
Improving Prediction of Hydrophobic Segments along a
Transmembrane Protein Sequence using Adaptive Multiscale

Lifting

Marina I. Knight∗, Guy P. Nason

September 9, 2005

Abstract

Abstract: Established methods for transmembrane protein segment prediction are often based
upon hydrophobicity analysis. Classical wavelet multiscale methods have proved successful in the
prediction task. However, they implicitly model protein chain residues as being equally spaced. Our
main motivation is to challenge this assumption by developing a new multiscale ‘lifting’ technique
that utilizes irregularly spaced residues, where the spacing is derived from resolved 3D information
obtained from similar aligned proteins. For different protein families we calculate asymmetrical
dissimilarity matrices of order 20 that estimate the ‘distance’ between residue types. We use our
new adaptive lifting technique to regress the Kyte and Doolittle hydrophobicity index upon residues
(now irregularly spaced using information from the distance matrices) and use the regression to
predict transmembranar segments. We compare the results obtained through our method with the
ones obtained through the usage of classical wavelets, and show that incorporating 3D resolved
structure improves overall prediction (both in terms of theexistence of predicted segments compared
to experimentally determined ones and also the proportion of correctly predicted segments).
The software is available from http://www.maths.bris.ac.uk/∼maxmp/proteomics.html

1 Introduction

Membrane proteins are an important class of protein structures, but the experimental determination of
their three-dimensional (3D) structure can often be very difficult. For this type of protein, predicting
various structural aspects using only the information contained in the residue sequence is a problem of
interest, see for example Lio and Vannucci (2000).
Since transmembrane proteins are found spanning the plasmamembrane, the segments embedded in
the lipid bilayer primarily consist of hydrophobic amino acids, and this feature can be used in order
to identify them. Typical methodology for predicting transmembrane segments includeshydrophobicity
analysisfocused on helical transmembrane proteins— for example Kyte and Doolittle (1982), Engelman
et al. (1986), Lio and Vannucci (2000). However, hydrophobicityanalysis as a tool for prediction is
not limited at transmembrane segments only, but has also been used for hydrophobic cores of globular
proteins (see Hirakawaet al. (1999) for instance).
Wavelet based smoothing methods (Lio and Vannucci (2000), Fisheret al. (2003)) have been used and
shown to perform well in the task of transmembrane segment prediction. So far, classical wavelet meth-
ods have been used. This means that the residues within the protein chain are modelled as being equally
spaced. If each residue is thought of as a 3D structure determined by its atoms, then plausibly one should
not automatically consider the distances between any two residues to be equal.
If additionally one was presented with supplementary secondary and tertiary structure information, then
precise local information (which typically we do not have) would be gained on the residue positions.
Then a 3D parametric function could be fitted in order to accurately obtain the inter-residue distances.
Our work is motivated by the intuition that we might improve transmembrane segment prediction if we
were somehow able to take into account the resolved 3D information contained in proteins that are similar
to our proteins of interest. Making use of this additional information would help estimate the (true) inter-
residue distances and improve upon the estimation of the function that ‘models’ the hydrophobicity level
along the protein.
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Since the discrete wavelet transform cannot be directly used on irregularly spaced grids, we willuse an
adaptive lifting scheme(see Nuneset al. (2004)), which constructs wavelets that adjust to the protein
features and are able to work on irregularly spaced observations. Also, we willconstruct a measure
for the distances between consecutive residues of a proteinby using the information contained in a
corresponding set of sequentially aligned proteins with determined 3D structure.
We later show on the proteins from Rostet al. (1995) that transmembrane segment prediction improves
by incorporating the inter-residue distances. All the proteins in the study are helical, we discuss in the
final section the possibility of other structures such as beta-barrels.
We will now briefly introduce the steps we have taken in our analysis, while the next section provides
a detailed description of the methodology. The whole approach is relying on analysing the hydropa-
thy profile associated to each protein, and we will thoroughly discuss its construction, which also in-
volves estimating the inter-residue distances. We will base our transmembrane segments prediction on
a denoised version of the hydropathy signal. We address the statistical problem of denoising by using
wavelet methodology, hence we will briefly introduce basic concepts on wavelets. Since we will use
second generation wavelets, we then concentrate on the description of our algorithm, which produces
adaptively constructed wavelet functions to decompose thesignal at each step. The wavelet coefficients
will then be subjected to a thresholding technique, discussed in the denoising section. Once the denoised
profile is obtained, we class as transmembranar the segmentsthat are longer than 11 residues (Rostet al.
(1995)) and correspond to residues with hydrophobicities higher than the smoothed average.

2 Method

2.1 The distance matrix and the hydropathy plot

Various measures for the hydrophobicity of each amino acid have been constructed (for example the
scale of Kyte and Doolittle, or the Eisenberg scale), and also combined measures of hydrophobicity
and helicity to be used in the context of helical transmembrane proteins (see for instance the Lio and
Vannucci scale). By means of these scales,the primary structure of the protein can be converted into a
hydropathy profile, i.e. we obtain a signal which on the horizontal axis has the residues in their order
of appearance in the chain, and on the vertical axis their corresponding values from the hydrophobicity
index. After investigating the compatibility of our methodwith the previously mentioned scales, we
decided to use in our study the Kyte and Doolittle measure of hydrophobicity.
In previous studies, the residues were processed assuming that they were equally spaced. As explained
in the introduction, we will challenge this assumption and construct a coordinate for each residue in the
chain. The coordinate corresponding to each residue will indicate its estimated distance to the previous
and next residues.
We now turn to the way we construct the coordinates for each residue. First we determine which pro-
tein sequences with resolved 3D structure are similar to theprotein we study, through a fast alignment
method, FastA, using the scoring matrix BLOSUM62.
Our aim is to use the known 3D structure of the aligned proteinsequences in order to estimate the
distance between each pair of consecutive residues in the primary structure of the protein of interest.
This is done by identifying all the appearances of each specific residue pair in the primary structures
of the aligned chains, and then computing all the corresponding Euclidean distances; their average will
give us the measure we need. In computing the Euclidean distance between two residues, thex, y, z

coordinates (as given by their corresponding PDB file) of alltheir atoms are used. The result is a20×20
asymmetrical matrixD, whereDij contains the average of the Euclidean distances computed between
the residuesi andj, from all the aligned chains where they appear in this order.We should emphasize
here thatD is not symmetric, hence the distance from Arg to Lys, say, is different to that from Lys to
Arg.
At this point one might like to refer to Figure 1, which gives an indication of the range of estimated
distances between different pairs of amino acids, as well astheir variation. This distance matrix has
been computed using 402 matching proteins, each with various sequence lengths.
The distance matrix in Figure 1 is less variable than those obtained from specific protein families. The
amino acids are clustered according to their R–group nature, and separated in Figure 1 by white lines. So,
GLY–ILE form the first group of amino acids with aliphatic R–groups, SER and THR are non-aromatic
amino acids with hydroxyl R–groups, CYS and MET have sulphurcontaining R–groups, ASP–GLN are
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Figure 1: Overall ‘average’ distance matrix (in̊Angström units). The intensity of a pixel (dark/light)
corresponds to the mean distance for that residue pair. The colour of a pixel (blue/red) corresponds to
the standard deviation for that amino acid pair. The brightest pixel in the figure occurs at MET–THR,
with a distance of 10.2. It is also one of the most variable, with a standard deviation of 16.7– MET–PHE
is the most variable (most red) with a standard deviation of 18.7. The darkest combination is GLY–TRP,
with a distance of 4.5, while the least variable is MET–TRP, having a standard deviation of 0.28. The
lower and upper quartiles of the mean distance (standard deviation) are 5.2 and 6.1 (0.74 and 2.52).

acidic amino acids and their amides, ARG–HIS are basic aminoacids, PHE–TRP are amino acids with
aromatic rings and PRO is the sole imino acid. It is notable, for example, that pairs consisting of amino
acids with aromatic rings typically have low standard deviations, but middling mean distances.
A shortcoming of this matrix approach is that it only takes into consideration the distances between
consecutive residues, and hence models the protein as beinga straight chain, rather than modelling its
3D shape. Overcoming this restriction and trying to estimate the 3D function behind the protein shape
is an interesting point for future research, and we suspect that it would bring us even closer to correctly
estimating the hydrophobicity level as a function of the protein’s amino acid composition and shape.
Note that some residue pairs will only appear in the primary structure of the protein being investigated,
and not also in the primary structures of the chains aligned to it. In this case, we use the distances supplied
by an appropriate distance matrix, computed as follows. In the dataset we are going to investigate (Rost
et al. (1995)), 15 proteins belong to the tetraspanin family (TM4SF), 22 belong to the ligand-gated ionic
channel family (TC 1.A.9), and the rest belong to different families. The last group consists of only
9 proteins, hence we added another 10 proteins randomly selected from the set of 83 cross-validation
proteins used in the same study by Rostet al. (1995). This way the size of this group was boosted to
19 proteins. The natural division of the dataset into families has led us to construct average distance
matrices corresponding to each of the two main families. In the calculation of each matrix, the chains
aligned to the sequences belonging to each family have been used. Hence for each of the proteins in one
of these families, the missing distances will be imputed from its corresponding overall distance matrix.
Along with these two matrices, we have also computed anothertwo family-specific distance matrices,
based this time on the structure of the entire proteins (rather than only on the chains) that were aligned to
sequences belonging to each family. If the family-specific matrix computed based on the aligned chains
contains no information on a particular residue combination, the missing value is taken from the family-
specific matrix which uses the entire protein structure. When we analyse a protein that does not belong
to one of these two families, we use the distances supplied byan overall ‘average’ distance matrix (see
Figure 1), computed from a database comprising 402 proteinswith determined 3D structure— the ones
aligned to all the proteins investigated.
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Having estimated the distances between each pair of consecutive residues in the protein of interest, we
compute a coordinate value for each residue in the chain, based on its distance to the previous residue.
Using these coordinates, the residues will be plotted on thehorizontal axis, hence rather than considering
them to be equally spaced, they will have an uneven distribution.
Figure 2 shows an example of hydrophobicity signal, which isvery wiggly and a visual assesment is
virtually impossible, hence proper statistical tools are needed to denoise it.

2.2 Wavelets and the hydrophobicity profile

Classically constructed wavelets are families of functions based on dilations and translations of a single
function, called the mother wavelet. They have the ability of providing representations for square inte-
grable functions, either by continuous linear superpositions of wavelets, or by discrete series expansions
of wavelets (Daubechies (1992)). By their construction, classical wavelet decompositions work only on
equally spaced grids, with lengths of the form2N , and modifications are required in order to overcome
these limitations (Cohenet al. (1993)).
For this reason, we will construct second generation wavelets, capable of working on irregularly spaced
grids of any length. Stemming from the lifting scheme idea introduced by Sweldens (see for instance
Sweldens (1997)), we have constructed an adaptive lifting scheme, which we are going to employ in our
study.

2.3 An adaptive lifting scheme

The lifting algorithm
We can think of the hydropathy signal as being a functionf sampled atn irregularly-spaced points
on the real line,x (n is the number of residues in the chain of the protein of interest, x gives their
associated coordinates andf is the chosen hydropathy scale). Our aim is to transform the sampled
function values by means of lifting into a set of detail and scaling coefficients (representing the high and
low ‘frequencies’, respectively), where each coefficient relates to a certain scale.
Our lifting transform will not follow the classical idea of splitting the sequence into odds and evens, but
following Jansenet al. (2001, 2004) we concentrate on removing one point at each iteration. Briefly
described, the algorithm has the following steps:

• First choose a point to be lifted. Say the initial stage isn, when we collected then sampled
points, and the next stage isn − 1. Denote the point to be removed byjn.

• Predict the function value atjn by using regression over the cloud of points determined by a
neighbourhood (denote it byJn) of jn. Generate a detail coefficientdjn

:= cn,jn
−

∑
i∈Jn

an
i cn,i,

wherecn,i := f(xn,i) and(an
i )i∈Jn

are the weights obtained through regression.

• Update the function values at the neighbourscn−1,i := cn,i + bn
i djn

, ∀i ∈ Jn, i 6= jn. The aim
of this stage is to preserve constant the average signal, andthe weights(bn

i )i∈Jn
will be obtained

from this condition.

• After obtaining the detail and updating the values of the remaining points,remove the pointjn.

• Reiterate the lifting transform : decompose the signal down to preserving only two low fre-
quency coefficients, the rest of them being detail coefficients.

As an observation, this construction induces a parallel construction of scaling and wavelet functions
(Jansenet al. (2004)).

Adaptivity in the Lifting Algorithm
Since we want atransform which adjusts itself to suit the signal structure, we have introduced the option
of adaptive lifting prediction steps. In the lifting procedure, there are two sources of adaptiveness we can
use— the order of regression and the configuration of neighbours (including their number). This gives
rise to two adaptive methods:

• The first method isadaptive over the order of regression used in the predictionscheme. The
algorithm chooses at each step the type of regression (linear, quadratic or cubic, with or without
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intercept) which generates the smallest detail in absolutevalue. The wavelet bases constructed
like this adapt themselves to the smoothness of the signal, investigated within a user-specified
configuration of neighbours. We will refer to this procedureasAdaptPred.

• The second adaptive methodminimises the detail coefficients not only over the regression schemes,
but also over the neighbourhood structure. In other words, several configurations of neighbours
are tested with the first adaptive transform, and the one yielding the smallest detail coefficient
will be chosen. Hence the wavelet bases constructed throughthis procedure adapt themselves to
the smoothness of the signal within the best predictive window at each step. The name of this
procedure isAdaptNeigh.

For details regarding the constructions above and their implications, the reader is directed to Nuneset al.
(2004).

2.4 Denoising the hydrophobicity profile

Wavelets constructed following the above procedure (henceable to work on irregularly spaced data) are
going to be employed for detecting the transmembrane segments of helical transmembrane proteins.
Since the transmembrane segments are sequences of predominantly hydrophobic residues, we want to
detect the points at which sharp changes occur in the signal.This amounts to modelling the profile as
noise-contaminated, and estimating the underlying signal.
Mathematically, we write each of our (independent) observations(fn,i)i∈1,n asfn,i = gn,i + εn,i, where
gn,i is the population value to be estimated andεn,i is an identically distributed, independent noise,
assumed to follow aN(0, σ2) distribution. In other words, based on just one observation, fn,i, at each
sampled pointi of the grid, we want to estimate the true value of the signal ati, gn,i. The assumption of
independent observations is a necessary mathematical requirement, which we are aware that is likely to
hold only approximately for our transmembrane prediction.
In practice, most of the time the true signal is not sparse, but transformed through a discrete wavelet
transform (DWT) or through a lifting algorithm, the resulting sequence of wavelet coefficients has the
property of being sparse. Hence the observed signal will first be decomposed into coarse scale coeffi-
cients and wavelet coefficients (details). Intuitively, the coarse scale coefficients are capturing the ‘big’
features of the signal, while the noise mostly contaminatesthe details. Some of these details of course,
are going to represent true features of the signal (and are also contaminated by noise), while others will
be due only to the noise.
When the noise corrupted signalf is transformed through the lifting algorithm into a set of scaling and
wavelet coefficients, it means that the above model will be converted intodj = d∗j + ej , with (dj)j
being the observed wavelet coefficients,(d∗j )j the ‘true’ wavelet coefficients andej the transform of the
noiseεj . We only note here that the lifting transform is not an orthogonal transform (while the DWT is),
and hence care must be taken in assessing the distributionalproperties of the true and observed wavelet
coefficients. For an in depth discussion refer to Nuneset al. (2004).
In order to establish which of the observed wavelet coefficients represent true non-zero population
wavelet coefficients, a threshold needs to be estimated for each detail. In our approach we will use
an adapted version of the empirical Bayes procedure (for details see Johnstone and Silverman (2005),
Nuneset al. (2004)). Briefly, the empirical Bayes approach relies on the property of the ‘true’ wavelet co-
efficients of having a sparse structure which allows us to place independent prior distributions describing
each of them as being zero with a probabilityπ (to be estimated) or to have come from a quasi-Cauchy
distribution, with probability1 − π. In shrinking the observed wavelet coefficients, we will usethe
posterior means of the developed posterior distributions of the ‘true’ details.
Once the wavelet coefficients have been thresholded, the transform is inverted, yielding a estimated
version of the initial signal.

2.5 Predicting the Transmembrane Segments

The estimated hydropathy profile will be used to predict the transmembranar segments. All the residues
corresponding to smoothed hydrophobicities larger than the estimated average will be considered to be
transmembranar, provided that they form segments which arelonger than 11 residues.

5



3 Implementation

We tested our method using 46 of the 48 proteins from Rostet al. (1995) (the double–blind set, available
from http://www.embl-heidelberg.de/∼rost/Papers/1996phdtop/Blind.html). The search on the AD1
antigen retrieves the entry ‘cd63-rat’, which subsequently appears in the database, and the glutamate
receptor A precursor contains a much longer sequence than the rest, causing memory difficulties. As
mentioned in section 2.1, we added a set of 10 proteins to the 46 proteins dataset, in order to boost the
the number of proteins that do not belong to either of the two families. As a consequence, we report the
overall results obtained on all 56 proteins. We compared ourresults against those obtained by using the
least asymmetric Daubechies wavelets with 8 vanishing moments (usually denoted Daubechies ‘s8’) for
decomposing the signal down to 4 levels, combined with the empirical Bayes procedure for shrinking
the wavelet coefficients, using the posterior means (Daub mean). We based our wavelet choice on a
comparative study between several Daubechies wavelets, with different vanishing moments. The same
choice has been previously reported in the literature (Lio and Vannucci (2000)). As a remark, since
Daubechies ‘s8’ wavelets were used, the estimated distances between residues have been ignored, and
considered to be equal.
In Nuneset al. (2004), AdaptPred and AdaptNeigh were tested in an extensive simulation study and
they proved to be very powerful in the task of shrinkage. For denoising smooth signals or signals with a
small number of discontinuities, AdaptPred with 2 neighbours (AP2) performs best, while for denoising
non-smooth signals, AdaptNeigh using up to two neighbours at each stage (AN1) gives the best results.
Hence when denoising our hydrophobicity data, we have focused on these two methods.
Note that in the decomposition using adaptive wavelets, we kept the same number of scaling coefficients
as in the decomposition using Daubechies ‘s8’.

4 Results

4.1 Prediction accuracy measurements

Both methods produce their corresponding predicted transmembranar segments which we have to com-
pare against the experimental data and assess which is the better prediction. We believe that there is no
obvious measure that would give a concise answer as to which of the predictions is better, and hence we
used several measures for the accuracy of prediction:

• Measures referring to the residue accuracy(see for example Rost and Sander (1993)): the
percentage of residues predicted correctly in either of thetwo states (transmembranar or not),
Q2; the percentage of residues which are correctly predicted to be transmembranar, relative to the
number of residues observed to be transmembranar (Qobs) and relative to the number of residues
predicted to be transmembranar (Qpred).

• Measures referring to the segment accuracy(see for example Rostet al. (1996)): the number of
correctly predicted transmembrane segments,Ncorr, where a segment is considered to be correctly
predicted if there is an overlap of at least 5 residues with a true one; sensitivity, i.e. the percentage
of observed transmembrane segments that were correctly predicted, Sens; specificity, i.e. the
percentage of predicted transmembrane segments that are correct,Spec; segment overlapSovobs,
Sovpred, which are more sophisticated measures for evaluating (on ascale from 0% to 100%)
respectively the correctness of segment prediction versusthe true segments and the fraction of the
predicted segments that is correct (for more details see Zemla et al. (1999)).

4.2 Discussion of results

Using the above measures, we evaluated the performance of our method versus the performance of the
method employing Daubechies ‘s8’ on equally spaced grids.
After investigating the AdaptPred with two closest neighbours and AdaptNeigh with at most two neigh-
bours methods, both with posterior median and with posterior mean thresholding, we concluded that
AdaptNeigh method using posterior mean shrinkage (AN1 mean), gives the best results throughout the
study, hence this is the method we recommend, followed by AdaptNeigh with posterior median thresh-
olding (AN1 median). Occasionally (even though very rare), it happens for the AdaptNeigh technique
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to produce predicted segments that are too short (average length under 14 residues) or too long (average
length over 34 residues), situation when AdaptPred using two closest neighbours and posterior mean
shrinkage (AP2 mean) would be chosen.
We found out that on the proteins belonging to the tetraspanin TM4SF family, the classical method
mostly gives very good prediction, with only a few exceptions. On the leukocyte antigen CD37 (UniProt
entry ‘cd37-human’) Daubechies ‘s8’ fails almost completely to recognize the true segments, giving
Sovobs andSovpred values of 0.5 and 0.33 respectively.
As said before, we tested AdaptPred with 2 closest neighbours and AdaptNeigh using at most 2 neigh-
bours, both using posterior median thresholding and posterior mean shrinkage. The results show that
AdaptNeigh with either type of shrinkage and AdaptPred withposterior mean shrinkage give the best
predictions. Overall, our segment prediction accuracy is very similar to the one obtained through the
classical method, as showed by the results in Table 1. We obtain higher sensitivity (i.e. the percentage of
observed transmembranar segments that were correctly predicted), and very similar specificity, as well
as very similarSovvalues. These values indicate an accurate segment prediction, judged not only by the
simple criterion of considering a segment correctly predicted if there is an overlap of at least 5 residues
with a true one, but also by the better measure provided bySov, which takes into account the change
points as well. The per-residue measures indicate a better behaviour for the classical method, but we
should keep in mind that this measure should be considered with care, since we are primarily interested
in sequences of residues and their positions within the chain.
At a close examination of the results based on which we obtained Table 1, we notice that our method
provides more homogenous estimations, and there is no failure of prediction for any of the proteins,
unlike the classical method.
On the ligand-gated ionic channel (TC 1.A.9) family, the classical based wavelet methods give quite
poor predictions most of the time, withSovvalues ranging from (0.51,0.3) to at most (1,0.51). For four
proteins, values around (0.5,0.3) are obtained, hence the classical method fails to make a good prediction
for them. Most of theSovvalues are concentrated around (0.8,0.45), indicating that there is a tendency of
overpredicting segments (predicting segments that are nottruly transmembranar), and also of not being
able to correctly detect the boundaries of the true segments. This generally translates in predicting a
segment as being the merging of 2 or, in a few cases, even 3 truesegments.
Our methods give an improved prediction for most of the proteins. AdaptNeigh method gives better
predictions than AdaptPred, and this time AdaptNeigh usingposterior mean shrinkage is superior to the
same method, but employing posterior median thresholding.Most of theSovvalues for AdaptNeigh
using posterior mean shrinkage are within the range of (0.8-1,0.5-0.8), considerably higher than the
results obtained using the classical wavelets.
Also for this family, the prediction performance given by our method is more homogenous than in the
classical case. By examining Table 2, we notice that while improving the sensitivity (the boundaries of
the true segments are correctly identified, and segments areseldom merged), we do not seem to be able
to significantly improve upon the specificity of our prediction (some segments are falsely predicted as
transmembrane).
We now examine a protein belonging to this family: we chose the gamma-aminobutyric-acid receptor
gamma-3 subunit precursor (UniProt entry ‘gac3-mouse’), which displays the typical behaviour of both
methods. It has a chain of length 467 residues, to which chains coming from eight proteins with de-
termined 3D structure have been aligned. The inter-residuedistances were computed based on these
proteins, and the values of the missing pairs were imputed from the overall distance matrix correspond-
ing to this family.
The experimentally determined transmembrane segments arebelieved to be:
255-277, 281-303, 315-337, 444-467.
Our method predicts the following segments:
5-15, 77-88, 116-133, 232-249, 253-277, 288-303, 317-332,447-467, while by the usage of Daubechies
wavelets, we obtain
1-15, 72-92, 118-134, 157-173, 230-296, 306-337, 443-467.

The hydropathy profile obtained is given in Figure 2:

The observed and predicted segments correspond to Figure 3:
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Figure 2: Hydropathy Profile of ‘gac3-mouse’
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Figure 3: Predicted segments for ‘gac3-mouse’: red=True, blue=AdaptNeigh1, green=Daub ‘s8’

Figure 4 shows the corresponding coarse versions of the hydropathy profile of ‘gac3-mouse’:
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Figure 4: Centred denoised hydropathy profile of ‘gac3-mouse’ using AdaptNeigh1, Daub ‘s8’, in black,
red respectively

When measuring the performance of these segments, we obtainthe following results:
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our method:
Q2 = 0.83, Qobs = 0.82, Qpred = 0.55, < L >obs= 23.25, < L >pred= 17.12, Nobs = 4, Npred = 8,
Ncorr = 4, Sens = 1, Spec = 0.5, Sovobs = 1, Sovpred = 0.57
Daubechies ‘s8’:
Q2 = 0.75, Qobs = 0.92, Qpred = 0.44, < L >obs= 23.25, < L >pred= 27.71, Nobs = 4, Npred = 7,
Ncorr = 3, Sens = 0.75, Spec = 0.43, Sovobs = 0.72, Sovpred = 0.44

We notice in this example the behaviour described earlier, in that both methods overpredict the trans-
membrane segments, and the classical wavelets are also merging some of the true segments.
All of the methods mentioned in the beginning of this paper (see for example Rostet al. (1995, 1996) or
Fisheret al. (2003)), besides the mathematical filtering, employ a bio-chemical filtering as well, which
we keep minimal (we only cut the helices containing at most 10residues). Such further filtering and
inspection of the already predicted segments will considerably improve the prediction specificity and
sensitivity (and will also improveSovpred, Sovobs), by eliminating some of the unlikely segments, or
splitting the segments considered to be too large into two ormore segments. In our study, a closer
examination of the obtained predicted segments in the ligand-gated ionic channel (TC 1.A.9) family
shows that a lot of the segments wrongly predicted as transmembranar are very short (11-15 residues),
and hence unlikely to ‘survive’ a bio-chemical filtering procedure. It may also be that some of them are
too long, and splitting them into more segments might be a solution. In our approach, we kept exclusively
a mathematical filtering procedure and investigated its behaviour with and without the information given
by multiple aligned sequences with known 3D structure. Having improved upon the basic mathematical
prediction, various other procedures (such as the bio-chemical filtering discussed above) could then be
joined, and contribute to an improved final prediction.
Finally, for the rest of proteins, the ones belonging to different families, the predictions of both our
method and of the one employing classical wavelets are quitegood, with the exception of three proteins
which have only one (true) transmembranar segment. For these proteins, our methods and the classical
one have very similar performances, in that theSovvalues are around (0.9-1, 0.2-0.6), indicating that the
methods correctly identify the true segment, but additionally predict false ones. For the remaining 16
proteins, none of the methods fails and the range ofSovvalues is (0.64-1,0.67-1) for AdaptNeigh with
posterior mean shrinkage method, and (0.67-1, 0.51-1) for the classical method. Comparing the results
obtained on the whole set of 19 proteins, we see that our method either outperforms the results obtained
through the Daubechies wavelets or gives similar results, and in only three cases we obtain worse results
than by using the Daubechies ‘s8’. For this group of proteins, the best results are obtained by predicting
through AdaptNeigh with at most 2 neighbours using posterior mean shrinkage, too. Examining Table 3
we notice that we obtain improved specificity values for the AdaptNeigh technique using posterior mean
shrinkage as compared to the results obtained through the usage of classical wavelets, and a similar
sensitivity value. This is reflected also by examining theSovvalues.
To conclude, examine Table 4, which combines all the previous data to show the overall tendency. We
compared theSovvalues (since these are the most complete measures for the segment prediction accu-
racy) obtained through our methods versus the ones obtainedby using classical wavelets. For performing
the comparisons we used paired t-tests, since the sample size is large enough so that the tests should be
robust against non-normality. For each of our methods, and both for Sovobs andSovpred, we tested the
null hypothesis of no difference between the meanSovvalue of our method and the meanSovvalue of
the classical method, versus the alternative that our method provides a higherSovvalue than the one ob-
tained through the classical wavelets. We indicated the highly significant differences in Table 4. Based
on a careful examination of the data and on the results of the significance tests, we conclude that we im-
prove the quality of prediction by using resolved 3D structure of proteins that are similar to the proteins
to be analysed— both in terms of the correctness of the segments with respect to the true segments and
the proportion of predicted segments that are correct.
Wavelet methods using a second filtering step based on the chemical properties of the residues, report
final sensitivity and specificity values of 0.93 and over. With no such further filtering, we obtain a value
of 0.90, indicating that if we additionally use such a procedure, we should obtain even higher sensitivity
values. We refer to the sensitivity and specificity values since they are the measures usually reported in
the literature, but we stress again that a much better measure, indicating more accurately the behaviour of
the method, isSov. Its observed value also confirms an improvement of the prediction accuracy. Due to
the ligand-gated ionic channel family (TC 1.A.9), the specificity value drops to 0.70, a higher value than
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the one corresponding to the classical method — 0.62, but yeta smaller value than the ones reported by
the previous studies (Lio and Vannucci (2000), Fisheret al. (2003)), in which further to the mathematical
filtering, a step of biochemical filtering is employed. The value of Sovpred (0.76) is higher than the one
provided by the specificity index, and it also points towardsthe existence of an improvement with respect
to the classical method (which hasSovpred of 0.67).
For the initial dataset consisting of 46 proteins, we have also tested our methodology using two different
types of matrices for imputing the missing values when computing the coordinate of each residue. We
remind the reader that so far we primarily used two matrices,one for each of the families (see section
2.1). In the calculation of these matrices we used the chainswith determined 3D structure that were
aligned to the sequences belonging to each family, respectively. Solely for estimating the missing values
in these matrices, we used another two matrices computed based on the structure of the entire proteins
aligned to sequences belonging to each family. Now, we have also tested our methods using imputed
values straight from the distances provided by these matrices. And finally, regardless the family to
which the protein belongs, we have used the overall matrix computed based on 376 proteins, all the
proteins aligned to the 46 proteins being analysed. Our intuition was that the prediction should slightly
decrease in accuracy by using less specific information. Thetests proved that the specificity has slightly
decreased, from the overall 0.76 to 0.74 (this difference being mainly due to the specificity decrease in
the ligand-gated ionic channel family, from 0.59 to 0.55), while the sensitivity was not influenced.
As a note, if the sequence of interest has no aligned sequences with resolved 3D structure, then the
corresponding overall matrix can be used for computing all the inter-residue distances.

5 Conclusions and further work

This article has developed a new multiscale technique for transmembrane protein segment prediction.
The new technique improves on earlier wavelet methods by utilising resolved 3D structure information
from similar proteins to provide irregularly spaced residues. The irregular spacing is generated by order-
20 distance matrices which calculate inter-residue distances over families of similar proteins (and also
a generic ‘all-protein’ matrix for use when a family matrix cannot produce a distance for a particular
combination). This construction aims at obtaining a betterestimate of the true function that models the
level of hydrophobicity along the protein. We tested our method on helical transmembrane proteins,
and consequently we generated distance matrices that reflect the helicity property. An interesting di-
rection would be to further extend the study to beta-barrel transmembrane proteins. For the future, the
‘paradigm’ provides a way of generalising multiscale algorithms for irregularly spaced objects (such
as proteins) and hence lifting shows great promise for directly utilising 3D resolved information in a
mathematical multiscale manner which is informed by the biochemical reality.
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Npred Ncorr Sens Spec < L >obs < L >pred Sovobs Sovpred Q2 Qobs Qpred

AP2 mean 62 60 1.00 0.97 22.08 25.45 0.96 0.95 0.88 0.94 0.78
AN1 median 63 60 1.00 0.95 22.08 22.05 0.95 0.94 0.88 0.87 0.81
AN1 mean 62 60 1.00 0.97 22.08 20.36 0.93 0.93 0.88 0.82 0.84
Daub mean 58 57 0.95 0.98 22.08 28.90 0.93 0.92 0.90 0.96 0.80

Table 1: Results obtained on the TM4SF family (15 proteins, 60 experimentally determined transmem-
brane segments).Npred, Ncorr give the number of predicted, respectively correctly predicted transmem-
brane segments;Sens, Specgive the sensitivity, specificity of prediction;< L >obs, < L >pred are the
average length of the observed, predicted segments;Sovobs, Sovpred evaluate the correctness of prediction
versus the true segments, and the fraction of the predicted segments that is correct;Q2 is the percent-
age of correctly predicted residues,Qobs, Qpred measure the percentage of correctly predicted residues
relative to the number of observed, respectively predictedtransmembranar residues

Npred Ncorr Sens Spec < L >obs < L >pred Sovobs Sovpred Q2 Qobs Qpred

AP2 mean 168 72 0.82 0.43 22.34 25.21 0.85 0.49 0.77 0.95 0.45
AN1 median 173 73 0.83 0.42 22.34 21.71 0.84 0.50 0.76 0.84 0.44
AN1 mean 148 73 0.83 0.49 22.34 19.77 0.84 0.59 0.82 0.79 0.52
Daub mean 165 63 0.72 0.38 22.34 27.07 0.75 0.44 0.75 0.96 0.43

Table 2: Results obtained on the TC 1.A.9 family (22 proteins, 88 experimentally determined transmem-
brane segments).Npred, Ncorr give the number of predicted, respectively correctly predicted transmem-
brane segments;Sens, Specgive the sensitivity, specificity of prediction;< L >obs, < L >pred are the
average length of the observed, predicted segments;Sovobs, Sovpred evaluate the correctness of prediction
versus the true segments, and the fraction of the predicted segments that is correct;Q2 is the percent-
age of correctly predicted residues,Qobs, Qpred measure the percentage of correctly predicted residues
relative to the number of observed, respectively predictedtransmembranar residues

Npred Ncorr Sens Spec < L >obs < L >pred Sovobs Sovpred Q2 Qobs Qpred

AP2 mean 98 82 0.90 0.84 23.89 23.59 0.90 0.77 0.82 0.79 0.75
AN1 median 106 83 0.91 0.78 23.89 19.13 0.91 0.78 0.80 0.71 0.76
AN1 mean 95 82 0.90 0.86 23.89 17.99 0.89 0.82 0.83 0.66 0.84
Daub mean 98 80 0.88 0.82 23.89 24.02 0.92 0.75 0.81 0.80 0.73

Table 3: Results obtained on the rest of the proteins (19 proteins, 91 experimentally determined trans-
membrane segments).Npred, Ncorr give the number of predicted, respectively correctly predicted trans-
membrane segments;Sens, Specgive the sensitivity, specificity of prediction;< L >obs, < L >pred

are the average length of the observed, predicted segments;Sovobs, Sovpred evaluate the correctness of
prediction versus the true segments, and the fraction of thepredicted segments that is correct;Q2 is the
percentage of correctly predicted residues,Qobs, Qpred measure the percentage of correctly predicted
residues relative to the number of observed, respectively predicted transmembranar residues

Npred Ncorr Sens Spec < L >obs < L >pred Sovobs Sovpred Q2 Qobs Qpred

AP2 mean 328 214 0.90 0.65 22.80 24.73 0.90β 0.71β 0.80 0.88 0.60
AN1 median 342 216 0.90 0.63 22.80 20.93 0.89γ 0.71β 0.80 0.79 0.60
AN1 mean 305 215 0.90 0.70 22.80 19.32 0.88 0.76α 0.83 0.75 0.68
Daub mean 321 200 0.84 0.62 22.80 26.52 0.86 0.67 0.80 0.89 0.59

Table 4: Overall results (56 proteins, 239 experimentally determined transmembrane segments).Npred,
Ncorr give the number of predicted, respectively correctly predicted transmembrane segments;Sens, Spec
give the sensitivity, specificity of prediction;< L >obs, < L >predare the average length of the observed,
predicted segments;Sovobs, Sovpred evaluate the correctness of prediction versus the true segments, and
the fraction of the predicted segments that is correct;Q2 is the percentage of correctly predicted residues,
Qobs, Qpred measure the percentage of correctly predicted residues relative to the number of observed,
respectively predicted transmembranar residues;α indicates a significantly higherSovvalue for the cor-
responding method than forDaub meanat 99% confidence level, whileβ corresponds to a significantly
higher result for our (corresponding) method at 95% confidence level andγ indicates a significantly
higher result for our (corresponding) method at 90% confidence level
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