Improving Prediction of Hydrophobic Segments along a
Transmembrane Protein Sequence using Adaptive Multiscale
Lifting

Marina I. Knight Guy P. Nason
September 9, 2005

Abstract

Abstract: Established methods for transmembrane protein segmedicpom are often based
upon hydrophobicity analysis. Classical wavelet mulliscaethods have proved successful in the
prediction task. However, they implicitly model proteinaih residues as being equally spaced. Our
main motivation is to challenge this assumption by develg@ new multiscale ‘lifting’ technique
that utilizes irregularly spaced residues, where the sgisiderived from resolved 3D information
obtained from similar aligned proteins. For different giaotfamilies we calculate asymmetrical
dissimilarity matrices of order 20 that estimate the ‘dis& between residue types. We use our
new adaptive lifting technigue to regress the Kyte and Dtelhydrophobicity index upon residues
(now irregularly spaced using information from the distamaatrices) and use the regression to
predict transmembranar segments. We compare the restidtmed through our method with the
ones obtained through the usage of classical wavelets, lamd that incorporating 3D resolved
structure improves overall prediction (both in terms ofeéléstence of predicted segments compared
to experimentally determined ones and also the proporfieomwectly predicted segments).

The software is available from http://www.maths.brisuté--maxmp/proteomics.html

1 Introduction

Membrane proteins are an important class of protein stresfibut the experimental determination of
their three-dimensional (3D) structure can often be vefficdit. For this type of protein, predicting
various structural aspects using only the information aioed in the residue sequence is a problem of
interest, see for example Lio and Vannucci (2000).

Since transmembrane proteins are found spanning the plamm#brane, the segments embedded in
the lipid bilayer primarily consist of hydrophobic aminoids; and this feature can be used in order
to identify them. Typical methodology for predicting tramsmbrane segments includegdrophobicity
analysisfocused on helical transmembrane proteins— for example Kgtl Doolittle (1982), Engelman
et al. (1986), Lio and Vannucci (2000). However, hydrophobiatyalysis as a tool for prediction is
not limited at transmembrane segments only, but has also U for hydrophobic cores of globular
proteins (see Hirakawet al. (1999) for instance).

Wavelet based smoothing methods (Lio and Vannucci (2008heFet al. (2003)) have been used and
shown to perform well in the task of transmembrane segmeligiion. So far, classical wavelet meth-
ods have been used. This means that the residues withindtegrpchain are modelled as being equally
spaced. If each residue is thought of as a 3D structure dietedrby its atoms, then plausibly one should
not automatically consider the distances between any taidues to be equal.

If additionally one was presented with supplementary seapnand tertiary structure information, then
precise local information (which typically we do not havedwid be gained on the residue positions.
Then a 3D parametric function could be fitted in order to aatly obtain the inter-residue distances.
Our work is motivated by the intuition that we might improvartsmembrane segment prediction if we
were somehow able to take into account the resolved 3D irdtom contained in proteins that are similar
to our proteins of interest. Making use of this additionérmation would help estimate the (true) inter-
residue distances and improve upon the estimation of treifumthat ‘models’ the hydrophobicity level
along the protein.
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Since the discrete wavelet transform cannot be directlg eseirregularly spaced grids, we wilke an
adaptive lifting schemésee Nune®t al. (2004)), which constructs wavelets that adjust to thegimot
features and are able to work on irregularly spaced obsengat Also, we willconstruct a measure
for the distances between consecutive residues of a prbieinsing the information contained in a
corresponding set of sequentially aligned proteins witlemheined 3D structure.

We later show on the proteins from Radtal. (1995) that transmembrane segment prediction improves
by incorporating the inter-residue distances. All the @irtg in the study are helical, we discuss in the
final section the possibility of other structures such aatbetrrels.

We will now briefly introduce the steps we have taken in ourysis, while the next section provides
a detailed description of the methodology. The whole apgraa relying on analysing the hydropa-
thy profile associated to each protein, and we will thoroyghscuss its construction, which also in-
volves estimating the inter-residue distances. We wilebas transmembrane segments prediction on
a denoised version of the hydropathy signal. We addresdadtistieal problem of denoising by using
wavelet methodology, hence we will briefly introduce basaeepts on wavelets. Since we will use
second generation wavelets, we then concentrate on th@ptiEst of our algorithm, which produces
adaptively constructed wavelet functions to decompossitreal at each step. The wavelet coefficients
will then be subjected to a thresholding technique, disdigsthe denoising section. Once the denoised
profile is obtained, we class as transmembranar the segthahtse longer than 11 residues (Refsal.
(1995)) and correspond to residues with hydrophobicitighdr than the smoothed average.

2 Method

2.1 The distance matrix and the hydropathy plot

Various measures for the hydrophobicity of each amino aeaicetbeen constructed (for example the
scale of Kyte and Doolittle, or the Eisenberg scale), and ateambined measures of hydrophaobicity
and helicity to be used in the context of helical transmemdnaroteins (see for instance the Lio and
Vannucci scale). By means of these scalles,primary structure of the protein can be converted into a
hydropathy profilei.e. we obtain a signal which on the horizontal axis has #stdues in their order
of appearance in the chain, and on the vertical axis thefesponding values from the hydrophobicity
index. After investigating the compatibility of our methedth the previously mentioned scales, we
decided to use in our study the Kyte and Doolittle measureydfdphobicity.

In previous studies, the residues were processed assunainthey were equally spaced. As explained
in the introduction, we will challenge this assumption andstruct a coordinate for each residue in the
chain. The coordinate corresponding to each residue wvditate its estimated distance to the previous
and next residues.

We now turn to the way we construct the coordinates for easidue. First we determine which pro-
tein sequences with resolved 3D structure are similar tgth&in we study, through a fast alignment
method, FastA, using the scoring matrix BLOSUMG62.

Our aim is to use the known 3D structure of the aligned proseiquences in order to estimate the
distance between each pair of consecutive residues in thmamyr structure of the protein of interest.
This is done by identifying all the appearances of each fipeesidue pair in the primary structures
of the aligned chains, and then computing all the correspgnBuclidean distances; their average will
give us the measure we need. In computing the Euclideanndistaetween two residues, they, z
coordinates (as given by their corresponding PDB file) offedir atoms are used. The result i80ax 20
asymmetrical matrixD, whereD;; contains the average of the Euclidean distances computec:ée
the residues andj, from all the aligned chains where they appear in this oriée.should emphasize
here thatD is not symmetric, hence the distance from Arg to Lys, sayijfferént to that from Lys to
Arg.

At this point one might like to refer to Figure 1, which gives imdication of the range of estimated
distances between different pairs of amino acids, as welhais variation. This distance matrix has
been computed using 402 matching proteins, each with \v@sgegquence lengths.

The distance matrix in Figure 1 is less variable than thosaiméd from specific protein families. The
amino acids are clustered according to their R—group nzdmeseparated in Figure 1 by white lines. So,
GLY-ILE form the first group of amino acids with aliphatic Regps, SER and THR are non-aromatic
amino acids with hydroxyl R—groups, CYS and MET have sulgimntaining R—groups, ASP—GLN are
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Figure 1: Overall ‘average’ distance matrix (ﬁmgstrbm units). The intensity of a pixel (dark/light)
corresponds to the mean distance for that residue pair. dloercof a pixel (blue/red) corresponds to
the standard deviation for that amino acid pair. The brigihpéxel in the figure occurs at MET-THR,
with a distance of 10.2. It is also one of the most variabl¢hwistandard deviation of 16.7— MET-PHE
is the most variable (most red) with a standard deviatior8of 1The darkest combination is GLY-TRP,
with a distance of 4.5, while the least variable is MET-TR&ihg a standard deviation of 0.28. The
lower and upper quartiles of the mean distance (standardtd®y) are 5.2 and 6.1 (0.74 and 2.52).

acidic amino acids and their amides, ARG-HIS are basic amdns, PHE-TRP are amino acids with
aromatic rings and PRO is the sole imino acid. It is notaldeegkample, that pairs consisting of amino
acids with aromatic rings typically have low standard dgerss, but middling mean distances.

A shortcoming of this matrix approach is that it only take®iconsideration the distances between
consecutive residues, and hence models the protein as &aimgight chain, rather than modelling its
3D shape. Overcoming this restriction and trying to estaribeé 3D function behind the protein shape
is an interesting point for future research, and we susp@ttit would bring us even closer to correctly
estimating the hydrophobicity level as a function of thetgirds amino acid composition and shape.
Note that some residue pairs will only appear in the primémycsure of the protein being investigated,
and not also in the primary structures of the chains aligaétd In this case, we use the distances supplied
by an appropriate distance matrix, computed as followshéndataset we are going to investigate (Rost
et al. (1995)), 15 proteins belong to the tetraspanin family (B, 22 belong to the ligand-gated ionic
channel family (TC 1.A.9), and the rest belong to differeminiflies. The last group consists of only
9 proteins, hence we added another 10 proteins randomlgtedléom the set of 83 cross-validation
proteins used in the same study by Resal (1995). This way the size of this group was boosted to
19 proteins. The natural division of the dataset into faggilhas led us to construct average distance
matrices corresponding to each of the two main families.htndalculation of each matrix, the chains
aligned to the sequences belonging to each family have bsmsh tence for each of the proteins in one
of these families, the missing distances will be imputednfits corresponding overall distance matrix.
Along with these two matrices, we have also computed andtthefamily-specific distance matrices,
based this time on the structure of the entire proteinsdratian only on the chains) that were aligned to
sequences belonging to each family. If the family-specifatrim computed based on the aligned chains
contains no information on a particular residue combimatibe missing value is taken from the family-
specific matrix which uses the entire protein structure. kMiie analyse a protein that does not belong
to one of these two families, we use the distances supplieahliyerall ‘average’ distance matrix (see
Figure 1), computed from a database comprising 402 protethsdetermined 3D structure— the ones
aligned to all the proteins investigated.



Having estimated the distances between each pair of cangecesidues in the protein of interest, we
compute a coordinate value for each residue in the chairdbas its distance to the previous residue.
Using these coordinates, the residues will be plotted ohdneontal axis, hence rather than considering
them to be equally spaced, they will have an uneven distoibut

Figure 2 shows an example of hydrophobicity signal, whickiesy wiggly and a visual assesment is
virtually impossible, hence proper statistical tools ageded to denoise it.

2.2 Wavelets and the hydrophobicity profile

Classically constructed wavelets are families of funcibased on dilations and translations of a single
function, called the mother wavelet. They have the abilftproviding representations for square inte-
grable functions, either by continuous linear superpasstiof wavelets, or by discrete series expansions
of wavelets (Daubechies (1992)). By their constructioassical wavelet decompositions work only on
equally spaced grids, with lengths of the foe, and modifications are required in order to overcome
these limitations (Coheet al. (1993)).

For this reason, we will construct second generation wsebapable of working on irregularly spaced
grids of any length. Stemming from the lifting scheme ideaoiduced by Sweldens (see for instance
Sweldens (1997)), we have constructed an adaptive lifthg®se, which we are going to employ in our
study.

2.3 An adaptive lifting scheme

The lifting algorithm

We can think of the hydropathy signal as being a functfosampled at irregularly-spaced points
on the real line,x (n is the number of residues in the chain of the protein of irstere gives their
associated coordinates arfdis the chosen hydropathy scale). Our aim is to transform dmepsed
function values by means of lifting into a set of detail andlsiy coefficients (representing the high and
low ‘frequencies’, respectively), where each coefficieziaites to a certain scale.

Our lifting transform will not follow the classical idea opkiting the sequence into odds and evens, but
following Janseret al. (2001, 2004) we concentrate on removing one point at eachtibn. Briefly
described, the algorithm has the following steps:

e First choose a point to be lifted Say the initial stage is, when we collected the sampled
points, and the next stagens— 1. Denote the point to be removed by.

e Predict the function value afj,, by using regression over the cloud of points determined by a
neighbourhood (denote it by,) of j,,. Generate a detail coefficieds, := ¢, j, — > ic; ai'cni,
wherec,, ; := f(zy;) and(al')ic.s, are the weights obtained through regression.

e Update the function values at the neighbouts 1 ; := c,; + b;'d;,, Vi € Jp,i # j,. The aim
of this stage is to preserve constant the average signathanaeights(b});c s, will be obtained
from this condition.

o After obtaining the detail and updating the values of theaiing pointsremove the pointj,.

e Reiterate the lifting transform: decompose the signal down to preserving only two low fre-
quency coefficients, the rest of them being detail coeffisien

As an observation, this construction induces a parallebitoation of scaling and wavelet functions
(Janseret al. (2004)).

Adaptivity in the Lifting Algorithm

Since we want &ransform which adjusts itself to suit the signal struciue have introduced the option

of adaptive lifting prediction steps. In the lifting proagd, there are two sources of adaptiveness we can
use— the order of regression and the configuration of neigisbncluding their number). This gives
rise to two adaptive methods:

e The first method isadaptive over the order of regression used in the predicioheme The
algorithm chooses at each step the type of regression rliggadratic or cubic, with or without



intercept) which generates the smallest detail in absalakige. The wavelet bases constructed
like this adapt themselves to the smoothness of the sigmatsiigated within a user-specified
configuration of neighbours. We will refer to this procedasAdaptPred.

e The second adaptive methodnimises the detail coefficients not only over the regagsschemes,
but also over the neighbourhood structude other words, several configurations of neighbours
are tested with the first adaptive transform, and the onealipiglthe smallest detail coefficient
will be chosen. Hence the wavelet bases constructed thritiggiprocedure adapt themselves to
the smoothness of the signal within the best predictive aindt each step. The name of this
procedure iAdaptNeigh.

For details regarding the constructions above and theiligatjons, the reader is directed to Nuretsl.
(2004).

2.4 Denoising the hydrophobicity profile

Wavelets constructed following the above procedure (habtto work on irregularly spaced data) are
going to be employed for detecting the transmembrane sdgro€helical transmembrane proteins.
Since the transmembrane segments are sequences of pradtdynhydrophobic residues, we want to
detect the points at which sharp changes occur in the sidié amounts to modelling the profile as
noise-contaminated, and estimating the underlying signal

Mathematically, we write each of our (independent) obgema ( fn,i)z’eL_n asfn.i = gni + €n,i,» Where
gn,; IS the population value to be estimated angd is an identically distributed, independent noise,
assumed to follow &v (0, 02) distribution. In other words, based on just one observatfon, at each
sampled point of the grid, we want to estimate the true value of the signal @f;. The assumption of
independent observations is a necessary mathematicatenegunt, which we are aware that is likely to
hold only approximately for our transmembrane prediction.

In practice, most of the time the true signal is not sparsetransformed through a discrete wavelet
transform (DWT) or through a lifting algorithm, the resolli sequence of wavelet coefficients has the
property of being sparse. Hence the observed signal witlldesdecomposed into coarse scale coeffi-
cients and wavelet coefficients (details). Intuitivelye ttoarse scale coefficients are capturing the ‘big’
features of the signal, while the noise mostly contamintiesietails. Some of these details of course,
are going to represent true features of the signal (and soecahtaminated by noise), while others will
be due only to the noise.

When the noise corrupted signais transformed through the lifting algorithm into a set odlsty and
wavelet coefficients, it means that the above model will beveded intod; = d; + e;, with (d;);
being the observed wavelet coefficier(i$;); the ‘true’ wavelet coefficients angd the transform of the
noisec;. We only note here that the lifting transform is not an orttwog transform (while the DWT is),
and hence care must be taken in assessing the distribupoozérties of the true and observed wavelet
coefficients. For an in depth discussion refer to Nugtes. (2004).

In order to establish which of the observed wavelet coefiisiagepresent true non-zero population
wavelet coefficients, a threshold needs to be estimateddn detail. In our approach we will use
an adapted version of the empirical Bayes procedure (fa@ildetee Johnstone and Silverman (2005),
Nuneset al. (2004)). Briefly, the empirical Bayes approach relies @aytoperty of the ‘true’ wavelet co-
efficients of having a sparse structure which allows us togoladependent prior distributions describing
each of them as being zero with a probabilityto be estimated) or to have come from a quasi-Cauchy
distribution, with probabilityl — 7. In shrinking the observed wavelet coefficients, we will tise
posterior means of the developed posterior distributidribe‘true’ detalils.

Once the wavelet coefficients have been thresholded, theftran is inverted, yielding a estimated
version of the initial signal.

2.5 Predicting the Transmembrane Segments

The estimated hydropathy profile will be used to predict taegsmembranar segments. All the residues
corresponding to smoothed hydrophobicities larger tharegtimated average will be considered to be
transmembranar, provided that they form segments whicloager than 11 residues.



3 Implementation

We tested our method using 46 of the 48 proteins from Bbat (1995) (the double—blind set, available
from http://www.embl-heidelberg.defost/Papers/199@hdtop/Blind.html). The search on the AD1
antigen retrieves the entry ‘cd63-rat’, which subseqyeafipears in the database, and the glutamate
receptor A precursor contains a much longer sequence tleareslh, causing memory difficulties. As
mentioned in section 2.1, we added a set of 10 proteins toGl@ateins dataset, in order to boost the
the number of proteins that do not belong to either of the @wilies. As a consequence, we report the
overall results obtained on all 56 proteins. We comparedesults against those obtained by using the
least asymmetric Daubechies wavelets with 8 vanishing més{esually denoted Daubechies ‘s8’) for
decomposing the signal down to 4 levels, combined with thpiecal Bayes procedure for shrinking
the wavelet coefficients, using the posterior meddbaup meah We based our wavelet choice on a
comparative study between several Daubechies waveldts different vanishing moments. The same
choice has been previously reported in the literature (lnd ®annucci (2000)). As a remark, since
Daubechies ‘s8’ wavelets were used, the estimated digtdmetgveen residues have been ignored, and
considered to be equal.

In Nuneset al. (2004), AdaptPred and AdaptNeigh were tested in an exterssinulation study and
they proved to be very powerful in the task of shrinkage. Fraising smooth signals or signals with a
small number of discontinuities, AdaptPred with 2 neighlsqdAP2) performs best, while for denoising
non-smooth signals, AdaptNeigh using up to two neighbotiemeh stageAN1) gives the best results.
Hence when denoising our hydrophobicity data, we have ftos these two methods.

Note that in the decomposition using adaptive wavelets, ept the same number of scaling coefficients
as in the decomposition using Daubechies ‘s8’.

4 Results

4.1 Prediction accuracy measurements

Both methods produce their corresponding predicted trangmnanar segments which we have to com-
pare against the experimental data and assess which isttee frediction. We believe that there is no

obvious measure that would give a concise answer as to whitle @redictions is better, and hence we
used several measures for the accuracy of prediction:

e Measures referring to the residue accuracy(see for example Rost and Sander (1993)): the
percentage of residues predicted correctly in either oftiyee states (transmembranar or not),
(Q2; the percentage of residues which are correctly predictde transmembranar, relative to the
number of residues observed to be transmembrapgys)(and relative to the number of residues
predicted to be transmembran&yfed)-

e Measures referring to the segment accuracysee for example Rost al. (1996)): the number of
correctly predicted transmembrane segments,;, where a segment is considered to be correctly
predicted if there is an overlap of at least 5 residues with@dne; sensitivity, i.e. the percentage
of observed transmembrane segments that were correctlijcieed, Sens specificity, i.e. the
percentage of predicted transmembrane segments thatragetc8pe¢ segment overla@oyps,
Sowred» Which are more sophisticated measures for evaluating (scake from 0% to 100%)
respectively the correctness of segment prediction véhgisue segments and the fraction of the
predicted segments that is correct (for more details sedaZenal. (1999)).

4.2 Discussion of results

Using the above measures, we evaluated the performance ofeibhod versus the performance of the
method employing Daubechies ‘s8’ on equally spaced grids.

After investigating the AdaptPred with two closest neigintsoand AdaptNeigh with at most two neigh-

bours methods, both with posterior median and with posteriean thresholding, we concluded that
AdaptNeigh method using posterior mean shrinkagd i meai, gives the best results throughout the
study, hence this is the method we recommend, followed bykzigh with posterior median thresh-

olding (AN1 mediaih Occasionally (even though very rare), it happens for tdapiNeigh technique



to produce predicted segments that are too short (averagthlander 14 residues) or too long (average
length over 34 residues), situation when AdaptPred usirgdlesest neighbours and posterior mean
shrinkage AP2 meajpwould be chosen.

We found out that on the proteins belonging to the tetraspam4SF family, the classical method
mostly gives very good prediction, with only a few excepio®n the leukocyte antigen CD37 (UniProt
entry ‘cd37-human’) Daubechies ‘s8’ fails almost comfleti® recognize the true segments, giving
Sowhs andSowreq Values of 0.5 and 0.33 respectively.

As said before, we tested AdaptPred with 2 closest neiglsband AdaptNeigh using at most 2 neigh-
bours, both using posterior median thresholding and postarean shrinkage. The results show that
AdaptNeigh with either type of shrinkage and AdaptPred witisterior mean shrinkage give the best
predictions. Overall, our segment prediction accuracyely similar to the one obtained through the
classical method, as showed by the results in Table 1. Wendtigher sensitivity (i.e. the percentage of
observed transmembranar segments that were correctlicigdl] and very similar specificity, as well
as very similaiSovvalues. These values indicate an accurate segment poedigtdged not only by the
simple criterion of considering a segment correctly prididf there is an overlap of at least 5 residues
with a true one, but also by the better measure provide&dy which takes into account the change
points as well. The per-residue measures indicate a betteaviour for the classical method, but we
should keep in mind that this measure should be considerddcaie, since we are primarily interested
in sequences of residues and their positions within thenchai

At a close examination of the results based on which we obdairable 1, we notice that our method
provides more homogenous estimations, and there is nodailliprediction for any of the proteins,
unlike the classical method.

On the ligand-gated ionic channel (TC 1.A.9) family, thessliaal based wavelet methods give quite
poor predictions most of the time, wiovvalues ranging from (0.51,0.3) to at most (1,0.51). For four
proteins, values around (0.5,0.3) are obtained, hencdaksical method fails to make a good prediction
for them. Most of the&sowvalues are concentrated around (0.8,0.45), indicatinghlese is a tendency of
overpredicting segments (predicting segments that arguigttransmembranar), and also of not being
able to correctly detect the boundaries of the true segmértis generally translates in predicting a
segment as being the merging of 2 or, in a few cases, even 3dgiments.

Our methods give an improved prediction for most of the pnate AdaptNeigh method gives better
predictions than AdaptPred, and this time AdaptNeigh upmgjerior mean shrinkage is superior to the
same method, but employing posterior median thresholdiigst of the Sovvalues for AdaptNeigh
using posterior mean shrinkage are within the range of 1(08-0.8), considerably higher than the
results obtained using the classical wavelets.

Also for this family, the prediction performance given byr anethod is more homogenous than in the
classical case. By examining Table 2, we notice that whileroving the sensitivity (the boundaries of
the true segments are correctly identified, and segmenteitem merged), we do not seem to be able
to significantly improve upon the specificity of our predicti(some segments are falsely predicted as
transmembrane).

We now examine a protein belonging to this family: we choseghmma-aminobutyric-acid receptor
gamma-3 subunit precursor (UniProt entry ‘gac3-mousehictv displays the typical behaviour of both
methods. It has a chain of length 467 residues, to which shaming from eight proteins with de-
termined 3D structure have been aligned. The inter-resttisiances were computed based on these
proteins, and the values of the missing pairs were imputad the overall distance matrix correspond-
ing to this family.

The experimentally determined transmembrane segmenbebeged to be:

255-277, 281-303, 315-337, 444-467.

Our method predicts the following segments:

5-15, 77-88, 116-133, 232-249, 253-277, 288-303, 317-3832,467, while by the usage of Daubechies
wavelets, we obtain

1-15, 72-92, 118-134, 157-173, 230-296, 306-337, 443-467.

The hydropathy profile obtained is given in Figure 2:

The observed and predicted segments correspond to Figure 3:
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| " = 1 N N |

~- 1 Il - . LN | [

o
T T T T T T
0 100 200 300 400 500

Residue Position in the Chain

Figure 3: Predicted segments for ‘gac3-mouse’. red=TrluedAdaptNeighl, green=Daub ‘s8’

Figure 4 shows the corresponding coarse versions of the@hgthry profile of ‘gac3-mouse’:

Denoised Hydrophobicity Level
0 2
1 1
-
f= ——
——
—_—
D T—
=
e
P

T T T T T
0 100 200 300 400

Residue Position in the Chain

Figure 4: Centred denoised hydropathy profile of ‘gac3-rebusing AdaptNeighl, Daub ‘s8’, in black,
red respectively

When measuring the performance of these segments, we disiollowing results:



our method:

Q2 = 0.83, Qobs = 0.82, Qpred = 0.55, < L >ops= 23.25, < L >preq= 17.12, Nops = 4, Npred = 8,
Necorr = 4, Sens = 1, Spec = 0.5, SO\ps = 1, SOWreq = 0.57

Daubechies 's8':

Q2 = 0.75, Qobs = 0.92, Qpred = 0.44, < L >ops= 23.25, < L >preq= 27.71, Nops = 4, Npred = 7,
Neorr = 3, Sens = 0.75, Spec = 0.43, SOps = 0.72, SOWpreq = 0.44

We notice in this example the behaviour described earlethat both methods overpredict the trans-
membrane segments, and the classical wavelets are alsmgsogne of the true segments.

All of the methods mentioned in the beginning of this papee(®r example Rogt al (1995, 1996) or
Fisheret al. (2003)), besides the mathematical filtering, employ adhiemical filtering as well, which
we keep minimal (we only cut the helices containing at mostekddues). Such further filtering and
inspection of the already predicted segments will consiolgrimprove the prediction specificity and
sensitivity (and will also improveSowred, Sowps), by eliminating some of the unlikely segments, or
splitting the segments considered to be too large into twmore segments. In our study, a closer
examination of the obtained predicted segments in the diggted ionic channel (TC 1.A.9) family
shows that a lot of the segments wrongly predicted as tramfwamnar are very short (11-15 residues),
and hence unlikely to ‘survive’ a bio-chemical filtering pealure. It may also be that some of them are
too long, and splitting them into more segments might beatisml. In our approach, we kept exclusively
a mathematical filtering procedure and investigated iteielir with and without the information given
by multiple aligned sequences with known 3D structure. Rigwinproved upon the basic mathematical
prediction, various other procedures (such as the bio-wfzriltering discussed above) could then be
joined, and contribute to an improved final prediction.

Finally, for the rest of proteins, the ones belonging toetiht families, the predictions of both our
method and of the one employing classical wavelets are gaoid, with the exception of three proteins
which have only one (true) transmembranar segment. Foe thiedeins, our methods and the classical
one have very similar performances, in that 8mwvalues are around (0.9-1, 0.2-0.6), indicating that the
methods correctly identify the true segment, but addiflgnaredict false ones. For the remaining 16
proteins, none of the methods fails and the rang8mivalues is (0.64-1,0.67-1) for AdaptNeigh with
posterior mean shrinkage method, and (0.67-1, 0.51-1htoclassical method. Comparing the results
obtained on the whole set of 19 proteins, we see that our metitioer outperforms the results obtained
through the Daubechies wavelets or gives similar resuit$,jrmonly three cases we obtain worse results
than by using the Daubechies ‘s8'. For this group of proteims best results are obtained by predicting
through AdaptNeigh with at most 2 neighbours using postenean shrinkage, too. Examining Table 3
we notice that we obtain improved specificity values for tltmptNeigh technique using posterior mean
shrinkage as compared to the results obtained through #igeusf classical wavelets, and a similar
sensitivity value. This is reflected also by examining 8wvalues.

To conclude, examine Table 4, which combines all the previtata to show the overall tendency. We
compared thé&ovvalues (since these are the most complete measures forgimegeprediction accu-
racy) obtained through our methods versus the ones obthinesing classical wavelets. For performing
the comparisons we used paired t-tests, since the samplessarge enough so that the tests should be
robust against non-normality. For each of our methods, arld for Sovps and Soreq, We tested the
null hypothesis of no difference between the m&awvalue of our method and the me&ovvalue of
the classical method, versus the alternative that our rdgthavides a higheSovvalue than the one ob-
tained through the classical wavelets. We indicated thkligignificant differences in Table 4. Based
on a careful examination of the data and on the results ofigiméfisance tests, we conclude that we im-
prove the quality of prediction by using resolved 3D struetaf proteins that are similar to the proteins
to be analysed— both in terms of the correctness of the segmath respect to the true segments and
the proportion of predicted segments that are correct.

Wavelet methods using a second filtering step based on tmeicdleproperties of the residues, report
final sensitivity and specificity values of 0.93 and over. Wib such further filtering, we obtain a value
of 0.90, indicating that if we additionally use such a praged we should obtain even higher sensitivity
values. We refer to the sensitivity and specificity valuesesithey are the measures usually reported in
the literature, but we stress again that a much better meaadicating more accurately the behaviour of
the method, isSov Its observed value also confirms an improvement of the gliedi accuracy. Due to
the ligand-gated ionic channel family (TC 1.A.9), the sfieity value drops to 0.70, a higher value than



the one corresponding to the classical method — 0.62, bua getaller value than the ones reported by
the previous studies (Lio and Vannucci (2000), Figkteal. (2003)), in which further to the mathematical
filtering, a step of biochemical filtering is employed. Théueaof Soweq (0.76) is higher than the one
provided by the specificity index, and it also points towdh#sexistence of an improvement with respect
to the classical method (which h&®\eq 0f 0.67).

For the initial dataset consisting of 46 proteins, we hase tésted our methodology using two different
types of matrices for imputing the missing values when cdimguthe coordinate of each residue. We
remind the reader that so far we primarily used two matrioes, for each of the families (see section
2.1). In the calculation of these matrices we used the chaitisdetermined 3D structure that were
aligned to the sequences belonging to each family, respéctiSolely for estimating the missing values
in these matrices, we used another two matrices computed lmesthe structure of the entire proteins
aligned to sequences belonging to each family. Now, we hbeetasted our methods using imputed
values straight from the distances provided by these nestricAnd finally, regardless the family to
which the protein belongs, we have used the overall matmrprded based on 376 proteins, all the
proteins aligned to the 46 proteins being analysed. Ouitiotuwas that the prediction should slightly
decrease in accuracy by using less specific information.td$te proved that the specificity has slightly
decreased, from the overall 0.76 to 0.74 (this differendagomainly due to the specificity decrease in
the ligand-gated ionic channel family, from 0.59 to 0.55hjlev the sensitivity was not influenced.

As a note, if the sequence of interest has no aligned segsievitle resolved 3D structure, then the
corresponding overall matrix can be used for computinghallibter-residue distances.

5 Conclusions and further work

This article has developed a new multiscale technique forstnembrane protein segment prediction.
The new technique improves on earlier wavelet methods Higing resolved 3D structure information
from similar proteins to provide irregularly spaced regigluThe irregular spacing is generated by order-
20 distance matrices which calculate inter-residue digtmmver families of similar proteins (and also
a generic ‘all-protein’ matrix for use when a family matriaraot produce a distance for a particular
combination). This construction aims at obtaining a bettgimate of the true function that models the
level of hydrophobicity along the protein. We tested ourmédton helical transmembrane proteins,
and consequently we generated distance matrices thattréféeetelicity property. An interesting di-
rection would be to further extend the study to beta-baregismembrane proteins. For the future, the
‘paradigm’ provides a way of generalising multiscale aldiwns for irregularly spaced objects (such
as proteins) and hence lifting shows great promise for thredilising 3D resolved information in a
mathematical multiscale manner which is informed by thelhémical reality.
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Npred | Neorr | Sens| Spec| < L >qps | < L >pred | SOVbs | SOVred | @2 | Qobs | Cpred
AP2mean | 62 60 | 1.00| 0.97 22.08 25.45 0.96 0.95 | 0.88| 0.94 | 0.78
AN1 median| 63 60 | 1.00| 0.95 22.08 22.05 0.95 0.94 | 0.88| 0.87 | 0.81
ANl mean| 62 60 | 1.00| 0.97 22.08 20.36 0.93 0.93 | 0.88| 0.82 | 0.84
Daub mean| 58 57 | 0.95]| 0.98 22.08 28.90 0.93 0.92 | 0.90| 0.96 | 0.80

Table 1: Results obtained on the TM4SF family (15 proteiflseperimentally determined transmem-
brane segments)Vpred, Neorr give the number of predicted, respectively correctly prtdl transmem-
brane segment$Sens Specgive the sensitivity, specificity of predictior; L >qps, < L >preq are the
average length of the observed, predicted segm8ots;s, Soyreq €valuate the correctness of prediction
versus the true segments, and the fraction of the predieigehants that is correct), is the percent-
age of correctly predicted residuegens, Qpred Measure the percentage of correctly predicted residues
relative to the number of observed, respectively predittasmembranar residues

Npred | Neorr | Sens| Spec| < L >ops | < L >pred | SOVbs | SOVred | @2 | Qobs | Cpred
AP2mean | 168 72 | 0.82| 0.43 22.34 25.21 0.85 0.49 | 0.77] 0.95| 0.45
AN1 median| 173 73 | 0.83| 0.42 22.34 21.71 0.84 0.50 | 0.76| 0.84| 0.44
AN1 mean | 148 73 | 0.83| 0.49 22.34 19.77 0.84 0.59 | 0.82]| 0.79| 0.52
Daub mean| 165 63 | 0.72| 0.38 22.34 27.07 0.75 0.44 | 0.75| 0.96| 0.43

Table 2: Results obtained on the TC 1.A.9 family (22 prote®@experimentally determined transmem-
brane segments)Vpred, Neorr give the number of predicted, respectively correctly presdl transmem-
brane segmentS§ens Specgive the sensitivity, specificity of predictior; L >qps, < L >preq are the
average length of the observed, predicted segm8ots;s, Sowreq evaluate the correctness of prediction
versus the true segments, and the fraction of the predietgahents that is correct)- is the percent-
age of correctly predicted residuegens, Qpred Measure the percentage of correctly predicted residues
relative to the number of observed, respectively preditteasmembranar residues

Npred | Neorr | Sens| Spec| < L >qps | < L >pred | SOVbs | SOVred | @2 | Qobs | Cpred
AP2mean | 98 82 | 0.90]| 0.84 23.89 23.59 0.90 0.77 | 0.82| 0.79| 0.75
AN1 median| 106 83 | 091 0.78 23.89 19.13 0.91 0.78 | 0.80| 0.71| 0.76
ANl mean| 95 82 | 0.90]| 0.86 23.89 17.99 0.89 0.82 | 0.83| 0.66 | 0.84
Daub mean| 98 80 | 0.88]| 0.82 23.89 24.02 0.92 0.75 | 0.81| 0.80| 0.73

Table 3: Results obtained on the rest of the proteins (1®p®st91 experimentally determined trans-
membrane segmentsNyred, Neorr give the number of predicted, respectively correctly presdl trans-
membrane segment§ens Specgive the sensitivity, specificity of predictiors. L >ops, < L >pred

are the average length of the observed, predicted segn®mss, Sovreq €valuate the correctness of
prediction versus the true segments, and the fraction gbtbeicted segments that is corre@ is the
percentage of correctly predicted residu@sps, Qpred Measure the percentage of correctly predicted
residues relative to the number of observed, respectivelgigted transmembranar residues

Npred | Neorr | Sens| Spec| < L >gps | < L >pred | SOVbs | SOVred | @2 | Qobs | Cpred
AP2mean | 328 | 214 | 0.90| 0.65| 22.80 24.73 | 0.90° | 0.71° | 0.80| 0.88 | 0.60
AN1 median| 342 | 216 | 0.90 | 0.63 22.80 20.93 0.89” | 0.717 | 0.80| 0.79 | 0.60
ANl mean| 305 | 215 | 0.90| 0.70 22.80 19.32 0.88 | 0.76* | 0.83| 0.75| 0.68
Daub mean| 321 | 200 | 0.84| 0.62 22.80 26.52 0.86 0.67 | 0.80| 0.89| 0.59

Table 4: Overall results (56 proteins, 239 experimentadiiednined transmembrane segmeni$)eq,
Ncorr give the number of predicted, respectively correctly presdl transmembrane segmer@snsSpec
give the sensitivity, specificity of predictior; L >qps, < L >preq are the average length of the observed,
predicted segment§owbs SOVreq €Valuate the correctness of prediction versus the true eigmand
the fraction of the predicted segments that is corm@etis the percentage of correctly predicted residues,
Qobs Qpred Measure the percentage of correctly predicted residuasveeto the number of observed,
respectively predicted transmembranar residudagicates a significantly high€Sovvalue for the cor-
responding method than f@raub mearat 99% confidence level, whilé corresponds to a significantly
higher result for our (corresponding) method at 95% confidelevel andy indicates a significantly
higher result for our (corresponding) method at 90% confiddavel
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