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Abstract

The theory of wavelets has recently undergone a period of rapid devel-

opment. We introduce a software package called wavethresh that works

within the statistical language S to perform one- and two-dimensional

discrete wavelet transforms. The transforms and their inverses can be

computed using any particular wavelet selected from a range of di�erent

families of wavelets. Pictures can be drawn of any of the one- or two-

dimensional wavelets available in the package. The wavelet coe�cients

can be presented in a variety of ways to aid in the interpretation of data.

The package's wavelet transform \engine" is written in C for speed and

the object-orientated functionality of S makes wavethresh easy to use.

We provide a tutorial introduction to wavelets and the wavethresh soft-

ware. We also discuss how the software may be used to carry out nonlinear

regression and image compression. In particular, thresholding of wavelet

coe�cients is a method for attempting to extract signal from noise and

wavethresh includes functions to perform thresholding according to meth-

ods in the literature.

1 Introduction

This paper provides a tutorial on the use of the discrete wavelet transform for
statistical purposes, and a guide to a publicly available package of routines,
Nason (1993), for the statistical language S. The package is called wavethresh

and is available from the StatLib archive. Appendix A gives full instructions on
how to obtain the wavethresh package.

A gentle introduction to wavelet methods is provided by Strang (1993). For a
more detailed discussion the reader is referred, for example, to Daubechies (1992)
and Chui (1992). The statistical aspects of the package are mainly due to
Donoho and Johnstone (1993). In this paper we concentrate on the discrete
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wavelet transform. This is based on �ltering ideas that have been discussed
extensively in the engineering literature. Vaidyanathan (1990) and Vetterli and
Herley (1992), provide detailed surveys and numerous references. Some other
speci�c references are mentioned in Section 7 below.

We do not claim that wavelets are useful in all statistical curve and surface
estimation problems. Our aim in making this software and tutorial available is
to widen interest in, and access to, wavelet methods so that they can be tried
and tested in practice, and a mature view thereby obtained of their usefulness
and potential.

Standard linear regression techniques formulate a model of the response in
terms of some explanatory variables. If a polynomial regression is appropriate
then orthogonal polynomials may be useful. Although the resultant variables
may be more complicated, the regression coe�cients of the polynomial-variables
are independent. This independence is desirable, especially when the modelling
is of a changing process when modelling terms have to be added or dropped.
Alternatively, linear regression may be extended by using nonparametric re-
gression methods such as spline smoothing. Most of the methods mentioned
above are linear in the response, but for wavelet regression with thresholding
this is not the case. Wavelet regression is potentially highly locally adaptive; it
retains the independence of regression coe�cients, like orthogonal polynomials;
and can, under the right conditions, provide an insightful interpretation of the
data.

This paper is set out as follows. A brief discussion of the wavelet trans-
form is given in Section 2. The next three sections give a tutorial guide to the
wavethresh software. In Section 3 the one-dimensional transform and its in-
verse are discussed, and an explanation is given of the way in which the wavelet
decomposition is held as an object in S. Section 4 covers various thresholding
procedures for smoothing or data compression. Wavelet transforms for two-
dimensional (image) data are discussed in Section 5 and image compression in
Section 6. Section 7 gives precise details on the implementation of the soft-
ware. The appendix gives details on how to retrieve and install the wavethresh
software.

2 The Wavelet Transform

We �rst set the scene by remembering Fourier series. Given a function f ,
de�ned on [��; �] we can represent f exactly in terms of the Fourier basis
fexp(inx)g

1

n=�1 as follows

f(x) =
1X
�1

cn exp(inx); (1)
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where the Fourier coe�cients are computed by

cm = (2�)�1
Z �

��

f(x) exp(�imx) dx: (2)

Since exp(inx) = cos(nx) + i sin(nx) the Fourier series in (1) can be regarded
as an expansion of f in terms of sine and cosine functions. We regard the series
expansion as a transform, taking a function f into a set of coe�cients cn.

The wavelet transform is in some, but not all, ways similar to the Fourier
transform. Given a function f we wish to expand that function in terms of some
orthonormal basis functions  � . For example, the Fourier series expansion uses
the orthonormal system (2�)�

1

2 exp(i�x) (on [��; �]). Wavelet expansions are
orthogonal series expansions where the basis functions are constructed in an
intriguing way. We will write our general wavelet basis element as  jk, notice
that there are two subscripts not one. This is because the wavelet basis functions
are all dilations and translates of a single function called the mother wavelet,  .
The wavelet  jk is obtained from the mother wavelet by shrinking by a factor
of 2j and translating by 2�jk, to obtain

 jk(x) = 2
j

2 (2jx� k): (3)

so that the j subscript represents the dilation number and the k subscript will

represent the translation number. The scale factor 2
j

2 normalizes  jk so that
jj jkjj = jj jj.

For certain choices of  the set of functions  jk form an orthonormal basis
for all functions in L2(<), and therefore we shall use the wavelets, f jkg, to
approximate functions.

The continuous wavelet series representation is:

f(x) =
X
jk

fjk jk(x); (4)

where the wavelet coe�cients are found in the usual way:

fjk =

Z 1
�1

f(x) jk(x) dx (5)

= < f;  jk >

where < �; � > denotes inner product. Clearly, given a function we will wish to
compute its wavelet coe�cients. The software described later computes wavelet
coe�cients but uses a discretized version of (5).

2.1 What can wavelets o�er?

This question is discussed in detail by Strang (1993) so we will say relatively
little here. In the Fourier transform of a function f on (�1;1):

bf (!) = Z 1
�1

f(t) exp(�i!t) dt;
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we usually identify t with time and ! with frequency. To obtain information
about a particular frequency, we have to integrate over the whole domain of f
from t = �1 to t = 1, even though we might want to know the frequency
behaviour of f only over a particular time period. The wavelet transform is
one way in which such local frequency information can be obtained. Wavelets
provide time-frequency localisation in that the coe�cient fjk gives information
about the function f near time point 2�jk and near frequency proportional to
2j. Daubechies (1992) has more details and an example of this.

A simple example of a wavelet basis is the Haar basis, generated from the
mother wavelet

 (x) =

8<
:

�1 0 � x � 1
2 ;

1 1
2 � x � 1;

0 otherwise:
(6)

It is easy to convince oneself that wavelets derived from the Haar mother wavelet
form an orthonormal system by observing:

1. wavelets with di�erent translate numbers but on the same scale do not
have intersecting supports;

2. wavelets on di�erent scales either have non-intersecting supports or if they
do, then one wavelet takes the value �k and then k over a set where the
other wavelet is constant (for some k).

3. <  jk;  jk >= 1 for all j; k.

The major impetus to the theory of wavelets was the realization that there are
many other families of wavelets, arising frommother functions more regular than
the Haar function (6). Some of the useful properties of wavelets are exhibited by
the Haar wavelet basis, but in many contexts more regular wavelets are useful.

Release 2.2 of the wavethresh software, the latest release at the time of
writing, includes two families of wavelets. Both these families are due to
Daubechies (1988) and we refer to them as the \extremal phase" or \least-
asymmetric" wavelets. The wavelets in each of the families have compact sup-
port. As in Daubechies (1988) we index each mother wavelet in a family by N .
For each family the regularity of the mother wavelet (and hence all the derived
wavelets) is proportional to N . If you look forward to Figure 4 you will see a
picture of Daubechies' \extremal phase" wavelet for N = 2. Figure 4 shows an
irregular wavelet but as N increases they become smoother. In the wavethresh
software the number N is identi�ed with the filter.number argument.

Wavelets usually possess another interesting property, that of \vanishing
moments". We say a wavelet has L vanishing moments if for each l = 0; : : : ; L�1
a wavelet  satis�es: Z

xl (x) dx = 0:
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This property has important implications for applications. Daubechies (1992)
provides a good example that shows that this property ensures that �ne-scale
wavelet coe�cients will only be large where a function or its derivatives have
singularities. This property promotes the use of wavelets for compression tech-
niques because they provide sparse representations of functions.

Another often quoted bene�t of wavelet methods is that wavelet bases are
capable of representing various classes of functions more e�ciently than, say,
Fourier bases (see Donoho and Johnstone (1993) for example). For example,
take functions that are only piecewise continuous, that is they contain some
discontinuities. You will need many Fourier basis functions to represent the
discontinuities accurately, and the e�ect of the basis functions will be global.
Wavelets will be able to represent the discontinuities more e�ciently, and at the
same time they will be local, and not a�ect the representation elsewhere.

The discrete wavelet transform is fast, in principle faster even than the fast
Fourier transform. However, both the standard FFT and the discrete wavelet
transform only operate on data sets that contain 2M observations (for some
M ). There are some methods of overcoming the di�culty, but these are not
implemented in the current release.

3 The Discrete Wavelet Transform in S

This section assumes that someone has installed the discrete wavelet transform
software. If you want instructions in retrieving, unpacking and setting up the
software see Appendix A. The transform software is an implementation of
the method described in Mallat (1989b), but uses the compactly supported
orthonormal wavelets as described by Daubechies in (1988) and (1992). We
discuss our implementation in greater detail in Section 7.

3.1 Accessing the software

We assume that the wavethresh software is installed somewhere on your sys-
tem. In this paper we will invent a directory name so that we can refer to
the location of the software. On your system the directory where the soft-
ware is stored will most likely be di�erent. The directory we will invent is
/stats/WAVELETS/DISTRIB2.2. Accessing the wavethresh software is made
possible after the the following function has been executed in S:

> attach("/stats/WAVELETS/DISTRIB2.2/.Data")

Expert users may wish to use the search() or objects() functions to verify
that the wavethresh directory has been attached. Non-expert users can simply
use the wvrelease() function to verify this:

> wvrelease()
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S wavelet software, release 2.2, installed

Copyright Guy Nason 1993

If you don't get this message (or something like it) then the wavelet software
is not present | see your local guru! If you want to use the software often
then you may want to attach the software every time you start up S. This is
accomplished by means of the .First() function. The following lines form a
plausible .First() function:

> .First <- function(){

attach("/stats/WAVELETS/DISTRIB2.2/.Data")

wvrelease()

}

3.2 Getting help on the software

You can get help on any of the wavelet functions or objects by using the S help
facility. For example, to obtain help on the wd wavelet decomposition function
simply type:

> help(wd)

You may be able to use the S-Plus help.start() function that starts an
interactive help viewer. See your local documentation to see if this is available.
Typing \wavelet" as a help search topic lists all the help available for the wavelet
software.

3.3 Preparing an example

We assume that you have started S and attached the wavethresh software.
You will probably want to try out the wavelet techniques on your own data.
However, for the purposes of the tutorial, we will create some simulated data.
We create a sampled version of the contrived function

y(x) =

8<
:

4x2(3� 4x) for x 2 [0; 12 ]
4
3x(4x

2 � 10x+ 7)� 3
2 for x 2 [12 ;

3
4 ]

16
3 x(x� 1)2 for x 2 [34 ; 1]

and sample it 512 times in the interval [0; 1]. Figure 1 shows y plotted against
x.

The wavethresh software contains a function called example.1() that com-
putes x and y automatically for you.

> x <- example.1()

> y <- x$y

> x <- x$x
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Figure 1: A plot of the function y versus x

This sampled function can be viewed using the S plot() function (�rst start
up your favourite graphics device, such as X11(), openlook() or motif()).

We will add some Gaussian white noise to y to create the vector ynoise by

> ynoise <- y + rnorm(512, s=0.15)

> plot(x, ynoise, type="l")

This time the plot should look something like Figure 2.

3.4 Applying the discrete wavelet transform

The function to do a discrete wavelet transform is wd which stands for \Wavelet
Decomposition". This function can take several arguments, a complete expla-
nation is given in the wd help page. The �rst argument, data, is the vector to
which you wish to apply the transform. The length of this vector, N , must be a
power of 2, that is why we speci�ed 512 as the length of y above (let N = 2M ,
say). The remaining arguments specify the type of wavelet that is used, the reg-
ularity or smoothness of the wavelet and the method of handling the transform
at the boundaries. For Release 2.2 of wavethresh these arguments are:

data the vector that you wish to transform;

filter.number determines the regularity of the wavelet. The wavelets get
smoother as filter.number increases (see Daubechies (1992));

family determines which family of wavelets is used. At present there are two
families. They are both compactly supported orthonormal wavelets and
are de�ned in Daubechies (1992). The family names are DaubExPhase
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Figure 2: The sampled function with Gaussian white noise

and DaubLeAsymm, the second of these families is less asymmetric than
the �rst! Ten members of the DaubExPhase family are available (in-
dexed by filter.numbers between 1 and 10) and seven members of the
DaubLeAsymm family (indexed by 4 to 10). Note that the �rst wavelet in
the DaubExPhase family is the Haar wavelet as in (6);

bc the boundary handling conditions. This can be set to periodic (the default)
or symmetric;

verbose if this is true then the wd functions prints messages as it performs the
transform.

We will apply the discrete wavelet transform (DWT) to the ynoise data by

> ywd <- wd(ynoise)

The wd() function applies filter.number=2 for the DaubExPhase family by
default.

3.5 Wavelet decomposition objects

The S object ywd is an example of a wd.object and it has class wd. The wd class
objects are lists, and you can �nd out what they contain by using the names()
function or by looking at the wd.object help page.

There are various methods for this class of object. Probably the simplest is
the summary() method. For example,

> summary(ywd)
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Wavelet Decomposition Coefficients
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Figure 3: Wavelet coe�cients for the ynoise data

Levels: 9

Length of original: 512

Filter was: Daub cmpct on ext. phase N=2

Boundary handling: periodic

tells us that the length of the original data was 512 samples, the transform
was performed using the N = 2 Daubechies compactly supported wavelet
from the DaubExPhase family, the decomposition consists of 9 levels and the
boundary handling was periodic. The number of levels refers to the number
of levels of smoothed data and wavelet coe�cients (and therefore 2levels =
length of data).

Another method is plot(), which plots the wavelet coe�cients in the manner
of Donoho and Johnstone (1993). This method is applied by

> plot(ywd)

and results in the plot shown in Figure 3. Roughly speaking the horizontal axis
of Figure 3 corresponds to spatial position along the x axis of Figure 1. It is
possible to change the x-axis of Figure 3 so it depicts the actual x values rather
than the translates. The vertical axis of Figure 3 represents a frequency-like
quantity, the coe�cients at the bottom are \high-frequency" information and
the \frequency" decreases as you move up the axis. So the coe�cients at the
left-hand side of Figure 3 correspond to the left-hand side of the function in
Figure 2 and the right-hand side in both correspond. The reason the x-axis in
Figure 3 is labelled 0 to 256 is that the number of wavelet coe�cients at the
highest resolution level (at the bottom of Figure 3) is exactly half the number
of original data points and the number of coe�cients decreases by half at each
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level. At the highest level, the coe�cient with translation number k is plotted
at position k + 1

2
.

3.6 Exact reconstruction

From ywd we can exactly reconstruct the original sampled function. We will
do this and compare it to the original. The function to do the inverse discrete
wavelet transform (IDWT) is wr() which stands for \wavelet reconstruction".
So, reconstructing

> ywr <- wr(ywd)

Note that it is not necessary to specify the type of wavelet because wr() works it
out. The wr() function can return a wd class object, but by default it produces
a vector | this vector is the reconstructed function at the highest possible
resolution level. You can plot the reconstructed values by

> plot(x, ywr, type="l")

and you should get exactly the same plot as in Figure 2. To check that the
reconstruction is exactly the same, up to numerical error, we can subtract the
original from the reconstruction and look at the error:

> max(abs(ywr - ynoise))

[1] 1.109357e-11

and as you can see the error is small.

3.7 What do the Daubechies wavelets look like?

The orthonormal basis functions involved with the Fourier transform are familiar
since they are just sine and cosine functions. For the Daubechies wavelets things
are not so simple and there is no known closed form formula for the wavelets.
The wavelets are the result of a process that says that we want functions that
are orthonormal, have good time-frequency localisation properties and relate to
each other by dilation and translation. The nearest one can get to a closed-
form expression is an in�nite-product expression for the Fourier transform of
the wavelets. All this is more fully explained in Daubechies (1992).

In any event we do not really need to have a closed form formula since we
have an algorithm that will perform the inverse discrete wavelet transform. To
get a picture of a wavelet, all we need to do to arrange for a wavelet series to
have only one nonzero wavelet coe�cient, and all the others set to zero. Then
we apply the inverse wavelet transform to this series and plot the reconstruction.
The wavethresh software has this built in to the draw function. If we take our
ywd wd.object above and issue the command

> draw(ywd, enhance=F)
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Figure 4: Daubechies' \extremal phase" wavelet N = 2

then you should see a picture of Daubechies' N = 2 \extremal phase" wavelet
for filter.select=2 as in Figure 4. The Daubechies' wavelets in wavethresh

are all compactly supported. The support is related to the filter.number or
N in Daubechies' notation. The support for the \extremal phase" wavelets
is [N � 1; N ]. So the support of the wavelet in Figure 4 is [�1; 2] but you will
notice that the size of the wavelet is not large over the whole of that interval. For
example, the signi�cant parts of the Daubechies' N = 2 wavelet are contained
within the interval [0; 1:2] which we would term the e�ective support of the
wavelet. For the smoother wavelets the e�ective support is much less than
the actual support. The enhance option to draw() draws the wavelet on the
e�ective support. In the wavethresh package we de�ne the e�ective support in
the following way. Suppose  (x) is the wavelet under consideration. De�ne z0
to be the maximum absolute value of  (x) multiplied by the draw() argument
efactor. Then de�ne the set

Aefactor = fx : j (x)j > z0g :

We de�ne the e�ective support of  to be the smallest interval (or square region
for two-dimensions) containing Aefactor. The argument efactor is under user
control but the default of 0:05 seems to work well.

For an example, try the following commands that show the di�erence be-
tween enhanced and non-enhanced pictures:

> draw.default(filter.number=10, enhance=F)

> draw.default(filter.number=10)

You may also have guessed that the draw function is generic and methods exist
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for one- and two-dimensional wavelets. We will look at some two-dimensional
pictures of the wavelet later.

4 Wavelet shrinkage|smoothing

We now move on to the statistical techniques of wavelet regression and smooth-
ing. Following Donoho and Johnstone (1993) we have implemented a threshold-
ing function. The thresholding function is generic and called threshold(). The
idea behind thresholding is the removal of small wavelet coe�cients, considered
to be noise. This leaves the large coe�cients in the wd object that can then be
used to estimate the signal after reconstruction.

There are many ways to threshold. To threshold using our software you
have to choose a thresholding \policy". The policies specify how the threshold
is computed as listed below. Once the threshold has been computed it is applied
to the coe�cients either as a hard or soft threshold, as speci�ed by the argument
type. Finally, each of the policies can be applied separately to each level or a
policy can be applied to a group of levels simultaneously; this is controlled by
the by.level and levels arguments.

The policies are:

universal: the threshold is computed as

� = s
p
2 logM

where M is the number of data points (equivalently the number of wavelet
coe�cients) and s is an estimate of the variation of the coe�cients (on the
standard deviation scale). The dev argument allows the user to replace
the default measure of variation (var) by their own choice, for example
mean absolute deviation (mad). This type of thresholding was proposed
by Donoho and Johnstone (1993).

manual: the threshold is supplied by the user.

probability: the user supplies a probability value p. The threshold is then
the pth quantile of the coe�cients.

The types are:

hard: the coe�cients are compared to the threshold(s). If a coe�cient is smaller
in absolute magnitude than the threshold it is removed, otherwise it is left
alone (\keep" or \kill").

soft: the coe�cients are modi�ed by the formula:

dnewjk = sgn(djk)(jdjkj � �)+

where � is the threshold.
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Thresholded: universal threshold
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Figure 5: Wavelet coe�cients after universal thresholding

4.1 Example of thresholding

We apply thresholding to the coe�cients illustrated in Figure 3. We use the
universal policy:

> threshy <- threshold(ywd)

> plot(threshy)

The threshy object is of class wd, and so plot uses the plot.wd function to
plot the wavelet coe�cients as in Figure 5. If you compare Figure 5 to Figure 3
you will see that many of the smaller coe�cients have disappeared. We can now
reconstruct the function corresponding to the thresholded coe�cients by:

> yrecon <- wr(threshy)

> plot(x, yrecon, type="l", xlab = "x", ylab =

"Reconstructed function")

The plot should look like Figure 6 which is a slightly \smoother" plot than
Figure 2 and should look a bit more like Figure 1. However, the plot in Figure 6
still looks jagged. Figure 7 shows what happens if a smoother wavelet is used.
We have repeated the decomposition, shrinkage and reconstruction using the
Daubechies wavelet selected with filter.select=4. Here is the command we
issued to S:

> plot(x, wr(threshold(wd(ynoise, filter.number=4))),

xlab="x", ylab="Reconstructed function", type="l")

As you can see the reconstruction looks better. You may like to try the pro-
cedure again, but for di�erent wavelets and see what you think! The default
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Figure 6: Reconstructed function after universal thresholding
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Figure 7: Reconstruction with a smoother wavelet and universal thresholding
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action of threshold() is to select the universal threshold of Donoho and John-
stone (1993), but you can select your own threshold value. To do this you need
to tell the threshold() function that you want to set the threshold | do this
by setting policy="manual" and supply the value of the threshold by value=t,
where t is your threshold. It is useful to know what threshold has been used
and setting the verbose=T argument causes the thresholding information to be
printed.

5 The two-dimensional discrete wavelet trans-

form

The theory for the two-dimensional transform is a straightforward extension
of that for the one-dimensional transform. More details can be found in Sec-
tion 7.5 and in Mallat (1989b). Raw S does not appear to have an image()

function, although S-Plus does. If you only have raw S you can still do all
the 2D wavelet transforms but you will have to invent your own method of
presenting the answers. The only implementation di�erence is to the function
plot.imwd. This has a package argument that causes the function not to use
the image() function when raw S is being used.

Images in S are stored as matrices, with the (i; j)th element of a matrix
containing an image intensity value. The S-Plus function image takes an image
matrix and displays it on the current graphics device. So that our PostScript
prints are displayed the same as our images we usually start up our X11()

graphics device using

> X11(bwimage.colors)

where bwimage.colors sets up the X11() device to display colors as shades
of grey. When using this setup the intensity values represent shades of grey
with 1 representing white and 249 representing black, and values between are
uniformly increasing shades of grey.

Using this setup, the original image that we work on is displayed in Figure 8
and is stored in a matrix called lennon. The function to do the DWT on
images is imwd:

> lwd <- imwd(lennon, filter=8)

This creates an object of class imwd and the �ve methods written for this
class are summary, plot, threshold, draw and compress. The imwd uses
filter.number=2by default, but you can alter this as the above example shows.
The results of summary applied to lwd are

> summary(lwd)

Levels: 8

Original image was 256 x 256 pixels.

Filter was: Daubechies compact orthonormal wavelet N=8
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Figure 8: Original image

5.1 Viewing coe�cients

This time coe�cients are viewed as an image, rather than a plot. The plot

function has a method plot.imwd written to \plot" the coe�cients. The com-
mand

> plot(lwd)

produces a plot like Figure 9. There are other ways of viewing the coe�cients,
for example the plot.type="rows" puts the level/orientation sub-images into
tabular form. The coe�cient's image is precisely the same size as the original
and is arranged into L-shaped blocks (after Mallat (1989b)) consisting of 3 sub-
blocks. Figure 10 illustrates how the coe�cients are arranged. The \S" in
the bottom left hand corner refers to the number resulting multiply smoothed
data, and is like an \average" intensity for the whole image. Note that each
sub-image retains some features of the original picture.

As in the one-dimensional case it is possible to obtain a picture of the
wavelets that you are using. Figure 11 shows a picture of Daubechies' least
asymmetric N = 10 two-dimensional wavelet. This picture was produced
using the command:

draw.default(filter = 10, family = "DaubLeAsymm",

resolution = 256, dim= 2)

but you can use draw() directly on an imwd object to obtain a picture of the
wavelets that were associated with your wavelet decomposition.
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Figure 12: Reconstructed universally-thresholded Lennon image

5.2 Wavelet shrinkage and compression for images

Wavelet shrinkage is achieved by the threshold() function as before. However,
for images the threshold() function returns an object of type imwdc, this
is a compressed 2-dimensional wavelet decomposition object. The process of
thresholding reduces many wavelet coe�cients to zero, and these zeroes are not
stored in an imwdc object. Section 6 gives more details on the compression of
images with wavelets.

The reconstruction function is imwr and it returns the highest resolution
reconstructed function as a matrix. Therefore, the matrix returned by imwr

can be directly displayed using image. Figure 12 shows the reconstructed,
universally-thresholded version of the example image. This was produced with
the command:

image(imwr(threshold(lwd)))

6 Image Compression

In this section we describe how the wavethresh package can compress images.
DeVore et al. (1992) provide a fascinating insight into methods of compression
using wavelets. As we mentioned before thresholding typically sets many of the
wavelet coe�cients to zero. If you type

> lwdt <- threshold(lwd)
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and then examine the class of lwdt with

> class(lwdt)

[1] "imwdc"

and notice that the lwdt is an object of class imwdc, this is a compressed image
wavelet decomposition object. It is possible to uncompress this type of object
into an ordinary image wavelet decomposition object by typing

> lwdt.big <- uncompress(lwdt)

To see how much space we save by compression we can use the object.size()
function as follows:

> object.size(lwdt)

[1] 11971

> object.size(lwdt.big)

[1] 526991

and, as you can see, the compressed object is about 44 times as small as the
uncompressed object (in terms of actual �le size required to store the objects,
the compression ratio is nearer 60). It is important to realize that

� this compression ratio is quoted only for this image using universal thresh-
olding;

� the actual reconstruction from the thresholded wavelet decomposition is
not convincing, and the compression is excessively lossy. Better accuracy
would be achieved by specifying a lower threshold value, leading to a lower
compression ratio, by using the manual policy option in threshold().

You may want to delete the lwdt.big object, as it is large.

6.1 How does wavethresh compress objects?

Each imwd object is a list. The components of the list contain not only the
wavelet coe�cients but also other useful information. The wavelet coe�cients
are stored as vectors, one for each combination of level and either horizontal,
vertical or diagonal detail. So the process of compression for imwd objects relies
on the ability to compress ordinary vectors.

Recall that we are only interested in compressing vectors that contain many
zeroes. So compression of a vector v works as follows:

1. let n be the length of v;

2. let r be the number of zeroes within v;

if n < 2r then return v uncompressed;
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otherwise extract the position and value of the non-zero elements of v;

3. return the position and value;

For example, suppose we wish to compress the vector v=c(0,0,99), this is
achieved with the command:

> compress(c(0,0,99))

$position:

[1] 3

$values:

[1] 99

$original.length:

[1] 3

attr(, "class"):

[1] "compressed"

The only non-zero element in the vector was at position 3, and this is indeed
the value of the $position component. A vector is easily uncompressed in S
by using the position/value information. If you are knowledgeable about S you
will realize that, for this example, the compressed object actually takes up a
bit more space than the original vector! This is because the compressed object
stores a small amount of extra information such as the original length of the
uncompressed vector, and the class of the object. However, the size of these
components remains constant whatever the size of the uncompressed vector. It
is certainly true that we could invent a better compression scheme, we could
possibly encode the $values and $position numbers using some advanced
compression, but we feel that the gains would be minimal over what is already
achieved by discarding the zeroes after thresholding. The compression scheme
we adopt has two main advantages:

� it is simple, both in design and implementation;

� the operations are trivial to vectorize in S, and are therefore fast.

The same is also true of the uncompression scheme. However, image quality is
another matter that we do not address here (however both DeVore et al. (1992)
and, to a certain extent, Donoho and Johnstone (1993) do).

7 Implementation of the Wavelet Transform

This section is a reference for the wavethresh implementation of the discrete
wavelet transform (DWT) and the inverse discrete wavelet transform (IDWT)
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software. The algorithm follows exactly that described by Mallat (1989b). and
this report should be read with it. The DWT algorithm as described by Mal-
lat (1989b) is a special case of a two channel subband coder using the con-
jugate quadrature �lters of Smith and Barnwell (1986). Vaidyanathan (1990)
provides a comprehensive survey and comparison of many �ltering methods in-
cluding subband coders; other signi�cant contributions include Vetterli (1984),
Mintzer (1982; 1985) on �lter design and Smith and Eddins (1990) on subband
coding for images

To proceed with this report we assume that we have a scaling function �(x)
and from this we can obtain a \mother" wavelet  (x) and from this obtain a
family of wavelets

 jk(x) = 2
j

2 (2jx� k)

such that f jkg(j;k)2Z2 forms an orthonormal basis for L2(<), the vector space

of measurable, square-integrable one-dimensional functions. The rest of this
report is concerned with expansions of functions in L2(<) with respect to wavelet
bases. In what follows the coe�cients of such expansions will be written as the
vector dj

k
with j representing the scaling and k the translation.

7.1 Computing the DWT

As in Mallat (1989b) we begin with a set of N = 2M data

cM0 ; : : : c
M
N�1: (7)

In all that follows, in contrast to the double subscript notation cjk used previ-
ously, the superscript denotes the resolution level, and the subscript represents
the coe�cient within that level. The reason for promoting the j to a superscript
is that the k subscript may get a little more complicated! The algorithm consists
of M = log2N stages, and the superscript M signi�es that this is the original
data at the highest resolution level. At each stage we produce a sequence of
smoothed c and a sequence of detail d described by the formulae below.

We do not consider ways of extending data sets of other sizes to length 2M ,
but natural possible approaches are periodic extension and symmetric re
ection
(both considered in detail by Smith and Eddins (1990)), as well as zero-padding,
boundary value replication, and anti-symmetric re
ection. Note that the choice
of boundary conditions for the DWT itself is a separate matter, discussed below
and in Section 3.4.

At each stage, new c and d are produced from the previously smoothed data
c by using �nite impulse response �lters h and g as in equations (9) and (16)
below. The �lters h and g are intimately related by the relation

g(n) = (�1)nh(1� n); (8)

and they are known as quadrature mirror �lters (see Vaidyanathan (1990) for
further information on �lter terminology and design). It is because of this
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relation that filter.select() need only know one of the pair (h in our case)
for a particular wavelet family. The �lter h is a smoothing �lter, and the �lter
g is a highpass �lter. If periodic boundary conditions are used for the DWT
the lengths of the new c and d are exactly half the length of the previous c, so
the total length of the c and d at each stage remains the same throughout the
algorithm. If symmetric boundary re
ection is used in the DWT, then some
extra numbers are required at either end of the c and d �lters. This explains
why the lengths of cs and ds obtained by accessC() and accessD() functions
are not necessarily exact powers of two when the boundary=T option is supplied.
An increase in the �lter length produces a corresponding increase in the number
of these \extras".

In order to allow di�erent boundary methods to be used, we de�ne the
sequences f [j] and l[j] to represent the �rst and last indices for a particular
sequence at a particular level. So, for example, if we say a sequence s at level 3
has f [3] = �4 and l[3] = 3, then the sequence elements are:

s3�4; s
3
�3; : : : ; s

3
2; s

3
3

For the original data in (7) we would have f [M ] = 0 and l[M ] = N � 1.
With periodic boundary handling it is simple to predict the values of f [j]; l[j]
for j = 0; : : : ;M � 1, since the sequence of c and d halve exactly at each
step. However, for symmetric end-re
ection boundary handling we will need to
develop some inequalities below that specify exactly where the start and �nish
for each sequence are. Sometimes we will subscript the f; l with C or D to make
it clear which sequence we are referring to. For both periodic and symmetric
boundary handling the values for fC ; lC ; fD; lC are usually precomputed by the
first.last() function.

Level j to level j � 1

We now describe the decomposition of a sequence at level j into a sequence j�1.
A decomposition means extracting a \smoother" signal at a lower resolution
and extracting the signal detail at that resolution. The �rst decomposition step
starts at level M and produces level M � 1.

At level j we have data
c
j

f [j]; : : : ; c
j

l[j];

with f [j] � 0 � l[j]. The smoothing operation to the next level, j�1 is achieved
with the �lter

h(n); 0 � n � Nh � 1;

that has Nh nonzero coe�cients. The smoothing formula is a convolution fol-
lowed by dyadic decimation as in Mallat (1989b):

c
j�1
k =

X
n2Z

h(n� 2k)cjn (9)
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=
X
m2Z

h(m)cjm+2k

=

m=Nh�1X
m=0

h(m)cjm+2k : (10)

To identify which k we can compute, and to obtain exact reconstruction the
summation indices must satisfy the following inequalities (for symmetric end-
re
ection):

0 � m � Nh � 1; (11)

f [j] � m + 2k � l[j]: (12)

From (12) we can write

1

2
(f [j] �m) � k � 1

2
(l[j]�m): (13)

Using (11) and (13) we can obtain the range of the next level coe�cient indices:

1

2
(f [j]� Nh + 1) � k � 1

2
l[j]:

Thus, the next level coe�cient indices are

f [j � 1] = d 1
2
(f [j]� Nh + 1)e; (14)

and
l[j � 1] = b 1

2
l[j]c; (15)

where dxe is the smallest integer greater than or equal to x, and bxc is the
largest integer less than or equal to x. Formulae (14) and (15) are built into the
first.last() function.

The detail, d, are computed as

d
j�1
k =

X
n2Z

g(n � 2k)cjn: (16)

The condition (8) above follows from Daubechies (1992) (formulae 5.1.34).
Hence combining formulae (16) and (8) we have

d
j�1
k =

X
n2Z

(�1)nh(2k + 1� n)cjn

=
m=Nh�1X
m=0

(�1)1�mh(m)cj2k+1�m (17)

The inequalities are similar. From (17) and (11) we have

fD[j � 1] = d 1
2
(fC [j]� 1)e (18)
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Figure 13: Decomposition of discrete signal cj into smoothed signal cj�1

and wavelet coe�cients dj�1 by use of conjugate �lters h and g (after Mal-
lat (1989b)).

and
lD [j � 1] = b 1

2
(lC [j] +Nh � 2)c; (19)

where fC , lC are the �rst/last indices for the data c at level j (equations (14)
and (15), and fD and lD are the corresponding indices for the detail d and are
also built into first.last. Formulae (10) and (17) are the actual formulae built
into the wd function. The decomposition process is illustrated in Figure 13.

7.2 The result of the DWT

At the end of the algorithm we obtain

DWTfcMg = fc00; d
0
0; d

1
0; d

1
1; : : : ; d

M�1
0 ; : : : ; dM�1N

2
�1
g (20)

Most of the coe�cients are detail, d, although there is c00 which was the last
smoothed data to be produced and is a weighted total of all the data (application
of many smoothing �lters). If the decomposition was produced using the Haar
basis then this c00 is exactly the sample mean multiplied by the square root of
the number of original data points. The collection of coe�cients in (20), plus
all the levels of smoothed data constitute the wavelet decomposition object. The
transform that we actually compute is really closer to the expansion:

f(x) =
X
k

c0k�0k(x) +
X
j�0

X
k

djk jk(x); (21)

rather than the expansion in (4). The functions �0k are simply the integer trans-
lates of the scaling function �mentioned in Section 7. The set f�0k;  jkg(j;k)2Z2
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Figure 14: Reconstruction step. Producing higher resolution signal cj+1 from
smoothed signal cj and dj from �lters h and g(after Mallat (1989b)).

also forms a basis for L2(<) for appropriate choice of � and  .

7.3 Computing the IDWT

To reconstruct we begin with the lowest resolution coe�cients and work up
towards the full resolution (or whatever level we desire). So, given the wavelet
decomposition in (20) we would begin the reconstruction using c00 and d00 to
produce c10 and c

1
1. We would then use these c and the d at the same resolution

level to produce the c at the next resolution level. The general idea of a step in
this reconstruction is shown in Figure 14.

7.4 Level j to level j + 1

The formula for obtaining the c from the previous level is

cj+1
n =

X
k2Z

h(n � 2k)cj
k
+
X
k2Z

g(n� 2k)dj
k
;

where h and g are as before. Since there are only �nitely many h we can place
limits on the indices of summation, furthermore we may rewrite g in terms of h
because of (8) and obtain

cj+1
n =

2k�nX
2k�n+1�Nh

h(n � 2k)cjk +

2k�Nh+n�2X
2k�n�1

h(1 + 2k � n)djk:

We know which n of the c to compute since these were worked out in the
decomposition part.
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7.5 The DWT of images

Mallat (1989b) also gives details of how to compute the DWT and its inverse
on an image. We give the algorithm details in Figure 15 for the 2-dimensional
decomposition and Figure 16 for the reconstruction. The transform described
in Mallat (1989b) is based on a separable multiresolution approximation (see
Mallat (1989a) or Daubechies (1992)) where the two-dimensional scale function
written as

�(x; y) = �(x)�(y)

where �(x) is a one-dimensional scale function from a univariate multiresolution
approximation. This time there are three \mother" wavelets, not one:

	1(x; y) = �(x) (y); 	2(x; y) =  (x)�(y)
	3(x; y) =  (x) (y)

instead of just one for the univariate case. If we begin with a n2 image at

level j then we obtain four sets of information. First, we obtain a
�
n
2

�2
image

representing the smoothed data at level j � 1; the other three sets are wavelet
coe�cients corresponding to the

�
	1;	2;	3

	
wavelet functions, and there will

be
�
n
2

�2
coe�cients in these \images" as well. Due to the separable nature

of the decomposition each of the detail in the wavelet images will be oriented
horizontally, vertically and diagonally. This can also be seen from the diagram
depicting the decomposition of an image in Figure 15.

8 Acknowledgements

We would like to thank Iain Johnstone for assistance and encouragement with
the software and this paper. We would also like to thank Howard Grubb, Emma
McCoy, Peter Cli�ord and Martin Maechler for suggesting improvements and
making contributions to the wavethresh package. We also thank the referees
for some very constructive and helpful comments.

This work was performed with the support of a grant under the Complex
Stochastic Systems Initiative of the UK Science and Engineering Research Coun-
cil. Some of the work was performed whilst both of us were at the University
of Bath.

A How to obtain and install the wavelet soft-

ware

A.1 Obtaining the software

The wavethresh package is available, along with other statistical software, from
the StatLib archive. StatLib is a statistical software archive where the software
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is freely obtainable via email and anonymous FTP.

Using anonymous FTP

To obtain the wavethresh software via anonymous FTP type

% ftp lib.stat.cmu.edu

Then respond to the login id with statlib and use your full email address as
the password. Then type

ftp> cd S

to enter the S software directory and then type

ftp> get wavethresh

and you should then see messages informing you that the software is being
retrieved. The StatLib archive is reproduced at other locations, for example
UK users will �nd a StatLib mirror at hensa.unix.ac.uk. It probably makes
sense to try to use an archive that is closer to you.

Using electronic mail

StatLib's electronic mail address is statlib@lib.stat.cmu.edu. You can ob-
tain StatLib's index by sending the message send index. The wavethresh

software can be obtained by sending the message send wavethresh from S.

A.2 Unpacking the software

The software is distributed as a shar archive �le that we will call wavethresh.
You can unpack the software anywhere you like, but it is a good idea to create
a particular subdirectory for it. A good name for a subdirectory is WAVELET, so
cd to somewhere and type:

% mkdir WAVELET

Then copy the distribution �le (wavethresh) to this directory and then cd to
it. To unpack the distribution type:

% sh wavethresh

You can now delete the distribution �le wavethresh if you like. The archive is
unpacked into a subdirectory named DISTRIB2.2. If you cd into this directory
and take a look at the �les there you should see the following �les (although
your ls function may list them di�erently).
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total 88

2 Copyright 4 StoIRS.c

7 ImageDecomposeStep.c 2 conbar.c

2 Makefile 4 convolve.c

2 README 3 wavedecomp.c

3 Sconvolve.c 1 wavelet.h

53 Source-0.S 3 waverecons.c

2 StoIDS.c

Most of these �les are the C code to perform the transforms, and will have to
be compiled. The Source-0.S �le contains all the S functions in ASCII format.
In addition there is a subdirectory .Data which ls -a will reveal.

Setting up

Before you can use any of the software you must perform some initialisation
tasks. The Makefile is set up for using SPlus; you may wish to edit and change
this to S. You might also need to modify other aspects of the Make�le, but
it should be correct for most UNIX systems. Assuming you are still in the
DISTRIB2.2 directory make the software by typing:

% make all

This sets up the S functions and constructs the C object code. Type:

% make cleanobj

if you want to clean up.
If you use raw S then dyn.load may not work for you, in which case you

need to replace the call to dyn.load in the maybe.load function by dyn.load2.
At present, the Make�le contains the relevant modi�cations for a DEC machine
running Ultrix V4.2A, although this may give you a guide for running the soft-
ware on other machines. We are not expert in dynamic loading for all machines
so please consult local gurus �rst.
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