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Summary. Loosely speaking a robust projection index is one that prefers projections involving

true clusters over projections consisting of a cluster and an outlier. We introduce a mathematical

definition of one-dimensional index robustness and describe a numerical experiment to measure

it. We design five new indices based on measuring divergence from Student’s t distribution which

are intended to be especially robust: the experiment shows that they are more robust than several

established indices. The experiment also reveals more generally that the robustness of moment

indices depends on the number of approximation terms providing additional practical guidance for

existing projection pursuit implementations. We investigate the theoretical properties of one new

Student’s t index and Hall’s index and show that the new index automatically adapts its robustness

to the degree of outlier contamination. We conclude by outlining the possibilities for extending our

experiments both to higher dimensions and other new indices.
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1 Introduction

Exploratory projection pursuit (PP) is a technique for finding interesting lowp-dimensional
projections of highP -dimensional multivariate data, see Jones and Sibson (1987) for an
introduction. Typically, PP uses aprojection index, a functional computed on a projected
density (or data set), to measure the “interestingness” of the current projection and then uses
a numerical optimizer to move the projection direction to a more interesting position. What
do we mean by arobustprojection index? Generally speaking robust methods are those that
perform well even when specific assumptions required for “normal operation” fail to hold
or hold approximately. More specifically a robust method performs well in the presence
of outliers. The field of robust statistics is vast however good general starting points are
Huber (1981) or Hampel, Ronchetti, Rousseeuw and Stahel (1986). For robust approaches
in multivariate analysis see Li and Chen (1985) or Ammann (1993) for example.

One aim of exploratory PP is to find clusters in highP -dimensional data. Generally,
users may be disappointed when they obtain views that consist of one large cluster separated
from one single outlier — we call such viewsoutlying projections. In fact, outlying
projections can occur all too often as Friedman (1987a) noted that any point can become
a “pseudo-outlier” in the projection defined by the line joining the point to the origin.
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Specifically Friedman noted that even forP -dimensional standard normally distributed data
a significant proportion of points could become pseudo-outliers in their own projection. For
P = 5 the�25 distribution shows that 5% of points lie a distance of 3.3 or greater from the
origin, for P = 10 the distance is 4.3 andP = 15 the distance is 5.0. We can envisage
practical applications in hyperspectral imaging whereP = 200 is presently commonplace
resulting in 5% of the observations being at a distance of 15.3 or greater. With advances
in technology resulting in very large numbers of dimensions to analyse the problem can
only get worse as Friedman predicted. On the other hand the detection, explanation and
possible removal of real multivariate outliers is obviously important and an essential part of
any sensible multivariate analysis which we strongly recommend but do not consider here
(for further details see, for example, Hadi (1992) or Rocke and Woodruff (1996)).

Informally, we say that a projection index is morerobustthan another if it tends to select
a smaller proportion of outlying projections on the average. This is a rather desirable but
impractical definition because in actual implementations the index optimizer has a large
influence on the projections that are selected, see Posse (1995) for example. For example,
outlying projections may be obtained because a “bad” optimizer consistently finds one of
the many sub-optima rather than the index being non-robust. Also, the informal definition is
unsatisfactory because it permits many forms of non-robustness: for example, outliers and
clusters in many different configurations.

To be precise we narrow our definition to one aspect of robustness and design an
experiment to measure it in the next section. Our experiment measures an aspect of
robustness that is independent of any optimizer and as such it provides a “test-bed”
to evaluate the performance of and compare indices. It is important to stress that our
experiment isnot necessarily theonly or bestone. Our design could be extended to indices
projecting into more than one dimension but we leave discussion of this possibility until
Section 5.

Unless specified otherwise all integrals are from�1 to 1. Denote the density and
distribution functions of the standard normal by� and� respectively.

2 An experiment to assess robustness

The diagram in Figure 1 shows a two-dimensional situation where there are two large
“clusters” located on the horizontal axis and symmetric about the vertical axis and a movable
outlier that is allowed to slide up the vertical axis from the origin. Now suppose PP was to
be performed fromP = 2 dimensions top = 1 dimension. Clearly, the “ideal” projection
of interest to users would be onto the horizontal axis which separates the two large clusters.
The least desirable projection is the vertical axis which would give, at best, one large cluster
and an outlier.

The projection selected by an index would typically depend on exactly where the outlier
was located. If the outlier was located at the origin then ideally the horizontal axis would be
chosen. However, as the outlier slides upwards the vertical axis projection becomes much
more attractive (based on the value of the index) and eventually exceeds the attractiveness
of the horizontal (although a human user would always prefer the horizontal axis projection

2



movable outlier

major clusters

Figure 1: Robustness experiment data distribution

wherever the outlier was located). We name the point at which the vertical axis becomes
more attractive to an index as follows.

Definition 1 (Switch point) Let the location of the movable outlier on the vertical axis be
denoted by�. For a given projection indexI let the value ofI on the horizontal and vertical
axes projections be given byIH(�) and IV(�) respectively. Theswitch point is the point
��(I) such that

IH(�) > IV(�) � < ��

IH(�) < IV(�) � > ��:

Here it is assumed that “interesting” projections are those that maximize the projection
index (for those that minimize just change the sign). Note that it is possible that some
projection indices may not have a switch point in that the horizontal axis might always
be the most interesting projection — in this case we say that the index has a switch point
�� =1 (also, it would be possible to concoct a pathological index that always selected the
vertical axis, or had multiple switch points or indeed no switch point at all). Our formal
definition of robustness follows.

Definition 2 (Robustness)Projection indexI is more robust than indexJ if and only if

��(I) > ��(J):

In other words a robust(er) projection index prefers the horizontal axis projection over the
vertical axis projection compared to another index as the outlier slides upwards. The reader
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might note that our definition iscomparativerather than absolute. In other words we have
not defined what it means for an index to be robust except when comparing it to another
index. One might borrow the concept of breakdown from robust statistics and call an index
robust if its switch point is�� =1 for some small� > 0. We develop this concept further
in section 4.4 where robustness effectively depends on whether the indexIV (�) decreases
as� increases for small� but not for large�.

2.1 Experiment Implementation

The assessment of robustness according to definition 2 is performed using a numerical
approach. A direct analytical approach would be difficult: some indices may be computed
analytically on simple distributions but in general it would be hard, say, to compute them
for the vertical projection. The other potential problem is that data are often sphered before
applying PP which makes a general analytical solution challenging (sphering involves
transforming the data set so it has zero mean and identity variance). In this article we define
analytical densities and usually compute projection indices using numerical integration with
the integrate() function in SPlus. However, for two of the indices which we study
in more detail in Section 4.4 Nason (2000) derives explicit formulae on the following
distributional setup. Unfortunately, the explicit formulae are too complicated to solve
analytically to obtain switch points but they do provide a further check on our numerical
results.

The two-dimensional situation illustrated by figure 1 can be represented by the
following bivariate density for the random variable pair(X;Y ):

fX;Y (x; y) =
1� �

2
�2(x+ �; y) +

1� �

2
�2(x� �; y) + ��2(x; y � �); (1)

where �2(x; y) is the bivariate standard normal density andx; y 2 R. The density
fX;Y (x; y) models two large clusters on the horizontal axis separated by2� with a movable
outlier centred on(0; �). The degree of outlier contamination in the density is specified by
0 � � � 1 (although, of course, for large� the outlier is no longer outlying).

The marginal density ofX is symmetric and henceEX = 0, further var(X) =
(1 � �)(1 + �2) + � := �2X(�; �). The mean ofY is EY = ��. The random variables
(X;Y ) are uncorrelated because:

cov(X;Y ) = E(XY )

=
1� �

2

Z
xf�(x+ �) + �(x� �)g dx

Z
y�(y) dy

+ �

Z
x�(x) dx

Z
y�(y � �) dy = 0: (2)

To spherefX;Y (x; y) we first centre: sinceEX = 0 we only need centreY by shifting
its density down by�� to obtainYC with new marginal density

fYC (y) = (1� �)�(y + ��) + ��(y � (1� �)�)
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with var(YC) = (1 � �)(1 + �2�2) + �f1 + (1 � �)2�2g := �2Y (�; �). Since the random
variables are uncorrelated we only need to examine the effect of sphering on the marginals.
The marginal densities of the sphered versionsXÆ, Y Æ are given by

fXÆ(x) = �XfX(�Xx) andfY Æ(y) = �Y fYC (�Y y): (3)

In our experiment projection indicesI will be computed onfXÆ(x) andfY Æ(y) to obtain
IX(�) andIY (�) respectively. We are interested in finding the value of� whenD(�) =
IX(�) � IY (�) = 0 (the switch point where theY projection overtakes theX projection
in interest). We numerically locate the zero ofD(�) by using the implementation of
Brent’s (1973) method found in Presset al. (1992).

The robustness experiment results appear in Section 4 after the next section describes
some new indices designed to be robust.

3 Student’st is uninteresting!

One established method for dealing with the problem of outliers is to downweight the
influence of the tails in a projection index by using a weight function. We adopt a different
approach here and instead of searching for departures of the projected density from standard
normality we look for departures from a standardized Student’st distribution. Historically,
not measuring divergence from the standard normal density is not a crime: Friedman and
Tukey’s (1974) original index did not; Naito (1997) considers the possibility of measuring
divergence from elliptically symmetric distributions in general (including the multivariate
t and points out that one of the reasons Friedman (1987b) chose the normal from the
class of elliptically symmetric distributions was because of computational tractability.) The
heuristic behind the following indices is that Student’st distribution has heavier tails than
the standard normal and so departures from it will also depart more frequently from mass
in the tails, i.e. outliers. Later sections will verify that these new indices are indeed more
robust than existing indices according to the definition given in Section 2. First let us present
our uninteresting distribution!

Definition 3 (Multivariate sphered Student’s density) The p-dimensional sphered
Student’st-densityon � � 3 degrees of freedom is defined byt�;p : Rp ! (0;1) such
that

t�;p(x) = ��p=2(� � 2)�p=2
�
�
1
2(� + p)

	
�
�
1
2�
	 �

1 +
x
T
x

� � 2

��(�+p)=2
: (4)

Let the distribution function oft�;p be denoted byT�;p.

The multivariate sphered Student’st-density is easily obtained by scaling
Cornish’s (1954) multivariate Student’st-density by the square-root of the reciprocal of
the standard density’s variance (which is�=(�� 2)I, see Krzanowski and Marriott (1994)).

Next we introduce five new projection indices that measure divergence from the sphered
Student’st-distribution.
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3.1 Measures of divergence fromt�;p

Our first three indices are all weighted versions of theL2 divergences fromt�;p for � � 3.
Given a sphered densityf(x) for x 2 R

p our first three indices are given by

ITL2
�;� =

Z
ff(x)� t�;p(x)g2 t��;p(x) dx (5)

for � = 0; 12 ; 1. The choice of� = 1
2 may seem a little perverse at the moment but it is

a good one for developing an orthogonal expansion approximation as we will demonstrate
shortly. For the distributional setup given in Section 2.1 we have derived explicit formulae
for the� = 0 index in Nason (2000).

The next index is not derived from anL2 measure but still measures departures from
Student’st. It was initially developed by inverting a calculus of variations problem for
finding a functional that could be minimised byt�;p(x) over sphered densities (and indeed
calculus of variations arguments can be used to prove Theorem 1 although we actually use
simpler methods of proof in Appendix A).

Definition 4 (Student’s t-index) For p-dimensional sphered densitiesf the Student’s
t-index(on� � 3 degrees of freedom) is defined by:

ITI
� (f) = �

Z
f(x)1�2=(�+p) dx: (6)

Unlike the Student’sL2-indices it is not obvious thatITI
� (f) is minimized by anything.

In fact, the Student’st-index is minimized over all sphered densities byt�;p(x) (both on�
degrees of freedom) as shown by the next theorem.

Theorem 1 Let C�;p be the constant depending only on� and p as defined by (14). The
Student’st-index satisfies the following inequality

ITI
� (f) � C�;p

for all sphered densitiesf with equality if and only iff = t�;p almost everywhere.

The proof of Theorem 1 is in the appendix.
If the above projection indices were used in practice then an estimate of the

projected density would be required. Accurately estimating the projected density for
each new projection direction in projection pursuit is computationally expensive. As
a computationally efficient alternative several workers have circumvented the density
estimation step by using index approximations built from orthogonal polynomial expansions
(moment indices). It might seem that by using moment indices one also gains by not
having to select a smoothing parameter for estimating the projected density. However, the
number of terms in a moment index approximation has to be selected and acts as a surrogate
smoothing parameter.
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We now concentrate on seeking departures fromt3;1(x) = 2
� (1 + x2)�2 since the

t-distribution on� = 3 degrees of freedom has the heaviest tails of the series with a finite
mean and variance. The results from the experiments in the next section show that the
ITL2
�;� indices are most robust and of these the one with� = 1

2 is the most straightforward
to develop an orthogonal expansion for. Unlike previous indices in the literature there is
no obvious orthogonalpolynomialexpansion however with an appropriate transformation
we can supply a naturalFourier expansion (as did Morton (1989) in the development of a
different projection index.)

3.2 An orthogonal expansion index

Using the transformationx = tan(�) theITL2

3;
1
2

index can be written as

ITL2

3;
1
2

= (2��1)
1
2

Z �

2

�
�

2

�
g�(�)� 2

�
cos4(�)

�2

d�;

whereg� is the density of the transformed projected dataX. Using the Fourier series
expansion ofg� on [��=2; �=2]

g�(�) =
1
2a0 +

1X
n=1

an cos(2n�) + bn sin(2n�);

where

an = 2��1
Z �

2

�
�

2

g�(�) cos(2n�) d�

and similarly forbn. We can writeITL2

3;
1
2

as

ITL2

3;
1
2

=
p
�=2

(
1
2(a0 � 3

2� )
2 + (a1 � 1

� )
2 + (a2 � 1

4� )
2 +

1X
n=3

a2n +
1X
n=1

b2n

)
: (7)

An orthogonal expansion approximation toITL2

3;
1
2

can be obtained by truncating the infinite

sum(s) in (7) toJ terms forJ � 1 although one must remember that two terms are
included per increment ofJ . Computation of the index in a sample situation could be easily
performed by replacingan by the usual empirical estimates:ân = N�1

PN
i=1 cos(2n�i)

where�i, for i = 1; : : : ; N is the transformed projected data and similarly for thebn.
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4 Projection index comparison

4.1 List of projection indices

To be self-contained we list the projection indices that we compare in the next section.
To be brief we only provide minimal descriptions of each index. We urge the reader to
consult the original references for more details on the motivation behind each index and
other associated and important ideas such as, for example, structure removal, rotational
invariance, varimax rotation andp-value computation.

The index of Friedman and Tukey (1974) can, as noted by Jones and Sibson (1987),
essentially be represented by

IFT(f) =

Z
f2(x) dx: (8)

Jones and Sibson suggested that the Friedman-Tukey index looks for departures from
parabolic form rather than specifically look for clusters. Huber (1985) and Jones and
Sibson (1987) both suggested the (order-1) entropy measure

IENT(f) =

Z
f(x) log f(x) dx; (9)

as a suitable projection index that measures departures off from standard normality.
Friedman (1987b) introduced a projection index based upon transforming data to mitigate
the effect of outliers. Friedman’s index can also be written as measuring a departure from
normality:

IFRI(f) =

Z
�(x)�1f(x)2 dx:

Unfortunately there are some technical problems with this index as noted by Hall (1989, p.
591) who showed that densities that decay slower thanexp(�x2=4) have infiniteIFRI (this
is the case for both our densities given in (3) so we do not analyseIFRI in our experiments
based on distributions in Section 4.2. However, a moment approximation toIFRI has been
found to be a useful projection index so we will analyse it in Section 4.3).

Hall (1989) proposed and analysed theL2 metric

IHAL (f) =

Z
ff(x)� �(x)g2 dx;

which clearly measures departures from standard normality. Nason (2000) derives explicit
formulae for this index on the distributional setup given in Section 2.1. Cook, Buja and
Cabrera (1993) developed the transformation ideas of Friedman (1987b) and obtained a
family of transformed indices that included bothIFRI and IHAL indices as well as their
natural hermite index

INHI(f) =

Z
�(x)ff(x) � �(x)g2 dx:

Clearly, apart fromIFT, all these indices measure departures from standard normality. To
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Figure 2: Switch points,��, for a range of cluster separations (2� ranging from 1 to 9 in
steps of 0.5) with� = 1=201. All indices tend to 0 as� ! 0 apart from those based on
divergence from Student’st which tend toC1 � 7:72 orC2 � 27:2 as marked on the plot.

downweight the influence of outliersINHI includes the extra�(x) which reduces the value
of the index whenf differs from� in the tails.

We compare the above indices in Section 4.2 by direct numerical integration using the
densities specified by (3) and compare four moment based indices in Section 4.3.

4.2 Distributional index comparison

For the results in this section we set� = 1=201 which closely models the two main clusters
on thex-axis and the main cluster with outlier on they-axis as in figure 1. Figure 2 shows
the switch points for the projection indices given above for a range of cluster separations
(the figure shows the discrete points joined as lines for ease of interpretation).

The horizontal dotted lines in Figure 2 atP = 15 andP = 200 (marked on the right
hand axis) indicate the point,�, at which 5% of the points from aP -dimensional standard
normal distribution lie at a distance greater than�, as mentioned in section 1. The way to
interpret Figure 2 is to pick a cluster separation,2� and then draw an imaginary vertical
line. If the switch point line of a projection index is below a horizontal dotted line (e.g.
for P = 15) then for a reasonable number of points (at least 5%) pseudo-outliers will be
preferred to large clusters at the given separation. It can be seen that thet based indices do
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well in this particular test.
Figure 2 shows that theITL2

3;� indices are most robust over all computed cluster
separations. The next most robust indices are Hall’s and the natural Hermite index for
cluster separations2� > 2:5 and (slightly disappointingly) the Student’st index ITI

3

otherwise.
The line for theIFT index is a little strange in that the switch points appear to be zero

for cluster separations of 1 to 3. This happens because theIFT index decreases on the
spheredx-density,fXÆ(x) for 2� = 1 to 2� = 2:0 and then monotonically increases
from 2� = 2:5 but only exceeding the� = 0 no separation case at2� = 3:5. In other
words for theIFT index rates the zero separation (one cluster) set to be more attractive
than two slightly separated clusters which is undesirable behaviour and we conjecture this
is due toIFT measuring departures from parabolic form as was mentioned by Jones and
Sibson (1987).

It is also interesting to note that for the indices based aroundL2 divergence (ITL2
3;� , IHAL

andINHI) the ITL2
3;0 andIHAL indices are more robust than those that downweight the tails

by the normal or Student’st density.A priori one might have expected the weighted indices
(INHI ; ITL2

3;
1
2

; ITL2
3;1 ) to be more robust.

One might feel a little suspicious at this point as the experimental distributions in (1)
are all Gaussian and therefore it is no surprise that the switch points of the “Gaussian
departure” indices tend to zero as their separation� ! 0. The t based indices tend
to C1 or C2 in Figure 2 as� ! 0. One might argue that it is the Gaussian nature
of the experimental distributions that causes thet based indices to appear more robust.
To explore this argument we repeated the robustness experiment for Hall’s index and the
ITL2
3;0 index but this time using a distributional configuration similar to that in (1) but using

Student’st-distributions on 3 d.f. instead of normal distributions. TheITL2
3;0 index was still

significantly more robust than Hall’s index. Moreover, with this distributional configuration
Hall’s index preferred a single cluster (y-axis projection with� = 0) to a slightly separated
double cluster (x-axis projection with� < 1:07 approx). In other words with this “heavy-
tailed” experimental configuration the Hall index exhibits potentially undesirable behaviour
as it prefers a unimodal heavy tailed distribution rather than a very clear bimodal one. We
do not believe the Hall index is unique in this respect and further work would be needed to
check the other projection indices.

4.3 Moment index comparison

This section compares the robustness of Friedman’s moment based index from
Friedman (1987b), Hall’s moment index from Hall (1989), the natural Hermite (NHI)
moment index from Cook, Buja and Cabrera (1993) and our orthogonal expansion index
given by (7). Figures 3 to 6 show perspective plots for their switch points against cluster
separation and the number of terms,J , in the index (truncation point). Tables containing
the actual values of the switch points that form the basis of the perspective plots can be
obtained from web site of the author or theJournal.

For large truncation points Friedman’s moment index is more robust than the Hall and

10



5
10

15
20

25

Truncation Point

4

5

6

7

8

Cluster Separation

 0
10

20
30

40
50

60
S

w
itc

h 
po

in
t

Figure 3: Switch points for Friedman’s moment index against cluster separation and
truncation point (ranging from 2 to 27).

NHI moment indices for all but the smallest cluster separations. For truncation points
of J = 2; 3 Friedman’s moment index is least robust for all cluster separations, and for
J = 4; 5; 6; 7 the index is less robust for larger cluster separations when compared to
truncation points greater than 7.

Next, figure 4 shows the switch points for Hall’s moment index for truncation points
ranging from 1 to 40 and the same cluster separations. As the number of terms in Hall’s
moment index gets large the robustness approaches that of Hall’s distributional index (which
is to be expected sinceIHAL is finite, unlike IFRI). However, the robustness is not a
monotonically increasing function of the truncation point as there is a slight dip atJ = 7
terms, and again at aroundJ = 11 terms (especially for larger cluster separations). The
index is most robust for aboutJ � 28 terms (although it reaches its peak robustness for
J � 8 terms for a cluster separation of 4).

A perspective plot for the NHI moment index appears in figure 5. In terms of overall
robustness the NHI moment index appears to be of the same order of robustness as Hall’s
moment index (similar to conclusions for the distributional indices above).

For small numbers of terms both Hall’s and the NHI moment indices exhibit a pairing
effect which causes the “stepping” effect in the perspective plots. Moment indices with 2
and 3 terms, 4 and 5 terms, 6 and 7 terms in pairs exhibit similar robustness values — due no
doubt to odd order polynomial terms in the expansions for the densities contributing little.
This behaviour was noticed by Cook, Buja and Cabrera (1993).

Finally figure 6 shows the switch points for our Student’st moment index from (7).
Remember for this index each increase in truncation point includes two extra Fourier
coefficients. It is easily seen that our new moment index is superior in terms of robustness
both for small and large cluster separation even if the number of terms in the expansion is
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Figure 4: Switch points for Hall’s moment index against cluster separation and truncation
point (ranging from 1 to 40).
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Figure 5: Switch points for natural Hermite moment index against cluster separation and
truncation point (ranging from 1 to 40).
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Figure 6: Switch points for Student’st moment index against cluster separation and
truncation point (ranging from 3 to 20).

small.

4.4 Student’st indices are affected by degree of outlier contamination

In this section we only consider the Student’st index based on an unweightedL2 measure:
ITL2
�;0 and compare it to the equivalentL2 distance from a sphered density to the standard

normal (or IHAL , Hall’s index). For the following we are only interested in how the
projection indices behave on they-axis projection as a function of the movable outlier
location,�, and assume thex-axis projection fixed.

For � = 0 Hall’s index is always zero (sincefY Æ(y) = �(y) in this case) and strictly
greater than zero for values of� > 0. More to the point, in this situation Hall’s index can
never be negative. However, figure 7 shows thatITL2

�;0 can be negative for certain values of�.
The behaviour in figure 7 is very interesting as it indicates that Hall’s index is a monotone
increasing function of� for all � (not mathematically proven). However, the behaviour of
ITL2
�;0 dependsvery much on the outlier contamination. Indeed, for small values of� theITL2

�;0

index initially decreases as� increases but then the index eventually increases. For small
� (when the movable point behaves like an outlier) theITL2

�;0 index is robust. For larger�
(when the movable point behaves like a true cluster) theITL2

�;0 index behaves similarly to
Hall’s index. In other words theITL2

�;0 index repels outliers (decreasing index as a function
of � for small �) but is interested in large clusters (increasing index as a function of� for
larger �).

Numerical experiments indicated that the point at which theITL2
�;0 switches from being

“robust” to “normal” (i.e. whenITL2
�;0 becomes an increasing function of�) occured at about

� � 0:2113. Using the explicit projection index formulae given in Nason (2000) and the
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Table 1: Critical contamination point�� for ITL2
�;0 index for varying degrees of freedom�.

� �� � ��

3 0.2113 160 0.21
4 0.2111 1936 0.1
5 0.2111 4504 0.05
10 0.2108 23962 0.01

computer algebra package MAPLE (www.maplesoft.com ) we derived a Taylor series
of ITL2

�;0 near� = 0 and obtained

ITL2
�;0 (fY Æ)� ITL2

�;0 (fXÆ) = F (�)�4 +O(�6)

where
F (�) = K�(�� 1)(6�2 � 6�+ 1) (10)

andK = (96
p
�� 3�+64

p
2e1=2�fp��(p2=2)=2� 1g)=96�3=2 > 0. The polynomial

in � in (10) governs whetherITL2
�;0 is increasing or decreasing as� increases from 0. If

� is greater than�� = (1 � 1=
p
3)=2 � 0:2113 then theITL2

�;0 index behaves like Hall’s
index however for� < �� the index behaves robustly. (Indeed, more can be said. A referee
kindly pointed out that the kurtosis parameter of the normal mixture on the vertical axis is
positive if and only if� < �� so theITL2

�;0 index is behaves robustly when thenormalmixture
is leptokurtic. Although what happens for other non-normal reference distributions is not
known).

It is well-known that as� ! 1 the Student’st-distribution tends to the standard
normal distribution. Thus, under the same limiting regime we must haveITL2

�;0 ! IHAL

and consequently the�� point must decrease as a function of� (and the index becomes
“less” robust) as shown by numerical experiments in Table 1. So, for example, a user of
theITL2

�;0 index in practice could adapt the behaviour of the index from being very robust to
acting like Hall’s index with Table 1 indicating the degree of robustness.

5 Conclusions and further work

This article has discussed the concept of comparing projection indices independently of the
index optimizers and in particular has introduced one particular aspect of index behaviour:
the robustness of an index which measures how sensitive it is to (pseudo-)outliers as
compared to clusters. We designed four new projection indices based on measuring
divergence from a sphered Student’st-distribution and further developed an orthogonal
expansion approximation index for one of them. We designed an experiment to quantify
robustness and compared a selection of established indices, our new indices and four
moment/approximation indices. Through both numerical calculation and explicit analytical
formulae we found that our new Student’st-indices were generally more robust and that
indices based onL2 divergences were also the most robust in their class. A detailed
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analytical exploration of one of the new Student’st-indices (ITL2
�;0 ) shows that it acts robustly

when outliers diverge from a main cluster, but acts like a standard projection index when
two clusters diverge: i.e. its behaviour automatically changes depending on the degree of
outlier contamination. The degree of outlier sensitivity can be reduced by increasing the
degrees of freedom,�, of theITL2

�;0 index to make it behave increasingly like Hall’s index as
� !1.

Posse (2000) has suggested that an alternative robust projection index might be
constructed by comparing a sphered projected density to a normal density with a variance
larger than one (i.e. with heavier tails like thet densities here). Such an index will
almost certainly be more analytically tractable than thet-indices given here. Further, Posse
has suggested that “squint-angle” plots (i.e. theangleat which the outlier becomes more
attractive, rather than justx andy projections) might be an additional technique to evaluate
the robustness of indices. Both of these ideas are beyond the current scope of this article
but reserved for further work.

All of the projection indices in this article have been defined for projected data in
p dimensions (apart from the orthogonal expansion index given in Section 3.2. A two-
dimensional version of this would not be hard to develop but tedious). However, our
robustness experiment, results and further analysis have only been carried out in one
dimension. It would be straightforward to perform similar robustness experiments for
projections into two and three dimensions. The problem with more dimensions is not
that the methodology is hard but the question is which particular configuration should be
chosen? There are many ways in which the robustness concept could be generalized to
the multi-dimensional situation. For example, the two symmetric clusters in our current
experiment could be generalized to three clusters each situated at the apex of an equilateral
triangle. The moveable outlier could then initially be positioned at the centre of the triangle
in the plane of the triangle and then� could represent the height of the outlier as it moves
up the line through the centre of the triangle and perpendicular to the plane of the triangle.
A problem with such a configuration might be that there were several interesting “real”
views rather than the clear cut distinction between thex andy axes here. There are several
different other experiments that one might try and the number of possible “reasonable”
experiments that one could devise would increase withp. However, a simple ranking of
the established projection indices might not be possible. Although the experiments in this
article are one-dimensional we expect that at least some of the multi-dimensional versions
would behave somewhat similarly. However, the possibility of interesting structures such
as holes in more dimensions means that the experiments here can only be viewed as a first
step to evaluating and comparing projection indices and further work in more dimensions
would be interesting.

It almost goes without saying that a further line of development would be to actually
use some of the indices proposed here in practice as part of a full PP implementation.
Robustness experiments could be carried out by measuring the frequency that an index with
optimizer finds outlying projections as a proportion of found projections. This too is beyond
the scope of the current paper but would be an interesting avenue for further exploration.
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A Minimization of the Student’s t-index

Here we show that the Student’st-index ITI
� in (6) is minimized over all sphered densities

by the sphered Student’st-density using the theory ofF -divergence. We first briefly review
the essential theory ofF -divergence: a class of dissimilarity measures for densities (or
probability measures).

A.1 F -divergence

A formal (measure-theoretic) definition ofF -divergence can be found in Vajda (1989).
However, this article makes do with the following, slightly simpler, definitions.

Definition 5 (K) DefineK to be the set of all functionsF : [0;1)! R that are continuous
and convex on[0;1), finite on(0;1), and strictly convex at some point0 < x <1.

Definition 6 (F -divergence) Let f and g be probability density functions defined onRp .
TheF -divergence fromf to g is given by

FF (f jg) =
Z

f(x)F ff(x)=g(x)g dx;

whereF 2 K.

The reason whyF -divergences are useful for designing projection indices is because
they satisfy the following inequality due to Csisz´ar (1967).

Theorem 2 (Csisźar) For densitiesf andg, theF -divergence fromf to g satisfies

FF (f jg) � F (1);

with equality if and only iff = g.

The utility of F -divergence for the design of projection indices becomes apparent when
one substitutes (e.g.) the standard normal density� for g in Theorem 2 and then the
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F -divergence measures departures from standard normality. The following useful property
of F -divergence is used later: define~F by

~F (u) = uF (1=u) for all u 2 (0;1);

then Csiszar (1967) shows that

F 2 K if and only if ~F 2 K;

and this leads to the followingF -divergence asymmetry property

F ~F (f jg) = FF (gjf): (11)

It is very easy to put some well-known projection indices intoF -divergence form (for
exampleIENT with F (u) = u log u; q = � andf a sphered projection density).

A.2 Representation of Student’st-index as anF -divergence

Before the main result is proven we demonstrate that thet-index can be written as the sum
of two F -divergences after we define the following constants.

Definition 7 (constants) The following quantitiesD?
�;p;D�;p and C�;p are all constants

dependent only on� andp defined by

D?
�;p = (� � 2)�p=2��p=2

�
�f12(� + p)g=�(12�)

�
: (12)

Define
D�;p = D?

�;p
�2=(�+p): (13)

Define

C�;p = �
�
� + p� 2

� � 2

�
Dn;p: (14)

Lemma 1 (F -divergence representation)The Student’st-index,ITI
� , can be represented

as the sum of twoF -divergences (multiplied by a constant) as follows

ITI
� (f)� ITI

� (t�;p) = D�;p

�F ~F �(f jt�;p) + (� � 2)�1F ~F �(x
T
xf jxTxt�;p)

	
; (15)

wheref is a sphered density,D�;p is a known constant depending only on� and p and
F �(u) 2 K defined by

F �(u) = 1� u2=(�+p):

Both of the terms on the right-hand side of (15) areF -divergences. Note how the second
term measures divergence ofxTxf from x

T
xt�;p. The extraxTx weight causesITI

� to be
large wheneverf differs fromt�;p in the tails (bothxTxt�;p andxTxf are densities because
t�;p andf are sphered). Moreover, as� increases this term is progressively down-weighted
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and its influence wanes. This weighting concurs exactly with our aim of finding a projection
index that has a large value for densities that differ fromt in the tail.
Proof: (of Lemma 1).

First we establish some notation. Write the form of the spheredt-density (4) as

t�;p(x) = D?
�;p

�
1 + (� � 2)�1xTx

	
�(�+p)=2

;

whereD?
�;p was defined by (12). It is convenient to note that

t�;p(x)
�2=(�+p) = D�;p

�
1 + (� � 2)�1xTx

	
; (16)

is a simple quadratic form with no linear term and whereD�;p was defined by (13).
We now move directly on to the representation of the Student’st-index as the sum of

two F -divergences. Using definition 4 ofITI
� the difference we must examine is

ITI
� (f)� ITI

� (t�;p) = �
Z

ff�2=(�+p) +

Z
t�;pt

�2=(�+p)
�;p :

We now introduce two new equal terms to this and obtain

ITI
� (f)� ITI

� (t�;p) = �
�Z

ff�2=(�+p) � ft�2=(�+p)�;p + ft�2=(�+p)�;p � t�;pt
�2=(�+p)
�;p

�

= �
�Z

f
n
f�2=(�+p) � t�2=(�+p)�;p

o
+

Z
(f � t�;p)t

�2=(�+p)
�;p

�
:

The second of these integrals is zero becauset
�2=(�+p)
�;p is a quadratic form with no linear

term by (16) andf andt�;p are sphered. Therefore

ITI
� (f)� ITI

� (t�;p) =

Z
ft�2=(�+p)�;p

n
1� (t�;p=f)

2=(�+p)
o

=

Z
fD�;p

�
1 + (� � 2)�1xTx

	
F ?(t�;p=f)dx;

from (16) and where
F ?(u) = 1� u2=(�+p)

is a continuous, strictly convex, and finite function on[0;1) and henceF ? 2 K. Thus
using the definition ofF -divergence we have

ITI
� (f)� ITI

� (t�;p) = D�;p

�FF ?(t�;pjf) + (� � 2)�1FF ?(xTxtnjxTxf)
	
: (17)

and with ~F ? defined as in the statement of the lemma and using the asymmetry property (11)
of F -divergence we obtain the result we require. �
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Proof: (of Theorem 1). From Csisz´ar’s Theorem 2 we know that

FF ?(xTxt�;pjxTxf) � ~F ?(1) = F ?(1) = 0;

and similarly
FF ?(t�;pjf) � 0;

with equality in both cases if and only iff = t�;p almost everywhere. Therefore using
lemma 1 we have

ITI
� (f)� ITI

� (t�;p) � 0

with equality if and only iff = t�;p almost everywhere. It is easy to show thatITI
� (t�;p) is

equal toC�;p defined in (14) and hence the theorem is proved. �
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