement & Kleitman, 1957). There are major physiological changes between awake and sleep but also within
sleep between REM and non-REM.

During infancy, the termsACTIVE SLEEP andQUIET SLEEPare used in an analagous manner to REM and non-
REM sleep (Anderset al., 1971). The different terminology emphasises that infancy is a dynamic period characterised
by rapid growth, development and ‘maturation’. Whilst the physiological patterns observed duringACTIVE SLEEPand
QUIET SLEEPare similar to the adult equivalants, they are different and change with increasing age: thus physiological
recordings made duringACTIVE SLEEPin the first month are not the same as those made at four months of age. The
newborn spends the majority of its time sleeping but the awake periods lengthen and coalesce towards the day-time.
Initially sleep is characterised by long periods ofACTIVE SLEEPinterspaced with with shorter periods ofQUIET SLEEP

but the periods ofQUIET SLEEPlengthen, whilst the duration ofACTIVE SLEEPperiods either shorten or remain the
same. The infant thus develops an approximate 50–60 minute sleep cycle consisting of alternate 20–30 minute periods
of ACTIVE SLEEP andQUIET SLEEP. Other body systems also mature and change during this period. For example
infants have faster heart rates and breathing rates than adults but the rates decrease with increasing age reflecting not
only growth in the heart and lungs but also maturation in the overall controlling systems sited within the developing
brain (see Harperet al., 1976; Schechtmanet al., 1993).

ACTIVE SLEEP is recognised by uneven respiration and sporadic body movements but with low muscle tone in
between these movements. This reduced tone can lead to partial collapse of the upper airway and snoring, or even
complete cessation of air flow (apnea). Rapid eye movements, smiles, frowns, grimaces, mouthing, sucking, sighs, and
twitches are frequent and are associated with increased variability in heart rate. QUIET SLEEPis characterised by slow
regular respiration, less variability in heart rate, an increased muscle tone and fewer movements. A major difficulty
in any classification system is that individual infants do not show all these criteria all the time. Conventionally, sleep
states are characterised primarily using electrophysiological measurements which involves the attachment of EEG
(electro-encephalogram — “brain-waves”) and EOG (electro-oculogram — eye movements) sensors. Sleep state is
manually determined the next day by a trained observer visually interpreting predetermined time periods (eg each 30
second period) of the infant’s EEG and EOG that had been concurrently recorded (see Anderset al., 1971). Whilst this
is an accurate and reproducible method of sleep state analysis (about 80% inter-observer agreement) the determination
is time-consuming, laborious and expensive. The attachment of the recording sensors to the infants scalp (EEG) and
face (EOG) may be distressing to both parents and infants, may lead to artifacts by interfering with the infants sleep,
and is not practicable in the home environment. Thus such recordings must be performed in the hospital which further
adds to cost and potential distress. By comparison, heart rate is automatically measured using standard commercial
ECG (electro-cardiogram) monitors. The ECG recording is relatively unobtrusive, since the leads are attached to the
infants chest and parents can be readily taught to do this. Moreover, heart rate is cheap to measure directly.
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Figure 1:Time series of heart rate and sleep state for a four month old baby beginning at 23:09:42. (Heart
rate is labelled by the left-hand axis. Sleep state is labelled by the right-hand axis and takes only two states:
ASLEEPand AWAKE .)

2.2 THE DATA SET

Sawzenkoet al. (1995) have recently completed a prospective study of nocturnal infant physiology in a sleep
laboratory designed to be similar to a normal domestic bedroom. Five mothers and their healthy first-born infants
slept in the thermally controlled room each month for the first 5 months. Conventional polsomnography including
one channel of EEG and EOG, chest and abdominal movement and ECG (Oxcams, Oxford Ltd) as well as multiple
temperature measusements (Squirrel 1200, Cambrige instruments Ltd) and infra-red video recordings were made. In
the studies reported here all infants slept supine in a cot besides their mother, but mothers were free to care for their
infants as they would at home (eg. feed, change nappy, etc) whilst recording continued to take place. Most studies
comenced around 20:00–21:00 and finished around 08:00–09:00. Sleep staging was performed off line (see Stefanski
et al., 1984) and state was assigned to consecutive 30 second blocks of averaged heart rate. Three sleep states were
recorded:AWAKE, ACTIVE SLEEPandQUIET SLEEP, and two consecutive minutes were needed for a transition to be
recorded.

To simplify our analysis, we combinedACTIVE SLEEPandQUITE SLEEPinto one category (calledASLEEP) and,
thus, have concentrated on two sleeping states (AWAKE andASLEEP). We have also considered recordings only from
one infant who was placed to bed at night at different ages. Figure 1 shows a segment of two time series recorded
from a four month old infant who was placed to bed at night. The time series shown are of heart rate and sleep state
(ie whether the infant wasAWAKE or ASLEEP) sampled every 30 seconds. After about 1.5 hours the infant eventually
fell ASLEEPonly to wake around half an hour later. Figure 1 shows that the heart rate is low when the baby isASLEEP

and high when it isAWAKE. It seems that the mean level of heart rate over certain time scales is likely to be important
for determining sleep state. From the above a method which can reliably predict sleep state from heart rate would
therefore be clinically valuable.

3 THE NON-DECIMATED WAVELET PACKET MODELLING METHODOLOGY

In this section, we give a brief description of (discrete) wavelets and wavelet packets and a brief explanation of the
wavelet packet modelling methodology of Nason & Sapatinas (2001).
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3.1 (DISCRETE) WAVELETS AND WAVELET PACKETS

Daubechies (1992) and Hess-Nielsen & Wickerhauser (1996) give excellent descriptions of wavelets and wavelet
packets respectively, and explain how they reveal information about the variation of signals in time and frequency. A
comprehensive description of wavelets and wavelet packets is beyond the scope (and length) of the present paper. To
gain an overview of the methodology we use it is, however, enough to know that

� wavelets form a set of oscillatory basis functions that can be used to efficiently represent functions of interest
(this set is usually constructed by dilating and translating a singlemother waveletfunction enjoying nice
mathematical properties, such as compact support, high regularity and a number of vanishing moments);

� wavelet packets form a large “library” of oscillatory basis functions of which wavelets are a subset (these basis
functions inherit nice mathematical properties from their generating wavelet basis functions). For any particular
application, the “best basis” can be chosen from the library of oscillatory basis functions according to some
user-defined criterion function (like the Shannon entropy measure which defines a “best basis” to be one which
represents functions sparsely).

We give a few examples of the types of functions that we are referring to. For example, the Haar mother wavelet
in continuous timeis given by the function

 (t) =

8<
:

1=
p
2 if t 2 (0; 12 )

�1=
p
2 if t 2 ( 12 ; 1)

0 otherwise.

The wavelets are all scaled and shifted versions of the mother wavelet. For example, the wavelet at scalej and
location2�jk is given by jk(t) = 2j=2 (2jt � k). Wavelet coefficients at scalej and location2�jk are found by
forming the inner product off with  jk . Wavelets indiscrete timecan be formed from the continuous ones. For
example, the Haar mother wavelet in discrete time is given by the vector(1=

p
2;�1=

p
2), at the next coarser scale

by (1=2; 1=2;�1=2;�1=2), and so on. For more information about discrete wavelets see Nasonet al. (2000), in
particular the formula definition for discrete wavelets, jk for j > 0 andk = 0; : : : ; Nj � 1, is given by

 1n =
X
k

gn�2kÆ0k = gn

and
 j+1;n =

X
k

hn�2k jk ; (1)

whereNj = (2j � 1)(Nh � 1) + 1 andgk; hk are the quadrature mirror filters of Daubechies’ (1992) compactly
supported wavelets of lengthNh.

Wavelets are all obtained from simple scalings (by factors of 2) and translations2�jk of one mother function.
The frequency response of the mother wavelet is a local bandpass filter and the frequency response of wavelets at
other scalesj bandpasses a signal at different octaves. The time-locality of the wavelet filter is controlled byk. So
for example, the Littlewood-Paley or Shannon wavelet is defined in the Fourier domain to be ̂(!) = (2�)�1=2

for ! 2 (�; �=2) and zero elsewhere (see Daubechies 1992, page 115). The finest scale Littlewood-Paley wavelet
coefficients correspond to an exact bandpass filtering in the frequency range(�=2; �) (highest frequency band), the
next finest scale to an exact bandpass filter at(�=4; �=2) and so on. As one can see wavelets do not necessarily
provide good frequency resolution at some scales: wavelet packets were introducted partly to correct this deficiency.
For example, a resolution of, say,(3�=4; �) could be achieved with a wavelet packet. Alternatively, algorithmically
discrete wavelet packets could be formed by replacinghn�2k by gn�2k in (1) and, for example, producing a discrete
wavelet packet such as(1=2;�1=2; 1=2;�1=2)which is clearly not derived from the Haar mother wavelet by a simple
scaling or translation as it contains two complete oscillations not one. In fact, wavelet packets can be indexed by scale,
location and additionallynumber of oscillationsand in a sense provide a well-spaced cover of functions spanning
the time-frequency plane.Non-decimatedwavelets or wavelet packets just means that the functions can be placed at
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any location. In the standarddecimatedtransform wavelets/wavelet packets are restricted to lie at dyadic locations
depending on their scale (we mentioned above that jk was located at2�jk). For non-decimated continuous wavelets,
 jk is located at2�Jk, i.e. independent ofj (but dependent on the finest scale of the observed data pointsJ). For
discrete wavelets, non-decimation means just that jk can lie at any time pointt, i.e. jk(t) =  j;k�t.

For the modelling described in Section 3.2 we compute the wavelet packet coefficients by filtering the time series in
question with the appropriate wavelet packet function. In other words we are forming combinations of the explanatory
time series such as:

W
(1)
t = (Xt �Xt�1)=

p
2

for the finest scale Haar wavelet,
W

(2)
t = (Xt +Xt�1 �Xt�3 �Xt�4)=2

for the next coarsest scale Haar wavelet, and

W
(3)
t = (Xt �Xt�1 +Xt�3 �Xt�4)=2

for the wavelet packet mentioned above. This filtering is done recursively with an extension of the discrete wavelet
transform algorithm (see Mallat, 1989), compared with a direct calculation of all the filtered series, very fast.

For further details on the computational algorithms associated with wavelets and wavelet packets we refer, for
example, to Nason & Sapatinas (2001). For recent surveys on the use of wavelets (mainly) and wavelet packets in
statistics, time series and related subjects we refer, for example, to Antoniadis (1997), Nason & von Sachs (1999),
Vidakovic (1999), Abramovichet al. (2000) and Percival & Walden (2000).
A note on classification with wavelets and wavelet packets:Wavelet and wavelet packet methods have been recently
used in classification problems following the standard “training-predicting” paradigm (see, for example, Coifman &
Saito, 1994; Learned & Willsky, 1995). The next section, however, briefly describes the modelling methodology of
Nason & Sapatinas (2001) that is of a somewhat different type as models are builtin situ rather than have a large set
of training samples.

3.2 STATISTICAL MODEL BUILDING USING NON-DECIMATED WAVELET PACKETS

The basic statistical modelling idea is very simple. Rather than build a statistical model directly between a response
time seriesYt = (Y1; : : : ; YT )

0 and an explanatory time seriesXt = (X1; : : : ; XT )
0, for some fixed integer

T > 0, Nason & Sapatinas (2001) proposed to build a model betweenYt and a NWPT version ofXt. The NWPT
representation ofXt generatesK = 2T � 2 derived time series (wavelet packets), each one havingT observations.
We can subsequently modelYt in terms of the matrixW = (X1; : : : ;XT )

0, whereXi is K-dimensional and
each dimension corresponds to a particular wavelet basis function. Each variable ofXt quantifies how similarXt

is to a particular wavelet packet at timet. In other words each component ofXt tells us “how much” of each
wavelet packet there is inXt at any particular timet. The decomposition ofXt into K different wavelet packet
components is extremely useful since we can subsequently modelYt in terms of the components using standard
statistical methodology. To summarize:Xt is the “explanatory” time series andXt is the “collection of NWPT
coefficients” ofXt. We refer to Nason & Sapatinas (2001) for the modelling advantages of usingnon-decimated
wavelet packets against (decimated) wavelets and/or wavelet packets, and for an S-Plus function from the freeware
WaveThresh package that implements the NWPT.

The number of variables (K = 2T � 2) generated by the NWPT is always larger than the number of observations
(T ) and, hence, the problem of having more variables than observations arises (a problem as many standard statistical
techniques requireK < T ). In our infant sleep state classification problem (see Section 4), however, we have tackled
the problem of having more variables than observations by considering the following two strategies.

1. First, we consider what we call the “naive” method. This approach selects an arbitrary number of variables, say
K1 < T , which correlate best withYt. Although this step is somewhat rough and ready, it is computationally
fast and provides an adequate initial dimension reduction. The variables that exhibit the largestK1 correlations
then form theworking set. Then standard statistical techniques can be used to build a model betweenYt and the
working set variables.
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2. Secondly, we consider the antedependence modelling method. The antedependence models were introduced by
Gabriel (1962) as a nested series of models suitable for handling data that are serially correlated (and exhibit
the general features of a non-stationary time series) and used by Kenward (1987) in the analysis of repeated
measurements. A set ofp ordered variables is said to have an antedependence structure of orderr if the ith
variable (i > r), given the precedingr, is independent of all further preceding variables. Complete independence
(r = 0) and general dependence (r = p � 1) are special cases of this structure. Under the antedependence
structure of orderr, the inverse of the variance-covariance matrix has non-zero elements only on the leading
diagonal and on ther diagonals immediately above and immediately below it. The antedependence models
were recently developed by Krzanowskiet al. (1995) in the discriminant context to circumvent the problem of
singular variance-covariance matrices (when the number of variables is larger than the number of observations)
and successfully applied to spectroscopic data.

4 INFANT SLEEP-STATE CLASSIFICATION

This section applies the statistical modelling methodology explained in Section 3.2 to sleep state and heart rate
recordings from an infant who was placed to bed at night at different stages of development. For computational
reasons, we mainly used segments of lengthT = 128 but longer segments ofT = 512 were subsequently used.

We start our analysis by considering the medical example described in Section 2.2 and shown in Figure 1. Recall
that this example concerns sleep states (Yt) and heart rates (Xt) for a four month old infant. We transformXt

with the NWPT using Daubechies’ (1992) extremal-phase mother wavelet with 10 vanishing moments and form
the matrixW = (X1; : : : ;XT )

0. (There are no hard rules about the choice of the mother wavelet — however a
choice has to be made.) The matrix consists ofT = 128 observations onK = 254 variables. Since we have more
variables than observations we first reduce the dimensionality of the variables enough so that we can subsequently
use standard statistical classification techniques. We apply the “naive” approach mentioned in Section 3.2 to select
a subsetK1 = 13 (the “best” 5%) of theK = 254 variables. The resulting “top five” variables were labelled by
S1; : : : ; S5 and identified in Table 1 along with their correlations.

Table 1:Resolution levels and frequency indices of the “top five” (non-decimated) wavelet packets that were
identified as being important for relating Yt to Xt. The “correlation” column shows the correlation between
Yt and the particular wavelet packet coefficients.

Wavelet packet

Packet ID
Resolution
levelj

Frequency
index

Correlation
with Yt

S1 4 0 0.92
S2 5 0 0.89
S3 3 0 0.89
S4 6 0 0.89
S5 1 0 0.79

Note that the best variables discovered by the “naive” variable selection strategy all have frequency index 0 (indeed,
the next best, not shown here, also has frequency index 0 at scale 2). The wavelet packets at frequency index 0 are
father waveletswhich resemble statistical kernel functions. This can be easily seen in Figure 2 which shows the three
father wavelets corresponding to resolution levels of 3 (S3), 4 (S1) and 5 (S2). The appearance of the father wavelets
suggests that averaging over resolution levels 1 (2(7�1) = 64 minutes, coarsest) to 6 (2(7�6) = 2 minutes, finest) in the
immediate past is important for determining sleep state. This corresponds with the observation earlier than the level
of the heart rate over these scales is an important determining factor. The prospects for real-time prediction (on-line)
are probably not as good as the father wavelets average a short time into the future as well — e.g.S1 requires about 6
minutes,S2 about 2.5 minutes andS3 about 11 minutes.
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Figure 2:The top three wavelet packets for classifying the baby sleep state from heart rate. The figure shows
Daubechies’ (1992) extremal phase father wavelets with 10 vanishing at resolution levels 4 (S1, solid line),
5 (S2, dotted line), and 3 (S3, dashed line). The vertical line shows current time t. (Only three are shown
for clarity.)

The top five variables (S1; : : : ; S5) could be then used as an input in various standard statistical techniques to
identify which wavelet packets are useful for modelling the sleep state. In all we experimented with three statistical
modelling methods: linear discriminant analysis (LDA), logistic regression, and classification and regression trees.
Of these three methods LDA working on the log-transformed absolute values of coefficients was most successful and
is described here. The log transform is of use when local oscillatorypoweris thought to be important in driving the
response time series. Taking the log of the absolute values is like squaring and then taking logs which is analogous
to forming the log-periodogram in classical stationary time series analysis. For instance, in our infant sleep state
classification problem, it is the power of oscillation itself that is related to changes of sleep state. Using power-based
statistics is a standard signal processing manoeuvre (see, for example, Learned & Willsky, 1995; Nasonet al., 2000)
also advocate the use of power-based wavelet coefficients in local time-scale modelling.

The LDA analysis determines which linear combinations are best for discrimination. The best linear combination
turned out to be

12 S1� 0:78 S2� 0:37 S3+ 4:5 S4� 2:5 S5: (2)

Thus, for this data set,S1 is very influential and corresponds to averaging over periods of about 10 minutes (looking
at the solid curve in Figure 2). Interestingly enough, this period of oscillation was found in analyses carried out earlier
by Stoffer (1991) to be present in infants unexposed to maternal alcohol. Although here we are saying that the 10
minute cycle is important for linking heart rate and sleep state. The analysis made by Stoffer (1991) identifies a 9
minute cycle in spectral analysis of just sleep state.

4.1 PREDICTION AND EVALUATION

To exercise our model we took the next 128 heart rate values, performed the NWPT analysis, extracted the same top
five variables and used the linear combinations determined by the LDA in (2) to predict the sleep state for the next 128
time periods (additionally, the mean of the next 128 heart rate values was adjusted to be the same as the previous 128
values to prevent this affecting the analysis as it adds no discriminatory value). Figure 3 shows the new NWPT values
projected onto the first two discriminant axes, the location of the discriminant rule and 13 misclassified observations.
With this classification we achieved a 90% overall success rate (13 observations misclassified the infant to beASLEEP

when it was reallyAWAKE). Figure 4 shows the new heart rate series with the true and predicted heart rate. Our method
is fooled into thinking that the baby has gone to sleep just after 2.4 hours, probably by the sharp drop in heart rate.
Likewise, just around 3.1 hours our method is a bit slow in noticing that the baby woke up, but the delay in noticing

7



First discriminant axis

S
ec

on
d 

di
sc

rim
in

an
t a

xi
s

-60 -58 -56 -54 -52

29
34

29
36

29
38

29
40

29
42

29
44

M1M0

1
1

1

1
1 1

1

1

1

1

1
11

1
1

11
1

1

1

1

1
1

1
1

1

11
1

1

1

1
1

1

1

1 1

1

1

1
1 1

1

1
1

1

1

1

1

11

1

1

11
1

11

1

 0
 0 0

 0

 0

 0
 0

 0

 0

 0
 0
 0

 0

 0

 0 0

 0

 0
 0

 0 0
 0  0 0

 0 0

 0 0

 0
 0

 0
 0 0

 0 0

 0

 0

 0

 0 0 0

 0

 0

 0 0

 0
 0  0

 0

 0

 0

 0
 0

 0 0
 0 0

 0

 0

 0

 0

 0
 0

 0

 0

 0
 0

 0
 0

Figure 3: NWPT values from the new heart rate time series projected onto first and second linear
discriminant axes. The label of each point shows its true group membership. The vertical dashed line
shows the discriminant rule: observations to the left are assigned to the ASLEEPgroup (0), those to the right
are assigned to the AWAKE group (1). The 13 misclassified observations appear in the top-left of the plot.
The M0 and M1 labels refer to the means of the ASLEEP and AWAKE groups used to build the discriminant
model.

is 2 minutes. However, the true record does note that during this period the human judge was uncertain about the true
sleep state.

Furthermore, we evaluate the classification performance by building models at various time-intervals during a
particular night and also on recordings at different stages of the infant’s life. As infants mature their EEG and EOG
become easier to classify and conventionally determined sleep state becomes more accurate with less disagreement
between observers. This was reflected by our LDA models which became better at predicting. Table 2 shows success
(interval) rates for the infant at different stages of development and suggests that better classification may be possible
with the older infant.

The LDA and Figure 3 would appear to be “inappropriate” because of the highly correlated nature of the data.
As an alternative, we now use the first (r = 1) and second (r = 2) order antedependence models from Krzanowski
et al. (1995) mentioned in Section 3.2 to build discriminatory models for the infant sleep state. These models,
obviously, result in anoff-line classification since some of the wavelet packets average a short time into the future
as well. Although more sophisticated, these models are computationally more demanding. Furthermore, they cannot
be used directly to identify which wavelet packets are useful for modelling the sleep state and, therefore, we cannot
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Figure 4:New heart rate series with true sleep state (solid) and predicted sleep state (dashed).

Table 2:Success (interval) rates of infant sleep state with increasing age with our method

Infant Age (Months) 2 3 4 5
Success Rate 75-78% 75-80% 80-90% 82-90%

easily attach physical and scientific interpretations to the selected models. However, these models, by construction, are
suitable for data that are serially correlated and exhibit the general features of a non-stationary time series. Moreover,
they serve as a basis for evaluating the success rates obtained when the “naive” variable selection was considered and
LDA was subsequently used for infant sleep state classification.

To also evaluate the effect of the lengthT , we now consider longer segments of lengthT = 512. In this case,
the NWPT representation results inK = 1022 variables. Table 3 shows the leave-one-out cross-validated success
rates for the infant at different stages of development and suggests that this approach improves on the classification
rates obtained earlier with the “naive” method. It also suggests that better classification may be possible with the older
infant; a view that concurs with the one drawn using the “naive” method.

It could be argued that the leave-one-out cross-validation might not be very appropriate for evaluating the
classification performance, since future values are also been used to predict the past. However, when the first and
second order antedependence models were built on the segment shown in Figure 1 and their classification performance
were subsequently evaluated on the time series given in Figure 3, similar conclusions were drawn. This is also true,
although not reproduced here, when we evaluated the classification performance of the first and second antedependence
models by building classifiers at various time-intervals and throughout different stages of the infant’s life. Moreover,
a limited comparison of one step ahead predicted with one step ahead observed values (which is more appropriate
for time series data) produces similar results, although a more detailed analysis should be made to draw definite
conclusions.
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Table 3: Cross-validated classification success rates using antedependence models of order 1 (AD1) and
2 (AD2) for an infant at different ages. Rates show how accurately the categories of ASLEEP and AWAKE

were classified as well as the overall classification success rate. Cross-validation was performed with the
leave-one-out method of Lachenbruch & Mickey (1968).

Infant Age
(Months) Model

Success rate
ASLEEP AWAKE Overall

2
AD1 0.89 0.90 0.90
AD2 0.89 0.89 0.89

3
AD1 0.95 0.88 0.94
AD2 0.96 0.88 0.95

4
AD1 0.94 0.86 0.89
AD2 0.95 0.89 0.91

5
AD1 0.97 0.95 0.96
AD2 0.97 0.95 0.96

5 DISCUSSION

This article demonstrates how the recently developed modelling methodology of Nason & Sapatinas (2001) could be
useful for infant sleep state classification using the non-decimated wavelet packet transform of the heart rate. Although
we have had some success in classifying sleep state by building a model in various parts of a night and predicting what
the sleep state is in later periods it may not be possible to transfer the exact model to the same infant at different
ages. However, the same father wavelets nearly always recur in the best model suggesting that averaging over certain
time-scales is important. Only the coefficients in the sleep state/heart rate model differ across nights. We were a little
surprised that more complex wavelets did not seem important to the sleep state classification.

In our analysis we have, of course, concentrated on two sleeping states (ASLEEP, AWAKE). As discussed in
Section 2, in the literature attention has focussed on further subdividingASLEEPinto ACTIVE SLEEPandQUITE SLEEP

during which dreaming and many upper airway breathing disorders occur (see DeHannet al., 1977; Schechtmanet
al., 1988). For example, Harperet al. (1987) modified the technique of Welch & Richardson (1973) and developed an
off-linesystem based on cardiac (4 variables from heart rate) and respiratory (3 variables from respiration) measures.
They quote success rates of 85% using all 7 variables, 82% for the 4 cardiac variables, and 80% for the 3 respiratory
variables.

We stress, however, that a more detailed sleep state categorization could be undertaken, if necessary, when the
non-decimated wavelet packet transform modelling methodology is adopted. This is only, of course, a matter of
choice of the statistical classification technique we select andnot because we are using wavelet methods. Preliminary
analysis, however, has shown that with more than two sleep states both the “naive” method and the antedependence
modelling methodology do not seem to produce satisfactory results. Therefore, more appropriate statistical analyses
are needed once the non-decimated wavelet packet transform representation of the heart rate has been built. It might
be the case that these approaches could produce satisfactory classification rates when a more detailed infant sleep state
categorization is considered, and also transfer the exact model to different infants and at different stages of their lives.
Further, a referee has pointed out that measuring success in terms ofmean time to detect a state changemight be a
more appropriate measure of success. We agree that this quantity might be more important in this, and other situations.

We finally mention that overnight infantrectal temperaturefalls rapidly around bed-time, reaches a trough and then
gradually rise in the early morning. This fall in rectal temperature becomes greater with increasing age (see Lodemore
et al., 1991); it has recently become apparent that there are clear variations in infant rectal temperature with sleep state
(see Tappinet al., 1996). There is also evidence that disordered thermoregulation (see Sawczenko & Fleming, 1996)
may be responsible for some cases of theSudden Infant Death Syndrome(SIDS), which has a peak incidence around
3 months. Two thirds of SIDS now appear to occur during the early morning i.e. during the rise in rectal temperature
(see, Fleminget al., 1996). Whilst hypothermia or hyperthermia can directly kill it is more likely thermal stress causes
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instability in the control of the respiratory system (see Fleminget al., 1993). A unifying ‘triple risk’ model suggests
that SIDS occurs during a critical developmental period, in vulnerable infants, exposed to exogenous stressors. In a
longitudinal series of home studies of rectal temperature infants differed in the age at which rectal temperature fell;
infants at the highest epidemiological risk of SIDS dropped their rectal temperature at an older age (see Lodemoreet
al., 1992). Other studies have suggested differences in cardiovascular recordings in infants who later die from SIDS
compared to controls (see Kludgeet al., 1988; Schechtmanet al., 1992). This work supports the suggestion that
environmental factors, probably including parental actions, may adversely affect baseline infant physiology. There
is thus a need to longitudinally record, in the home, the parallel and interrelated developmental patterns of several
physiological systems during early infancy.

Obviously, analysis of the above scientific factors could be proved useful to the sleep state classification. This
problem is an interesting topic for further research and we intend to address it in the future.
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