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Abstract

Many time series are not second-order stationary and it is not appropriate
to analyze them using methods designed for stationary series. This article in-
troduces a new test for second-order stationarity that detects different kinds of
departures from stationarity than those based on Fourier methods. The new
test is also computationally fast, designed to work with Gaussian and a wide
range of non-Gaussian time series, and can locate nonstationarities in time
and scale. The test is demonstrated on earthquake, explosion, infant electro-
cardiogram and simulated time series showing varying degrees of stationarity.
The second main contribution develops approximate confidence intervals for
time-varying autocovariances for locally stationary series as the usual bands
computed for stationary series are not appropriate. Our new bands enable
practitioners to statistically assess time-varying autocovariances and are ex-
hibited on localized autocovariances of explosion and simulated time series.

Keywords: stationarity test, local autocovariance, confidence intervals, lo-
cally stationary

1 Introduction
Many professionals encounter time series that they suspect are not second-
order stationary. Probably, the most common technique for investigating this
suspicion is via the regular time series plot, closely followed by applying the
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regular autocovariance and spectral estimators to different portions of the se-
ries to see whether they differ. Although simple, the use of such ‘regular’
methods, designed for stationary series, is not to be recommended for non-
stationary series. Ad hoc use on segments or rolling windows raises all sorts
of questions beginning with ‘how many observations should a portion con-
tain?’ and ‘from where should the portion be extracted?’, to more advanced
inferential questions such as ‘do these two, or more, ACF estimates differ sta-
tistically?’.

Even if the series is piecewise stationary, detecting breaks is not always an
easy proposition. See, for example, in biomedical signal processing: segmen-
tation of extracellular microelectrode recordings in Falkenberg et al. (2003),
dynamic spectral analysis of event-related EEG data in Florian and Pfurtscheller
(2000); in audio signal processing: automatically determining pitch-side/studio
footage from Rugby Union broadcasts in Davies and Bland (2010); in speech
processing, see Spanias et al. (1993), and several examples in the statistical
literature Adak (1998), Ombao et al. (2001), Ombao et al. (2002), Davis et al.
(2006), Draghicescu et al. (2009), Rosen et al. (2009), to name but a few.

This article makes two main contributions. We develop a new test of sta-
tionarity which is efficient, works with Gaussian and a wide range of non-
Gaussian time series, and identifies the location of nonstationarities. If a se-
ries is deemed not to be stationary our second contribution provides a method
to compute confidence intervals (CIs) for a localized autocovariance (lacv)
estimator. This permits one to investigate how the autocovariance of a non-
stationary series changes over time in a statistically rigorous way. Note, our
method computes a lacv estimator at a given time point and lag, no associated
segment or rolling window is involved.

1.1 Tests of Stationarity
That practitioners often resort to ad hoc methods is a somewhat surprising
state of affairs as there are several easily-found tests of stationarity that ex-
ist in the literature. The idea of series not being second-order stationary has
been around for a very long time, certainly since Silverman (1957) and Page
(1952). An early test (the PSR test) for stationarity was proposed by Priestley
and Subba Rao (1969) which performs an ANOVA analysis on the logarithm
of a time-varying spectral estimate at a given set of times and frequencies.
The ANOVA can be scrutinized for variation of the spectrum across time (and
for effects over frequencies, and interaction effects) to determine, as a hy-
pothesis test, whether the spectrum is time-varying and hence the series not
stationary. This test has recently been made publicly available via CRAN in
the fractal package by Constantine and Percival (2007). The fractal
package’s stationarity function contains an improved version of the test
which uses averages of multitaper estimates which control leakage bias.
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Since Priestley and Subba Rao (1969) other tests of stationarity have been
developed: von Sachs and Neumann (2000), Paparoditis (2010) and Dwivedi
and Subba Rao (2011) are a recent few that we briefly compare and contrast.
Some comparative information is shown in Table 1. These works provide
a useful survey of the field and they are all representative of certain classes
of test. von Sachs and Neumann (2000) delineate the difference between
smoothing and non-smoothing tests, the former producing estimates of the
spectral density and basing tests on those rather than computing ‘lumps’ of
periodogram. Why do we need another test of stationarity? Different tests
pick up on a variety of nonstationarities, and will have differing powers for
various alternative hypotheses. Priestley and Subba Rao (1969), von Sachs
and Neumann (2000) and Paparoditis (2010) work with local Fourier spectra,
and the innovative Dwivedi and Subba Rao (2011) attempts to detect correla-
tion between power at differing Fourier ordinates.

Our test is different, based on a wavelet process and, hence, likely to de-
tect departures in a different ‘direction’. More specifically, we use the prin-
ciple introduced by von Sachs and Neumann (2000) that assessed constancy
of the time-varying Fourier spectrum by examining its Haar wavelet coeffi-
cients across time. Our test examines the constancy of a wavelet spectrum
by examining its Haar wavelet coefficients but over a finite set of (wavelet)
scales, rather than a smoothed set of frequencies. Our test inherits the ability
of the von Sachs and Neumann (2000) technique to work with a wide range of
non-Gaussian data. Indeed, simulation results given in Section 2.4.3 clearly
demonstrate our test’s better control of statistical size when compared to the
Priestley and Subba Rao (1969) method for heavy-tailed time series.

Test speed can be important in many practical situations and ours is de-
signed to be fast. For example, for long series, such as in bioinformatics, see
Vannucci and Lio (2001), Lio (2003), or whenever the test has to be repeated
multiple times, such as in the determination of costationarity in Cardinali and
Nason (2010). We consider a test to be ‘fast’ whenever its speed achieves
O(T log T ) or better when the length of the series is T : our new test achieves
this rate. Although the papers mentioned above do not explicitly mention
the computational complexity of their methods, we estimate the order for von
Sachs and Neumann (2000) and Paparoditis (2010) to be O(T 3/2 log T ). For
non-Gaussian data Dwivedi and Subba Rao (2011) requires computation of
the tri-spectrum which, even using fast algorithms requires O(T 3), although
the test overall reduces to O(T 2) for Gaussian data.

In summary, our new test is fast, designed to work with non-Gaussian data
and provides sensitivity to different alternatives compared to previous tests.
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Table 1: Characteristics of certain tests of stationarity. Type is smoothing or non-
smoothing. Non-normal indicates whether theory exists for the non-Gaussian case.
R indicates whether the software exists in an R package and ‘Locates’ indicates
whether the test directly indicates the location of the nonstationarities.

Test Type Non-normal? Fast R Locates
PSR69 N 7 3 fractal 3

vSN00 S 3 7 7 3

Pap10 N? 7 7 7 3

DSR11 3 7 7 7

ours S 3 3 locits 3

1.2 Autocovariance Confidence Intervals
If a test rejects the null hypothesis of stationarity then a practitioner can pro-
ceed to use various tools such as local spectral analysis and local autocovari-
ance estimation. This article introduces CIs for an estimate of the time-varying
autocovariance, by deriving the theoretical asymptotic variance of a wavelet-
based estimator. Such CIs are useful for determining whether autocovariances
are likely to be zero or not, just as in the case for the popular ±2/

√
T bands

often used for stationary series, and coded into the acf() function in R, R
Development Core Team (2009).

1.3 Background Model: Locally Stationary Wavelet
Central to the techniques developed in the next sections are the locally sta-
tionary wavelet (LSW) processes introduced by Nason et al. (2000). The time
series Xt, t = 1, . . . , T , is a LSW process if it has representation:

Xt,T =
∞∑
j=1

∞∑
k=−∞

wj,k;T ψj,k−t ξj,k, (1)

where wj,k;T are the amplitudes of the process, {ψj,k}j,k are a set of nondec-
imated discrete wavelets and ξj,k are a set of uncorrelated random variables
with mean zero and variance of one. If the ξj,k are normally distributed then
the process is known as a Gaussian LSW process. To control the stochastic
evolution of Xt the amplitudes, wj,k are linked to a collection of functions
{Wj(z)}∞j=1, where z ∈ (0, 1) is rescaled time, by

sup
k
|wj,k;T −Wj(k/T )| ≤ Cj/T, (2)

for j = 1, 2, . . ., where Cj is a sequence of constants satisfying
∑∞

j=1Cj <
∞. The rescaled time device was introduced by Dahlhaus (1997) in a seminal
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development of locally stationary Fourier processes. Stochastic evolution of
Xt is controlled by constraints on {Wj(z)}: the precise constraints we employ
are determined by Assumption 2 for the tests of stationarity and in the state-
ment of Theorem 1 for CIs of localized autocovariance, below. However, if
suffices to say here that if Wj(z) is a constant function of z for all j ∈ N, then
the process Xt is stationary. If Wj(z) changes slowly as a function of z (for
some j ∈ N) then the process is ‘near stationary’, and the faster the oscillation
of Wj(z) means that the process Xt deviates further from stationarity. Nason
et al. (2000, Section 2.2) define the evolutionary wavelet spectrum (EWS),
{Sj(z)}, by Sj(z) = |Wj(z)|2 for all z ∈ (0, 1) and j ∈ N. As in station-
ary theory the (EW) spectrum is a key quantity. However, unlike stationary
theory the EWS is a time-varying spectrum, Sj(t/T ), which quantifies the
contribution to variance in the series at scale j ∈ N and over time t.

Nason et al. (2000, Def. 6 and 7) estimate {Sj(z)} from X1, . . . , XT by
first computing the discrete nondecimated wavelet coefficients of the series:
dj,k =

∑T
t=1Xtψj,k−t and then the wavelet periodogram Ij,k = d2j,k. Propo-

sition 4 of Nason et al. (2000) shows that E(Ij,k) = βj(k/T ) where

βj(z) =
∞∑
i=1

Ai,jSi(z), (3)

where the matrix Ai,j =
∑

τ Ψi(τ)Ψj(τ), and the autocorrelation wavelets
Ψj(τ) =

∑
k ψj,kψj,k−τ from Definitions 3 and 5 from Nason et al. (2000).

An asymptotically unbiased estimator of {Sj(z)} can be obtained by premulti-
plying Ik = (I1,k, . . . , IJ,k)

T by A−1 where z = k/T and J = log2 T a finite
number of scales from a finite series T . The quantity βj(z) was introduced
by Fryzlewicz and Nason (2006) and is often easier to work with theoretically
than the spectrum Sj(z).

1.4 Article Structure
Section 2 describes our new test of stationarity and introduces: the theoretical
basis in Section 2.1; the empirical Haar wavelet coefficients of the wavelet pe-
riodogram in Section 2.2 and demonstrates their asymptotic normality; the test
statistics in Section 2.3 and the role of multiple hypothesis testing. Section 2.4
exhibits the new test on real data and compares it to the PSR on simulated data.

Section 3 introduces our CIs for a localized autocovariance estimator:
Section 3.1 rehearses the method of calculation of the localized autocovari-
ance from Nason et al. (2000); Section 3.2 shows how ad hoc methods can
be misleading; Section 3.3 explains our method for computing approximate
100(1− α)% CIs; Section 3.4 exhibits our CIs on real and simulated data.

Section 4 concludes and suggests topics for further examination. Further
simulations, comparisons and investigations into both the new test of station-
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arity and the CIs can be found in Nason (2012) along with instructions on how
to reproduce the figures in this paper. An R package, locits, containing
software to implement the methods can be obtained from the author.

2 A Wavelet-based Test of Stationarity

2.1 Theoretical Basis for the Test
Our test of stationarity is based on examination of the wavelet periodogram
I`,bzT c;T , or I`,t for short, where z = t/T . As first shown in Nason et al.
(2000, Proposition 4) I`,k is an asymptotically unbiased estimator of the quan-
tity β`(z) defined above in (3). In principle, ` ∈ N, but, in practice, since T is
finite, we have access to a finite set of scales ` = 1, . . . , J = log2(T ).

The series Xt is stationary if and only for all ` ∈ N the quantity β`(z)
is constant function of z ∈ (0, 1). As proposed by von Sachs and Neumann
(2000) for Fourier spectra we evaluate the constancy of of β`(z) by examining
its Haar wavelet coefficients:

v
(`)
i,p =

∫ 1

0
β`(z)ψ

H
i,p(z) dz, (4)

for i = 1, 2, . . . , J , p = 1, . . . , 2i − 1, and {ψHi,p(t)}i,p are the usual Haar
wavelets. von Sachs and Neumann (2000) note that the Haar wavelets are
perfect for stationarity testing for detecting differences in β`(z). This is in
contrast to estimation of β`(z) itself, where smoother wavelets can offer ad-
vantages in terms of better rates of convergence.

If any v(`)i,p are non-zero then ∃` such that β`(z) is not constant and hence
the associated LSW process, Xt, is not stationary. In reality we do not know
β`(z) and we replace it by its asymptotically unbiased estimator I`,k to obtain
estimates v̂(`)i,p of v(`)i,p and perform multiple hypothesis testing on the whole

collection of hypotheses: H0 : v
(`)
i,p = 0 for all `, i, p against the alternative

that there exists `∗, i∗, p∗ such that v(`
∗)

i∗,p∗ 6= 0. The hypothesis tests rely on the

establishment of asymptotic normality of the v̂(`)i,p under mild assumptions.
In what follows, the one-dimensional wavelet coefficient analysis parallels

that for the two-dimensional situation in von Sachs and Neumann (2000). The
assumptions we make are:

Assumption 1. For control of bias asymptotically we consider only wavelet
coefficients vi,p at coarse enough scales, i.e. 2i = O(T ). As in von Sachs and
Neumann (2000) there is no additional segmentation bias as we average the
wavelet periodogram over pre-defined dyadic intervals.

Assumption 2. (a) supz |W`(z)| <∞, for all ` ∈ N.

6



(b) infz |W`(z)| ≥ κ for some κ > 0, for all ` ∈ N.

(c) W`(z) has uniformly bounded total variation with respect to z, again
for all ` ∈ N. In other words supz TV {W`(z)} <∞ for ` ∈ N.

The next assumption is made on the cumulants of the process Xt:

Assumption 3. sup1≤t1≤T {
∑T

t2,...,tk=1 | cum(Xt1,T , . . . , Xtk,T )|} ≤ Ck(k!)1+γ

for all k = 2, 3, . . . , where γ ≥ 0.

Remark 1. Assumption 2 is satisfied ifW`(z) is differentiable (with uniformly
bounded partial derivatives), but as with Van Bellegem and von Sachs (2008)
the bounded variation assumption permits jumps in the spectrum, which can
be important in practice.

Remark 2. von Sachs and Neumann (2000) note that Neumann (1994) showed
that Assumption 3 is satisfied if {Xt} is α-mixing with coefficients α(s) ≤
K exp(−b|s|) and

E|Xt|k ≤ Ck(k!)ρ, (5)

for all k. Condition (5) is fulfilled for many distributions, for example, expo-
nential, gamma and inverse Gaussian distribution for appropriate choice of ρ
(and also for Gaussian, see Neumann (1994, Remark 3.1(ii))).

2.2 The Test Statistic(s)
In practice, we use the empirical wavelet periodogram values I`,k = I`(k/T )
for k = 1, . . . , T and z = k/T is rescaled time. The Haar wavelet coefficient
estimates, for scale ` of the wavelet periodogram, are given by

v̂
(`)
i,p = 2−i/2

2i−1−1∑
r=0

I`,2ip−r −
2i−1∑
q=2i−1

I`,2ip−q

 , (6)

for the same range of i, p as in (4).
We now derive the asymptotic distribution of these empirical coefficients

under the general assumptions listed in Section 2.1.

Lemma 1. Suppose that Assumptions 1–3 hold. Then:

(i) Ev̂(`)i,p = v
(`)
i,p + o(T−1/2),

(ii) var(v̂
(`)
i,p ) = 2T−1

∫ 1
0 β

2
` (z){ψHi,p(z)}2 dz +O(T−1).

(iii) | cumn(v̂
(`)
i,p )| ≤ Cn(n!)2+2γT−1(T−1/2)n−2,

all hold uniformly for `, i, p as above, where C <∞ is an arbitrary, but fixed,
constant.
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The proof of this Lemma is in the appendix and is heavily modified version
of Lemma 3.2 from Neumann and von Sachs (1997). We can demonstrate the
asymptotic normality of the v̂i,p using the following Proposition:

Proposition 1. Suppose that Assumptions 1–3 hold. Let ∆T = K(log T )1/2

for any fixed K <∞. Then:

P{±(v̂
(`)
i,p − v

(`)
i,p )/σ

(`)
i,p ≥ x} = {1− Φ(x)}{1 + o(1)}, (7)

holds uniformly in −∞ ≤ x ≤ ∆T and i, p as above, where Φ(x) is the
standard normal CDF and σ(`)2i,p = var(v̂

(`)
i,p ).

Proposition 1 parallels Proposition 3.1 in von Sachs and Neumann (2000)
for the local Fourier case, and both rely on the asymptotic normality proof of
Proposition 3.1 found in Neumann and von Sachs (1997) and the properties
established in Lemma 1.

2.3 Testing
UnderH0 the quantity β`(z) is a constant function of z and hence v(`)i,p = 0 for
all `, i, p from (4) as

∫
ψ(z) dz = 0 is a defining wavelet property. The test

statistic we form is:
T
(`)
i,p = v̂

(`)
i,p σ̂

(`)−1
i,p , (8)

To estimate σ(`)2i,p note that for stationary series we have β` =
∫ π
−π f(ω)|ψ̂`(ω)|2 dω

where the classical stationary spectrum f(ω) could be estimated by the reg-
ular periodogram. In this case, von Sachs and Neumann (2000, Theorem
3.1) allows us to obtain convergence rates that guarantee that PH0{|v̂

(`)
i,p | >

σ̂
(`)
i,pΦ−1(1 − α/2)} ≤ α + o(1), for parameters `, i, p as above and size α.

Another estimate of σ(`)2i,p can be obtained by replacing β2` (z) in Lemma 1 (ii)
by

σ̂
(`)2
i,p = 2T−1I2`,<1,T>

∫ 1

0
{ψHi,p(z)}2 dz = 2T−1I2`,<1,T>, (9)

where I2`,<1,T> = T−1
∑

t I
2
`,t and because Haar wavelets have unit norm for

all i, p. Each test statistic is compared to a critical value derived from the
normal distribution in the normal way.

For stationarity testing we wish to test many hypotheses H0 : v
(`)
i,p for

several values of `, i, p. Hence, we are in the world of multiple hypothesis
testing. We propose to use Bonferroni correction and, for a less conservative
procedure, we propose using the false discovery rate (FDR) procedure intro-
duced by Benjamini and Hochberg (1995). Our simulations, below, show that
these methods work well. However, the multiple hypothesis testing methods
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we use do not take into account dependence of the v̂(`)i,p , this is an interesting
avenue for further work.

2.4 Data: Real Examples and Simulations
2.4.1 The Earthquake and Explosion Data

Figures 1 and 2 show our test being applied to the Earthquake P and the Ex-
plosion P data from Shumway and Stoffer (2006) respectively. Each plot also
uses a horizontal double-headed arrow to indicate the location of a nonstation-
arity, significant Haar coefficient, picked up by the multiple hypothesis testing,
and are produced automatically in the associated R package, locits.

The vertical position of the horizontal arrow encodes the scale ` of the
periodogram that was tested, and i the scale of the Haar wavelet transform
of that periodogram. The right-hand axis indicates ` and the wavelet scales,
i, are arranged in ascending order of scale within that. The span of the arrow
corresponds to the support of the underlying Haar wavelet and hence the arrow
indicates the time period over which the nonstationarity has been detected.
The plot is only meant to give an overall impression, identification of i is hard
from the plot. However, the software provides detailed information on both
Bonferroni and FDR nonstationarities which can either can be listed or plotted.

The Explosion P wave exhibits a higher degree of nonstationarity than the
Earthquake P data. Indeed, the Earthquake P data only has one nonstationarity
indicator (significant Haar coefficient), so it is quite ‘close’ to stationarity.

2.4.2 Infant Electrocardiogram Data

The Infant Electrocardiogram data was originally analyzed in Nason et al.
(2000, Section 4.2) and their first differences analyzed in Nason (2008, Sec-
tion 5.3.7). Figure 3 shows a plot of the first differences of the BabyECG data
as computed in Nason (2008). The subtitle of Figure 3 notes that four Haar
wavelet coefficients were deemed significant by the new test of stationarity ac-
cording to the FDR criterion. The location of the four significant coefficients
is shown by the horizontal double-headed arrows. A nonstationarity was dis-
covered in I`,k for ` = 6, 7 and 8 for k the Haar wavelet centred on k = 512
of length 1024. A further nonstationarity was discovered at about k = 1400
in I7,k. Further interrogation of the output of the test shows that this last sig-
nificant Haar wavelet occurred on level i = 5 which means that the extent of
the nonstationarity exists over 2048/25 = 64 time points.

2.4.3 Size and Power Simulations and Comparisons

We report results from a set of simulations, selected from Nason (2012), com-
paring the size and power of our new tests of stationarity and also the PSR
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Figure 1: Plot of Earthquake P Data with (single) nonstationarity indicator shown.
The horizontal double-headed arrow shows the location of a detected nonstationar-
ity, the right-hand side axis label shows the scale of the wavelet periodogram, ` = 8,
where it was detected.
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Figure 2: Plot of Explosion P Data with nonstationarity indicators shown. The
horizontal double-headed arrow shows the location of a detected nonstationarity, the
right-hand side axis label shows the scales of the wavelet periodogram, ` = 7, 8, 9
where they were detected. The scale of the analysing Haar wavelet, i, is indicated
by vertical positioning within those scales, but not explicitly shown on the axis.
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Figure 3: Plot of differenced BabyECG data with nonstationarity indicators shown.
The horizontal double-headed arrow shows the location of a detected nonstation-
arity, the right-hand side axis label indicates both which periodogram, `, and Haar
wavelet scale i was involved.
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Table 2: Simulated size estimates (%) for stationary Gaussian models T = 512.
Model PSR HWTOS (Bon) HWTOS (FDR)

S1 5.6 4.3 4.3
S2 12.4 4.0 4.7
S3 6.2 20.3 20.5
S4 6.0 3.4 3.8
S5 6.5 0.7 0.7
S6 7.5 0.1 0.1
S7 23.9 7.3 7.4

test as implemented in the fractal package by Constantine and Percival
(2007). In all the simulations below the nominal size of the tests is 5%, empir-
ical values are obtained using N = 1000 simulations and T = 512. Here, the
wavelet-based tests are denoted by HWTOS with “Bon” or “FDR” indicating
the method of multiple comparison control.

Size Comparisons. First, we simulate data from a number of stationary
models using Gaussian innovations and assess how often our tests of station-
arity reject the null hypothesis. The models are:

S1 iid standard normal;

S2 AR(1) model with AR parameter of 0.9 with standard normal innovations;

S3 As S2 but with AR parameter of −0.9;

S4 MA(1) model with parameter of 0.8;

S5 As S4 but with parameter of −0.8.

S6 ARMA(1, 0, 2) with AR parameter of -0.4, and MA parameters of (−0.8, 0.4).

S7 AR(2) with AR parameters of α1 = 1.385929 and α2−0.9604. The roots
associated with the auxiliary equation, see Chatfield (2003, page 44), are
β1 = β̄2 = 0.98eiπ/4. This process is stationary, but close to the ‘unit
root’: a ‘rough’ stochastic process with spectral peak near π/4.

The empirical size values are shown in Table 2. People should not switch
to more complex nonstationary methods unless absolutely necessary so most
practitioners would prefer a conservative test. Table 2 shows that, apart from
S3 and S7, the HWTOS test’s empirical size is less than the nominal size
and all the PSR test’s sizes are greater than 5% (but only just). The PSR
erroneously rejects many realisations in S2 and HWTOS does so with S3.

Heuristics: It is difficult to pin a precise explanation on why PSR does
not do well for S2 and S7. The decay of the autocorrelation for S2 is slow
leading to a process that does not mix quickly. Hence, the process gets ‘stuck’
for relatively long periods. PSR divides the series into a fairly small number of
blocks and the behaviour of the series appears to be different on those blocks
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Table 3: Simulated size estimates (%) for stationary exponential-tailed models with
nominal size of 5%

Model PSR HWTOS (Bon) HWTOS (FDR)
SHD1 43.8 7.3 7.9
SHD2 48.9 5.8 7.0
SHD3 40.6 20.5 20.8
SHD4 44.5 7.1 7.8
SHD5 46.8 15 19
SHD6 45.1 11 12
SHD7 57.6 10.6 11.4

due to the slow mixing and hence the excessive empirical size values reported
in Table 2. A different mechanism appears to be at work in S7 in this case
the variance appears to be quite different in different PSR blocks (realizations
look like variance-modulated sinusoids) and this behaviour is also affecting
the wavelet tests with empirical sizes of 7.3, 7.4%. The behaviour of S7 is
similar to, but not the same as, that in S3 and this is investigated in great detail
in Nason (2012).

Table 3 shows empirical size values obtained using the models S1–S7, but
with double exponential heavier-tailed innovations, labelled as SHD1–SHD7,
which HWTOS should cope with due to Assumption 3. Table 3 shows that
PSR does not perform well for these heavy tails. The HWTOS tests perform
better and only slightly exceed the nominal size for SHD1, SHD2, SHD4 and
is barely tolerable on SHD5, SHD6 and SHD7. Like for the Gaussian inno-
vations above (S3) the HWTOS’s empirical size for SHD3 is about 20%, but
that for PSR is double, and about eight times what they were for Gaussian
innovations.

Nason (2012) documents a further simulation with even heavier tails (Stu-
dent’s t) where the PSR empirical size is uniformly greater than 60% whereas
that for the HWTOS ranges from 6.6% to 18.0% for the non-S3 based tests.
Although the HWTOS is not theoretically designed for such extreme distribu-
tions it performs tolerably well, unlike PSR.

Power Comparisons. To explore statistical power we create processes that
are nonstationary and then count the number of times each test reckons a real-
isation is not stationary over multiple simulations. The models are:

P1 Time-varying AR model Xt = αtXt−1 + εt with iid standard normal
innovations and the AR parameter evolving linearly from 0.9 to -0.9
over the 512 observations.

P2 A LSW process based on Haar wavelets with spectrum Sj(z) = 0 for
j > 1 and S1(z) = 1

4 − (z − 1
2)2 for z ∈ (0, 1). This process is, of

course, a time-varying moving average process.
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Table 4: Simulated power estimates (%) for models P1–P4 with nominal size of 5%

Model PSR HWTOS (Bon) HWTOS (FDR)
P1 37.2 99.7 99.9
P2 100 17.3 19.2
P3 44.3 1.3 1.3
P4 100 94.8 97.8

P3 A LSW process based on Haar wavelets with spectrum Sj(z) = 0 for
j > 2 and S1(z) as for P2 and S2(z) = S1(z + 1

2) using periodic
boundaries (for the construction of the spectrum only).

P4 A LSW process based on Haar wavelets with spectrum Sj(z) = 0 for
j = 2, j > 4 and S1(z) = exp{−4(z − 1

2)2}, S3(z) = S1(z − 1
4),

S4(z) = S1(z + 1
4) again assuming periodic boundaries.

The spectra and single realisations for these processes are displayed in Nason
(2012). The simulation results in Table 4 for power paint an interesting picture.
Sometimes the HWTOS tests are good and the PSR is not (P1), sometimes
PSR is good and HWTOS is not (P2), sometimes both are not that good (P3)
and sometimes both are very good (P4).

Sample size is an important determining factor in power: increasing sam-
ple size should increase power of detection of alternatives. For example, with
P2 which has a sample size of T = 512 the HWTOS tests have fairly low pow-
ers of 17.3%/19.2% respectively. For T = 1024 the tests are more powerful
having powers of 70.7%/75.2% and for T = 2048 the powers are 100%.

3 LACV Confidence Bands for Gaussian LSW
processes

3.1 Localized Autocovariance
For locally stationary series the autocovariance is a time-varying quantity,
c(t, τ) and Nason et al. (2000, Definition 4) showed that, for LSW processes,
it can be obtained via the evolutionary wavelet spectrum, {Sj(z)} via the for-
mula

c(z, τ) =
∞∑
j=1

Sj(z)Ψj(τ), (10)

where z = t/T , and {Ψj(τ)} are the autocorrelation wavelets. More pre-
cisely, Nason et al. (2000, Proposition 1) showed that the ‘usual’ time-varying
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autocovariance for LSW processes: cT (z, τ) = cov(X[zT ];T , X[zT ]+τ ;T ) sat-
isfies |cT (z, τ)− c(z, τ)| = O(T−1) uniformly in τ ∈ Z as T →∞. Indeed,
proposition 3 of Nason et al. (2000) for all stationary series, with absolutely
summable autocovariance, shows c(z, τ) = γ(τ), the classical autocovari-
ance. A key goal of this section will be to develop rigorously derived CIs for
c(z, τ) based on wavelet models. LSW theory parallels that of locally station-
ary Fourier models and, in principle, what we introduce here, below, could
also be developed for those. Next, an example which shows the perils of com-
puting autocovariances and autocorrelations on informally obtained segments.

3.2 Earthquake Example
Figure 1 shows the Earthquake P wave data from Shumway and Stoffer (2006).
The mean of this series is very close to zero and it suitable for direct analysis
using locally stationary time series. Figure 4 plots three different estimators
of the series autocorrelation around time point t = 150: one uses a local-
ized autocovariance estimator computed via wavelets and two others using the
regular ACF on two different segment lengths centred on t = 150.

On the one hand, it is reassuring that the autocorrelation values, especially
for the lower lags, look similar. On the other, the two regular-computed ACFs
over segments of 100 and 300 data points can give quite different answers.
Although the plotted CIs are computed under white noise assumptions, people
do tend to use them as a guide to significance more generally, and hence might
be attempted to see the coefficient at lag 9 to be significant when computed
using a segment length of 100, but not when computed with a segment length
of 300. Further, there is nothing special about using segment lengths of 100
or 300, and other choices will almost certainly lead to a variety of inferences.

The two different segment lengths are proxies for different amounts of
‘smoothing’ in the regular autocovariance estimator. The localized estimator
is also subject to smoothing, but with parameters chosen in a manner guided
by rigorous theory such as Nason et al. (2000), Van Bellegem and von Sachs
(2004), Fryzlewicz and Nason (2006) or Van Bellegem and von Sachs (2008).
Further, the localized estimator is designed for locally stationary series with
many kinds of smoothness: piecewise, degrees and modes of continuity.

For a stationary series, the usual ‘CI’ for the regular autocorrelation are
±2/
√
T , see Chatfield (2003, Section 2.7.2). These CIs are widely used and

are routinely plotted by the acf function in R. Confidence intervals for the
regular autocorrelation, assuming stationarity, are shown in Figure 4. How-
ever, for locally stationary series, a bona fide time-varying estimate is to be
preferred and the usual stationary CIs are not appropriate. We introduce a new
set of CIs for the localized quantity next.
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Figure 4: Different Autocorrelation Estimates of Earthquake P Data around t =
150. Vertical line segments: (default) localized autocorrelation estimate ĉ(150, τ);
Circles: regular autocorrelation estimator computed on data from t = 100 to t =
200, dashed line indicates the usual (upper) CI for 100 data points; Black diamonds:
regular autocorrelation estimator computed on data from t = 1 to t = 300, dotted
line indicates band for 300 data points.
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3.3 Confidence Intervals for Localized Autocovariance
We first rewrite the localized autocovariance (10) by substituting the ‘biased’
spectral estimate {β`(z)} for {Sj(z)}:

c(z, τ) =
∞∑
j=1

∞∑
`=1

A−1j,` β`(z)Ψj(τ), (11)

=

∞∑
`=1

κ`(τ)β`(z), (12)

where κ`(τ) =
∑∞

j=1A
−1
j,`Ψj(τ). We estimate c by plugging in a smoothed

periodogram Ĩ`,[zT ] as an estimate of β`(z) in (12) to obtain ĉ, where

Ĩ`,n = (2s+ 1)−1
n+s∑

u=n−s
I`,u (13)

is a simple running mean smooth of the wavelet periodogram, I`,u, defined in
Section 1.3, with bandwidth s.

Variance-covariance formulae. A useful quantity for constructing the re-
quired CI is the variance of the estimator ĉ(z, τ) which can be obtained by:

var ĉ(z, τ) =

∞∑
`=1

∞∑
j=1

κ`(τ)κj(τ) cov(Ĩ`,[zT ], Ĩj,[zT ]), (14)

with the covariance of the smoothed periodogram being:

cov(Ĩ`,n, Ĩj,n) = (2s+ 1)−2
n+s∑

u=n−s

n+s∑
v=n−s

cov(I`,u, Ij,v). (15)

The following result derives the covariance of the wavelet periodogram
for Gaussian LSW processes. The assumption of Gaussianity is not limiting
and frequently made in both general time series analysis and specifically in
locally stationary theory such as Nason et al. (2000), Fryzlewicz et al. (2003),
Van Bellegem and von Sachs (2008), Sanderson et al. (2010) and Paparodi-
tis (2010). In particular, Fryzlewicz (2005) provides strong evidence of how
Gaussian LSW processes can model data which had traditionally been seen by
stationary methods of analysis as heavy-tailed and/or classical models such as
GARCH. Fryzlewicz (2005) reviews a growing body of literature providing
compelling evidence that models admitting structural change (such as Gaus-
sian LSW) may be more appropriate than the classical stationary models.

Theorem 1. Let Xt be a Gaussian LSW process with spectrum {Sj(z)}∞j=1.
Suppose that Sj(z) is Lipschitz continuous for z ∈ (0, 1) for integers j > 1

18



with Lipschitz constants Lj uniformly bounded in j and
∑∞

j=1 2−jLj < ∞.
For integers `, j,m, n with `, j > 0, asymptotically, the autocovariance of the
wavelet periodogram is given by:

cov (I`,m, Ij,n) '
{

2β2` (m/T ) for ` = j,m = n,

2
{∑

k Sk
(
m+n
2T

)∑
τ Ψk(τ)Ψ`j(n−m− τ)

}2 otherwise,
(16)

where Ψ`j(τ) =
∑

k ψ`,kψj,k+τ and x ' y denotes x = y +O(T−1).

Erratum: statement of this theorem is a correction from previous and pub-
lished versions and the changes are highlighted in red. The accompanying
software, locits was updated with the correction from version 1.7

Proof: in appendix. Note, Ψ`j was defined in Fryzlewicz and Nason (2006,
Section 2.2). Formula (16) coincides with the formula for var(Ij,m) in Propo-
sition 4 of Nason et al. (2000), i.e. when ` = j and m = n. Also Theorem 1
operates under the same smoothness regime as in that paper.

Approximate confidence interval. An approximate 100(1−α)% pointwise
CI for c(z, τ) can be obtained in the usual way by using the estimate ĉ(z, τ),
the variance-covariance formulae in (14), (15) and (16) and noting that the
running mean smoother in (13) is asymptotically Gaussian under mild regu-
larity conditions, see Schuster (1972), for example. The CI is

[ĉ(z, τ)− zα/2 var{ĉ(z, τ)}1/2, ĉ(z, τ) + zα/2 var{ĉ(z, τ)}1/2], (17)

where zq = −Φ(q) is the usual percentage point of the standard normal distri-
bution. E.g. for a 95% CI, α = 0.05 and zα/2 ≈ 1.96. Empirical demonstra-
tion of approximate normality of c(z, τ) is demonstrated in Section 3.2 of the
associated technical report, Nason (2012).

The intention here is to introduce rigorously defined asymptotic CIs based
on well-established smoothing techniques, a precedent for such methods in
locally stationary time series estimation, should one be required, is the use
of kernel smoothing in Fryzlewicz et al. (2003). An attractive option for
future investigation, but beyond the scope of the current work, would be to
develop CIs associated with more advanced smoothing techniques, such as
the wavelet shrinkage methods used in Nason et al. (2000, Section 3.3). In
this case asymptotic Gaussianity might well be established using methods de-
scribed by Brillinger (1996), Vidakovic (1999, Section 6.5.2), and/or related
work building on the asymptotic normality of wavelet coefficients, see e.g.,
Proposition 1 in the next section.
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3.4 Application to Real and Simulated Data
3.4.1 Explosion Q wave

Figure 5 shows two localized autocovariance plots of the Explosion Q wave
series (which looks similar to the P wave in Figure 2) at times t = 50 and t =
900. The vertical scale of plot b. is twenty times less than that of plot a.: the
variance of the series near the end is much smaller than at the beginning. Apart
from the scale change, most autocovariance values look reasonably similar.
However, ĉ(50/1024, 2) looks nonzero and its 95% CI does not cover zero,
whereas ĉ(900/1024, 2) seems very close to zero and its 95% CI covers zero.
Hence, the lag two autocovariance values seem very different in these two
parts of the original series. Hence, there is strong evidence to show that the
Explosion Q wave’s autocovariance function is changing over time both in
terms of their overall variances but also the lag two acf.

3.4.2 Simulated Example

Figure 6 shows the estimate localized autocovariance function ĉ(z, τ) for t =
100, 200, 300 and 400 for the time-varying AR(1) model P1 given in Sec-
tion 2.4.3. In each of the subplots in Figure 6 the horizontal dashed line shows
the true value of the AR(1) parameter at that time point. The changing nature
of the AR(1) parameter can be clearly seen in the plots. Further examples can
be found in Nason (2012).

4 Conclusion and Future Work
This article introduced a new test of stationarity by assessing the statistical
significance of Haar wavelet coefficients of the wavelet periodogram of a time
series. The new test is (i) complementary to existing tests searching for de-
partures from stationarity in new directions; (ii) efficient and rigorously es-
tablished following principles set by von Sachs and Neumann (2000); (iii)
capable of identifying the location and time-scale over which nonstationarity
exists. The locits package has been created to compute the new test, pro-
vides functionality to describes the nonstationarities, and superimposes them
on a time series plot. Simulations show that the new test works well, comple-
ments existing tests and appears to work better on heavy-tailed data compared
to the well-established test due to Priestley and Subba Rao (1969).

Theory was developed to compute approximate CIs for the localized au-
tocovariance for Gaussian locally stationary wavelet processes. Again, these
ideas have been implemented within locits enabling users to view local-
ized autocovariances with approximate CIs. Again, this methodology seems
to work well on both real and simulated data.
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Figure 5: Localized autocovariance estimate ĉ(z, τ) for Explosion Q wave with 95%
CI for a. z = 50/1024 and b. z = 900/1024 (corresponding to times t = 50, 900
respectively). Note: vertical scale of plot b. is twenty times less than that in plot
a. Diamonds correspond to the autocovariance values and the hatched rectangles to
the CIs.
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Figure 6: Localized autocovariance estimates, ĉ(z, τ), from a single realisation from
nonstationary model P1, a time-varying AR(1) process. Plots a. to d. correspond
to localizing at (rescaled) times of z = 100/512, 200/512, 300/512, 400/512 re-
spectively (which corresponds to times t = 100, 200, 300 and 400). The horizontal
dashed line in each figure corresponds to the true value of the AR parameter at that
time point
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Several interesting avenues lead from this current article. On tests of sta-
tionarity the case of the AR(1) process with parameter near to −1 is of in-
terest (this is example S3 in Section 2.1 of Nason (2012)). Here, visually,
such processes look extremely similar to, e.g., modulated white noise pro-
cesses and confuse both our and the Priestley and Subba Rao (1969) test. It is
likely that combining tests working from different principles, e.g. Dwivedi and
Subba Rao (2011), might result in less false positives in these extreme situa-
tions. A referee suggested the interesting possibility of examining the statistic∑

i,pwi,pv̂
2
i,p, with appropriate weights wi,p, rejecting H0 for large values, as

the basis for a further test of stationarity, which might mitigate issues arising
from the autocorrelation structure of the v̂s

For the CIs, further work could extend them to the non-Gaussian situation.
In principle, this might not be too complex providing the underlying spectrum
satisfies reasonable smoothness constraints and the localized autocovariance
smoothing can be used to induce asymptotic Gaussianity. Further improve-
ment of the existing methodology could be achieved by better modelling the
asymptotic distribution of the localized autocovariance, especially for small
sample sizes.

The Associate Editor kindly pointed out that the tests of stationarity here
(and elsewhere) give local information about the location of nonstationarities
and that this information could feed into the estimation of the localized au-
tocovariances. This good idea might work by applying the regular classical
autocorrelation estimator to those portions of the series where the wavelet test
of stationarity did not identify nonstationarities, but using the localized esti-
mate on areas where nonstationarities were discovered. This is an intriguing
idea for further work.
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A Appendix

A.1 Lemma for Proof of Theorem 1
Lemma 2. Let {ψ`,v} and {Ψ`(τ)} be the discrete wavelet and discrete au-
tocorrelation wavelet for some integer ` > 0. Suppose 0 ≤ u ≤ N` − 1 for
integer u and N` be the (integer) support length of the discrete wavelet.
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For Haar wavelets and the Daubechies’ compactly supported wavelet with
two vanishing moments, for i sufficiently large, Ei,`,u =

∑N`−1
v=0 Ψi(u −

v)ψ`,v = −3× 2−i−`/2C(u,N`) where

C(u,N`) =

{
u2 + u− (N`/2)2 for 0 ≤ u ≤ N`/2− 1

−u2 − u+ 2uN` +N` − 3 (N`/2)2 for N`/2 ≤ u ≤ N` − 1.
(18)

For Daubechies’ wavelets with three or more vanishing moments ∃i such
that Ek,`,u = 0 for k ≥ i. For Shannon wavelets, Ei,`,u = 0 for all i 6= `.

Proof: Nason et al. (2000, Remark 5) show that Ψi(τ) = Ψ(2−iτ) where
Ψ(τ) is the continuous autocorrelation wavelet.

Haar wavelets: It is well known that, for Haar wavelets, Ψ(u) = ΨH(u) =
1 − 3|u|, for 0 ≤ u ≤ 1/2, also shown in Nason et al. (2000, Equation (13)).
Hence, for i sufficiently large we have −2i−1 ≤ u− v ≤ 2i−1 for any values
of 0 ≤ u, v ≤ N` − 1 and hence

Ψi(u− v) = 1− 3× 2−i|u− v|, (19)

for these values of u, v, i. (We retain N` in its general form here, to aid with
the development for general wavelets later, but for Haar wavelets N` = 2).
Now substituting (19) into the formula for Ei,`,u yields:

Ei,`,u =

N`−1∑
v=0

ψ`,v − 3× 2−i
N`−1∑
v=0

ψ`,v|u− v|

= 0− 3× 2−i−`/2

N`/2−1∑
v=0

|u− v| −
N`−1∑
v=N`/2

|u− v|

 , (20)

the first part summing to zero as ψ`,v is a wavelet, and the sum splits in the
second part as ψ`,v = 2−`/2 for v = 0, . . . , N`/2 − 1 and ψ`,v = −2`/2 for
v = N`/2, . . . , N` − 1.

For the first sum in (20), for 0 ≤ u ≤ N`/2− 1 we have

N`/2−1∑
v=0

|u− v| =
u∑
v=0

|v − u|+
N`/2−1∑
u+1

|v − u|

=

u∑
r=1

r +

N`/2−1−u∑
r=1

r

= u(u+ 1)/2 + (N`/2− 1− u) (N`/2− u) /2

= u2 + u− uN`/2 + 1
2 (N`/2− 1)N`/2. (21)
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Similarly, for the second sum in (20) it can be shown that

N`−1∑
v=N`/2

|u− v| = 1
2 (N`/2− 1)N`/2 + (N`/2)2 − uN`/2. (22)

Putting (21) and (22) together givesN`/2−1∑
v=0

|u− v| −
N`−1∑
v=N`/2

|u− v|

 = u2 + u− (N`/2)2 , (23)

for 0 ≤ u ≤ N`/2− 1.
Similarly, it can be shown thatN`/2−1∑
v=0

|u− v| −
N`−1∑
v=N`/2

|u− v|

 = −u2 − u+ 2uN` +N` − 3 (N`/2)2 ,

(24)
for N`/2 ≤ u ≤ N` − 1.

General Daubechies compactly supported wavelets. The case for general
Daubechies follows the development above, but with the following modifi-
cations. Saito and Beylkin (1993), formula (3.45) show that the continuous
autocorrelation wavelet satisfies Ψ(x) = 2Φ(x) − Φ(x), where Φ(x) is the
continuous autocorrelation function of the father wavelet and further point out
that Φ(x) is the fundamental function of the symmetric iterative interpolation
process from Deslauriers and Dubuc (1989). Deslauriers and Dubuc (1989)
undertake a detailed examination of the smoothness properties of fundamental
functions corresponding to the Daubechies’ wavelets and indeed demonstrate
that Φ(x) for the Daubechies compactly supported wavelet with two vanish-
ing moments has one continuous derivative and for such wavelets withM ≥ 3
vanishing moments Φ(x) has at least two continuous derivatives.

For all Daubechies wavelets with M ≥ 2 vanishing moments we can use
a Taylor expansion for Ψ(x) around x = 0 by Ψ(x) = 1 + Ψ(1)(ξ)|x|, 0 <
ξ < x, where necessarily Ψ(1)(ξ) < 0 as Ψ(x) achieves its global maximum
at x = 0, where Ψ(1) is the first derivative of Ψ. Hence, we are essentially
in the same situation as in (20) and the same result holds. For Daubechies
wavelets with M ≥ 3, vanishing moments we can exploit a second order
Taylor expansion around x = 0 which is Ψ(x) = 1 + Ψ(2)(ξ)x2/2, the first
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order term is zero as Ψ(x) has a maximum at x = 0. Then, for i suitably large,

Ei,`,u =

N`−1∑
v=0

ψ`,v + Ψ(2)(ξ)2−1−2i
N`−1∑
v=0

(u− v)2ψ`,v (25)

= 2−1−2iΨ(2)(ξ)

(
u2

N`−1∑
v=0

ψ`,v − 2u

N`−1∑
v=0

vψ`,v +

N`−1∑
v=0

v2ψ`,v

)
= 0, (26)

since the wavelet has≥ 3 vanishing moments which means
∑
ψ`,v =

∑
vψ`,v =∑

v2ψ`,v = 0. Note, these results have been verified numerically.
Shannon wavelets. For Shannon wavelets it is the case that Ei,`,u = 0 for

all i 6= `. To see this, let Êi,`(ω) be the Fourier transform of Ei,`,u. Nason
et al. (2000, Section A.5) show that the Fourier transforms of Ψi(τ) and ψ`,v
are Ψ̂i(ω) = 2iχCi(ω) and ψ̂i(ω) = 2i/2 exp(−2i−1ω)χCi(ω) respectively,
where χA(ω) is the indicator function of the set A and Ci =

[
− π

2i−1 ,− π
2i

]
∪[

π
2i
, π
2i−1

]
. Since Ei,`,u is a convolution, Ei,`(ω) is the product of Ψ̂i and ψ̂`

which is equal to zero if i 6= ` as their supports do not overlap.

A.2 Proof of Theorem 1
Recall thatXt is Gaussian with evolutionary wavelet spectrum {Sj(z)}∞j=1 for
z ∈ (0, 1). It is known from Nason et al. (2000, Proposition 4) that EI`,m =∑

iAi`Si(m/T ). Thus, to obtain the covariance of I`,m with Ij,n, irrespective
of whether m = n or not, we examine:

E(I`,mIj,n) = E(d2`,md
2
j,n)

= E

(∑
t

Xtψ`,m−t
∑
s

Xsψ`,m−s
∑
p

Xpψj,n−p
∑
q

Xqψj,n−q

)
=

∑
t,s,p,q

ψ`,m−tψ`,m−sψj,n−pψj,n−qE(XtXsXpXq). (27)

For the fourth-order expectation, with Xt Gaussian, we use Isserlis (1918)
which states:

E(XtXsXpXq) = E(XtXs)E(XpXq)+E(XtXp)E(XsXq)+E(XtXq)E(XsXp).
(28)

Nason et al. (2000), equation (14), introduce the following formula for the
(regular) time-varying autocovariance at time z with lag τ in terms of the evo-
lutionary wavelet spectrum of an LSW process by: cT (z, τ) =

∑∞
j=1 Sj(z)Ψj(τ)+

O(T−1).
For our problem, we need to evaluate each of the terms in (28), and so by
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using the substitution z = (t+ s)/2 and τ = s− t we can show

E(XtXs) ' c
(
t+ s

2T
, s− t

)
=
∞∑
j=1

Sj

(
t+ s

2T

)
Ψj(s− t), (29)

where x ' y means x = y +O(T−1).
Hence,

E(XtXsXpXq) '
∑
i

Si

(
t+ s

2T

)
Ψi(s− t)

∑
h

Sh

(
q + p

2T

)
Ψh(q − p)

+
∑
g

Sg

(
t+ p

2T

)
Ψg(p− t)

∑
f

Sf

(
s+ q

2T

)
Ψf (q − s)

+
∑
e

Se

(
t+ q

2T

)
Ψe(q − t)

∑
d

Sd

(
s+ p

2T

)
Ψd(p− s)

= A+B + C. (30)

Now substitute E(XtXsXpXq) back into (27) and considering the first
term, A, only gives:∑

i,s,t

Si

(
t+ s

2T

)
ψ`,m−tψ`,m−sΨi(s− t) ×

∑
h,p,q

Sh

(
q + p

2T

)
ψj,n−pψj,n−qΨh(q − p)

= A1×A2. (31)

In A1 the substitution u = m− t, v = m− s gives:

A1 =
∑
i,u,v

Si

(
m

T
− u+ v

2T

)
Ψi(u− v)ψ`,uψ`,v

=
∑
i,u,v

{
Si(m/T ) +O

(
|u+ v|

2T

)}
Ψi(u− v)ψ`,uψ`,v, (32)

due to the Lipschitz continuity of S.
Remainder term in (32): From Nason et al. (2000), formula (5), that the

discrete wavelets ψ`,u are compactly supported and are non-zero for u =
0, . . . , N` − 1 where N` = (2` − 1)(Nh − 1) + 1, where Nh is the num-
ber of non-zero elements of {hk} the low pass quadrature mirror filter used
in the construction of the Daubechies (1992) compactly supported continuous
time wavelets. As a consequence, the autocorrelation wavelet Ψi(τ) is also
compactly supported on τ = 1 − Ni, . . . , Ni − 1, Ni as noted in Eckley and
Nason (2005, Section 2.1). Putting in the appropriate bounds on the sums in
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the remainder term (32) implies:

(32) ≤ (2T )−1
∞∑
i=1

N`−1∑
u=0

min(N`−1,u+Ni−1)∑
v=max(0,u−Ni+1)

|u+ v|Ψi(u− v)ψ`,uψl,v

= (2T )−1
∞∑
i=1

R`(i), (33)

where R`(i) is the inner sum over u, v in (33) for fixed `. We now show that
the summation in (32) is finite and hence the whole remainder is O(T−1). To
do this consider a single term in the initial sum, i.e. fix on some i. Then for i
suitably large

R`(i) =

N`−1∑
u=0

N`−1∑
v=0

|u+ v|Ψi(u− v)ψ`,uψ`,v

=

N`−1∑
u=0

ψ`,u

N`−1∑
v=0

(u+ v)Ψi(u− v)ψ`,v

=

N`−1∑
u=0

uψ`,u

N`−1∑
v=0

Ψi(u− v)ψ`,v +

N`−1∑
u=0

ψ`,u

N`−1∑
v=0

vΨi(u− v)ψ`,v

=

N`−1∑
u=0

uψ`,u

N`−1∑
v=0

Ψi(u− v)ψ`,v +

N`−1∑
v=0

vψ`,v

N`−1∑
u=0

Ψi(v − u)ψ`,u

= 2

N`−1∑
u=0

uψ`,u

N`−1∑
v=0

Ψi(u− v)ψ`,v (34)

= 2

N`−1∑
u=0

uψ`,uEi,`,u, (35)

where Ei,`,u is derived in Lemma 2. For Shannon wavelets and Daubechies’
compactly supported wavelets with three or more vanishing moments Lemma 2
shows that ∃i such that Ek,`,u = 0 for all k ≥ i. Hence, R`(k) = 0 for all
k > i also.

For Haar wavelets, or Daubechies compactly supported wavelets with two
vanishing moments one can show, after some algebra, that, for i suitably large,

R`(i) = −2−i−`−2
(
5
4N

4
` +N2

`

)
. (36)

Hence R`(i) is subject to exponential decay in i for fixed `.
Therefore, in all cases. the series in (33) converges by the comparison test

for series.
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Main term in (32): is

A1 '
∑
i

Si(m/T )
∑
u

∑
v

Ψi(u− v)ψ`,uψ`,v

=
∑
i

Si(m/T )
∑
r

Ψi(r)
∑
u

ψ`,uψ`,u−r

=
∑
i

Si(m/T )Ai,`. (37)

Similarly, A2 '
∑

h Sh(n/T )Ah,j .
For the second term in (30), substituting B into (27) we have∑

g,t,p

Sg

(
t+ p

2T

)
ψ`,m−tψj,n−pΨg(p− t) ×

∑
f,s,q

Sf

(
s+ q

2T

)
ψ`,m−sψj,n−qΨg(q − s) = B1×B2. (38)

For B1 substitute u = m− t, v = n− p to obtain

B1 =
∑
g,u,v

Sg

{
m+ n− (u+ v)

2T

}
ψ`,uψj,vΨg(n−m+ u− v). (39)

Then use the Lipschitz continuity of Sg to obtain:

B1 =
∑
g,u,v

[
Sg{(m+ n)/2T}+O

{
|u+ v|

2T

}]
ψ`,uψj,vΨg(n−m+u−v).

(40)
Remainder term in (40): is precisely the same as that in (32) except that ψ`,v
is replaced by ψj,v and the argument of Ψg is n−m+ u− v instead of u− v.
The remainder term can be dealt with in exactly the same way as for A1 by
appealing to Lemma 2 (whereN` is replaced byNj and similarly ψ`,v by ψj,v)
and seeing that, for Haar wavelets,Eg,j,n−m+u = −3×2−gK×P2(n−m+u)
where K is some constant, P2(x) some polynomial of order 2 and n,m, j are
fixed. Similar arguments apply for more general wavelets.

Main term in (40): By substituting τ = n−m+ u− v for the main term
in (40), B1 can be written as

B1 '
∑
g

Sg

(
n+m

2T

)∑
τ

Ψg(τ)
∑
u

ψ`,uψj,u+n−m−τ (41)

=
∑
g

Sg

(
n+m

2T

)∑
τ

Ψg(τ)Ψ`,j(n−m− τ). (42)

Clearly, B2 = B1 and the component involving C can be established using
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precisely the same argument.
Finally, form 6= nwe have thatA1×A2 cancels exactly with E(I`,m)E(Ij,n)

the second term in the covariance, so the final covariance term isB1×B2 and
the C component is identical resulting in the factor 2 in (16).

For n = m formula (38) becomes identical to (31) and the third term
is also the same. Hence, the covariance in this case is A1 × A2 + B1 ×
B2+C1×C2−E(I`,m)E(Ij,m) = 2

∑
i Si(m/T )Ai,`

∑
k Sk(m/T )Ak,j =

2β`(m/T )βj(m/T ).

A.3 Proof of Lemma 1
For clarity of exposition we drop the (`) superscript.

(i) We first deal with the asymptotic expectation of v̂i,p. We first rewrite
equation (4) in a form suitable for more direct comparison with the formula
for v̂i,p given in (6). Using the wavelet dilation equation for Haar wavelets
ψH(z) = −φ(2z)+φ(2z−1), where φ(z) is the Haar father wavelet, see e.g.
Nason (2008, (2.38)), we obtain:

vi,p =

∫ 1

0
β`(z)ψ

H
i,p(z) dz (43)

= 2
J−i
2

∫ 1

0
β`(z)

{
−φ(2J−i+1z − 2p) + φ(2J−i+1z − 2p− 1)

}
, .(44)

where J = log2(T ) and some ` ∈ N. Noting that φ(z) = 1 for z ∈ (0, 1) and
φ(z) = 0 otherwise, 2−J = T , formula (44) becomes, after rearrangement:

vi,p = 2−i/2

{∫ 2i−12p

2i−1(2p−1)
β`(z/T ) dz −

∫ 2i−1(2p−1)

2i−1(2p−2)
β`(z/T ) dz

}
, (45)

for p = 1, 2, . . . , 2i.
The proof of Proposition 4 in Nason et al. (2000) shows that Ij,k is asymp-

totically unbiased and does not rely on Gaussianity (the remainder of that
proof for variance does) and the result carries over easily to the case of bounded
variation. Hence

Ev̂i,p = 2−i/2


2i−1−1∑
r=0

β`

(
2ip− r
T

)
−

2i−1∑
q=2i−1

β`

(
2ip− q
T

)+ o(T−1/2),

(46)
for p = 1, 2, . . . , 2i. The 1/2 in the error rate is due to the combination of
the T−1 rate from the bias of Ij,k combined with the 2−i/2 factor, summing
over 2i terms and Assumption 1. This result agrees with Nason et al. (2000,
Theorem 3) for Gaussian processes and Lipschitz continuity.

Now to examine Ev̂i,p − vi,p we look at the difference of the first terms of
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(45) and (46), f , by partitioning the integral into pieces that cover subintervals
of size commensurate with the summation:

f =
2i−1−1∑
m=0

∫ 2ip−2i−1+m+1

2ip−2i−1+m
β`(z/T ) dz −

2i−1−1∑
m=0

β`

(
2ip− 2i−1 + 1 +m

T

)
(47)

=
2i−1−1∑
m=0

[∫ 2ip−2i−1+m+1

2ip−2i−1+m

{
β`(z/T )− βl

(
2ip− 2i−1 +m+ 1

T

)}
dz

]
.(48)

Hence: |f | ≤ 2i−1O(T−1) TV[0,1](β`), by the same argument behind the

bounding of |R(1,1)
T | on page 66 of Neumann and von Sachs (1997). Putting

together the first and second term bounds gives |Ev̂i,p−vi,p| ≤ O(2i/2T−1) =
O(T−1/2) by Assumption 1. [Note: if we made the more restrictive assump-
tion of β` being Lipschitz continuous, as in Nason et al. (2000), then writing
z = 2i − 2i−1 + m + u for u ∈ (0, 1) gives a remainder in the inner integral
as O(uT−1) which when integrated gives O(T−1), and then when summed
gives the same order O(T−1/2). ]

(ii) For the second part we can write vi,p (again for some ` ∈ N) as

v̂i,p =
∑
r

ψHi,rI`,2ip−r =
∑
r

ψHi,rd
2
`,2ip−r (49)

=
∑
r

ψHi,r

(∑
t

Xtψ`,2ip−r−t
∑
s

Xsψ`,2ip−r−s

)
(50)

=
∑
t

∑
s

XtXs

∑
r

ψHi,rψ`,2ip−r−tψ`,2ip−r−s (51)

=
∑
t

∑
s

XtXsmt,s, (52)

where ψH are Haar wavelets and

mt,s =
∑
r

ψHi,rψ`,2ip−r−tψ`,2ip−r−s, (53)

which, of course, depends on `, i and p also. It is easy to see that M =
(mt,s)t,s is a symmetric operator.

Hence, v̂i,p, satisfies the conditions for Lemma 3.1 of Neumann and von
Sachs (1997) which says that if Xt satisfies Assumptions 1–3 then v̂i,p =
ηT = XTMX , and if we let ξT = Y TMY where Y ∼ N(0, cov(X)) then:

cumn(ηT ) = cumn(ξT ) +Rn, (54)

where
Rn ≤ 2n−2C2n((2n)!)1+γ max

s,t
{|Ms,t|}M̃ ||M ||n−2∞ , (55)

31



and cumn(ξT )| is bounded, see Neumann and von Sachs (1997).
As in Neumann and von Sachs (1997), our M matrix is banded in that

Mt,s = 0 if s, t < 2i(p− 1) + 2−N` or s, t > 2ip, where N` is the length of
the discrete wavelet ψ`,· from Nason et al. (2000, (5)). The quantities relating
the M in the remainder term Rn are as follows.

(a) For maxs,t{Ms,t}.

|Mt,s| ≤
∑
r

|ψHi,r||ψ`,2ip−r−t||ψ`,2ip−r−s| = 2−i/2
∑
r

κ`, (56)

where κ` = maxu,v ψ`,vψ`,u. Due to the finite support of the discrete
wavelets it can be seen that the range of r in (56) can be restricted to:

max(2ip−t−N`+1, 2i−s−N`+1) ≤ r ≤ min(2ip−t, 2i−s), (57)

and if t > s is assumed, t = s + u then the restriction simplifies to
u ≤ r ≤ N`−1. Hence, maxt,s{Ms,t} ≤ 2−i/2{N`−1− (t− s)}κ` =
O(T−1/2). This is a crude estimate of the rate and could be improved
by more careful examination of the decay of ψ`,· rather than the rough
estimate of κ`.

(b) For ||M ||∞ = maxs{
∑

t |Ms,t|}. Using (56) we have:

max
s

∑
t

|Mt,s| ≤ max
s

2−i/2
∑
r

|ψ`,2ip−r−s|
∑
t

|ψ`,2pp−r−t|(58)

≤ max
s

2−i/2
∑
r

|ψ`,2ip−r−s|ψ∗`N` (59)

≤ 2−i/2ψ∗`N` max
s

∑
r

|ψ`,2ip−r−s| (60)

≤ 2−i/2ψ∗2` N
2
` = O(T−1/2), (61)

where ψ∗` = maxs ψ`,s. Note that, for part (iii) ||M ||2 ≤ ||M ||∞.

(c) For M̃ =
∑

s maxt |Ms,t|. Similar arguments to (b) show that this rate
is at least O(T−1/2).

Finally, Nason et al. (2000) showed that, for Gaussian processes,

var(v̂i,p) = 2T−1
∫ 1

0
β`(z)

2{ψH(z)}2 dz +O(2iT−2). (62)

Using Assumption 1 gives that the order in (62) is O(T−1). Putting together
the matrix norm remainder terms to form Rn in (55) gives at least O(T−1),
hence result.

(iii) As in Neumann and von Sachs (1997) we use their Lemma 3.1 to-
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gether with Assumption 3 to show that

λmax(M)λmax(cov(X)) = O(T−1/2)
∑

1≤t≤T

{∑
s

cov(Xs, Xt)

}
(63)

= O(T−1/2), (64)

where λmax(M) is the maximum eigenvalue ofA and using the estimates form
norm-quantities of M given in part (ii). See also Neumann (1994).
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