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Abstract

There exist many different wavelet methods for classical nonparametric regression in the statistical
literature. However, techniques specifically designed for binomial intensity estimation are relatively
uncommon. In this article, we propose a new technique for the estimation of the proportion of a
binomial process. This method, called the Haar-NN transformation, transforms the data to be approx-
imately normal with constant variance. This reduces the binomial proportion problem to the usual
“function plus normal noise’ regression model and thus any wavelet denoising method can be used for
the intensity estimation. We demonstrate that our methodology possesses good Gaussianization and
variance-stabilizing properties through extensive simulations, comparing it to traditional transforma-
tions. We also explore the efficacy of our method in real applications.

Key words and phrases: Binomial random variable, Gaussianization, Haar-Fisz, sequence probability
estimation, variance stabilization.

1 Introduction

Wavelet transforms are now widely used as mathematical tools for applications such as data com-
pression, density estimation and nonparametric regression. In particular, they can be used to estimate
underlying signals from noisy observations, with many of these shrinkage techniques assuming that
the corrupting noise is Gaussian. For detailed discussions of the mathematical aspects of wavelets,
see Mallat (1989); Daubechies (1992); Nason and Silverman (1994); Vidakovic (1999); for thorough
coverage of wavelet shrinkage estimation, see Donoho and Johnstone (1994, 1995); Abramovich et al.
(2000).

This article investigates the problem of estimating the proportion parameter associated with a
sequence of binomial random variables (a binomial process) using a wavelet-based transform. The
usual regression model takes the following form: we observe the data, v = (vg,v1,...,vn—_1) at
equally-spaced timepoints assumed to be in the unit interval, where N = 2. Our assumption is that
the N observations {vj} are modelled as a sequence of binomial random variables X, where we
assume the variables to be independent: X, ~ Bin(ng,py) for k € {0,..., N —1}. Our aim is to try
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and estimate the proportion vector p = (pg, p1,--.,pnN—1) from the observations {vy}. We assume
pr = P(k/N) for k € {0,..., N — 1}, where P denotes an underlying binomial proportion function.
In practice, this type of problem is difficult since the noise is not Gaussian, but more impor-
tantly the variance of the ‘noise’ depends on the mean, unlike the Gaussian situation: we have
var(Xy) = ngpr(1 — pr) and E(Xy) = ngpr. One approach is to transform the data so that it
is variance-stabilized and approximately normal; a denoiser suitable for Gaussian noise is then ap-
plied and the data is transformed back to obtain an estimate of the proportion. One such transform is
Anscombe’s inverse sine transformation (Anscombe, 1948), reviewed in the next section.

Existing methodology for Haar-Fisz variance stabilization and Gaussianization has been success-
ful for Poisson and y? data in Fryzlewicz and Nason (2004, 2006). The Haar-Fisz transform cannot
be used directly on binomial data as the variance is not stabilized. However, we introduce a modified
transform that does.

In our simulations, we will compare the algorithm with Anscombe’s inverse sine transformation
(Anscombe, 1948) and also the Freeman-Tukey averaged inverse sine transformation (Freeman and
Tukey, 1950) when investigating Gaussianizing and variance-stabilizing properties.

Our method exhibits many benefits, namely:
1. It is shown to possess good Gaussianizing and variance-stabilizing properties;

2. It outperforms traditional Gaussianizing transformations in difficult cases, for example, when
the binomial size is small or the binomial proportion is extreme;

3. It is computationally simple and easy to code;

4. Since it is an effective variance-stabilizing ‘Gaussianizer’, a wide range of smoothing methods
can be used to obtain a proportion estimate.

This article is organized as follows. Section 2 reviews estimation methods for binomial processes,
including a discussion of the Haar-Fisz transform and its motivation from the Fisz transform (Fisz,
1955) in Section 2.4. Section 3 proposes a new Gaussianizing transform called the NN transform for
binomially distributed random variables. Section 4 adapts our new transform for use on binomial data
and explores its properties. We also propose a technique for proportion estimation from a binomial
sequence in Section 5. Section 6 concludes and outlines ideas for further work.

2 Review of work on binomial proportion estimation

We now give a brief outline of work in the literature for binomial process proportion estimation prob-
lems.

2.2 Wavelet methods for binomial processes

Antoniadis and LeBlanc (2000) considers linear wavelet smoothers for the irregular design binary re-
gression situation. A generalized linear model with identity link function is imposed on the regression
function, and via usual wavelet projection an estimator of the smooth model function s(x) is obtained
(see Section 2.3). A particular form of empirical wavelet coefficient is proposed to obtain smoother
regression estimators than other coefficient estimators. The adaptive choice of resolution parameter



in resulting wavelet series expansions is implemented in the binary regression context by generalizing
existing selection criteria. The estimator is then modified to give a suitable estimator of the regression
function P(z). The estimator is shown to have good asymptotic properties and is computationally
faster than traditional local polynomial estimators.

Wavelet shrinkage is used in the modulation estimator methodology by Antoniadis and Sapati-
nas (2001), extending the idea to obtain smooth estimates for data from exponential families with
quadratic variance functions, including the binomial distribution. An estimator of the risk is formed
by assuming the function estimate to be a diagonal linear shrinker and using a cross-validation ap-
proach. The function estimate is then constructed using a minimizer of the risk estimate.

Sardy et al. (2004) proposes a generalization of the WaveShrink wavelet smoother (Donoho and
Johnstone, 1994) to include a range of non-Gaussian distributions such as the binomial and Bernoulli
distributions. The procedure uses interpoint algorithms to find the solution to a penalized log-likelihood
problem based on the /'-norm of the wavelet coefficients in a wavelet estimator representation.

2.3 Other techniques for binomial processes

Nonparametric regression techniques for proportions usually assume that the underlying proportion
function has a certain degree of smoothness. For example, recent work on generalized linear mod-
els Hastie and Tibshirani (1990); Fan and Gijbels (1995) assume that the proportion function P(x)
follows the relation

9(P(z)) = s(x),

where ¢ is a monotone smooth function called the /ink function, and s(z) is a smooth function which
is estimated by methods suitable for smooth (continuous) regression functions.

Different assumptions and estimation techniques for s(z), and also link function choice are dis-
cussed in Fan and Gijbels (1995); Fan et al. (1995). For a more involved discussion of generalized
linear models, see for example Hastie and Tibshirani (1990); McCullagh and Nelder (1989).

Antoniadis and LeBlanc (2000), mentioned in Section 2.2, uses a generalized linear model con-
struction for their wavelet regression technique.

Kolaczyk and Nowak (2005) presents a multiscale generalized linear model for the estimation of
functions in a general one-dimensional nonparametric regression setting. Piecewise polynomials de-
fined on recursive partitionings of the unit interval are used to construct estimators of the regression
function, optimizing a penalized likelihood criterion to choose a piecewise polynomial fit.

Altman and MacGibbon (1998) uses cross-validation for the bandwidth selection in kernel estima-
tors for either fixed or random design binary regression. The asymptotic risk of the kernel estimators
is shown to have good convergence properties under certain smoothness conditions on the regression
function.

As previously mentioned, another approach to the binomial problem is to transform the observa-
tions so that the transformed data can be assumed to be (at least approximately) normally distributed.
For the binomial distribution, Anscombe (1948) suggests the following. Suppose {z; } are realizations
from i.i.d. binomial random variables X; ~ Bin(n, p). Then the transformed data given by

Az; = sin™! <§i++2(;> N




will be distributed ‘more normally’. Anscombe states that the value ¢ = % is optimal for p and

n — p large (where p is the mean of the binomial distribution). The variance will be stabilized at
1(n+ 3)~! for this value of c.

Donoho (1993) uses Anscombe’s similar result for Poisson data, applying it to low light photon
counts. Though computationally efficient, Anscombe’s transformations used in conjunction with such
traditional wavelet methods are reported to oversmooth and not perform well when intensities are low
(Antoniadis and Sapatinas, 2001).

Freeman and Tukey (1950) discusses a similar transformation for binomial data which takes the
form of an averaged inverse sine function:

Br; =sin™! < T > + sin ! <ﬂ> (2)
n -+ n+1

This is said to have variance stabilization around (n+ %)_1 for almost all cases when the binomial
mean is at least one, though it is difficult to use as a pre- and postprocessor since it does not have a

unique inverse function.

All of the above methods are suitable for binomial proportion estimation. However, the methods
based on generalized linear models often have the decision of link choice to make; others assume some
degree of regularity of the underlying proportion function or produce estimates belonging to a certain
smoothness class. The use of interpoint algorithms in Sardy er al. (2004) can be computationally
expensive. The aim of the method presented in this paper is to take advantage of the computational
efficiency and flexibility of transformations such as Anscombe but improve performance in cases of
low intensity.

2.4 The Haar-Fisz transformation

In this section, we give a brief overview of the Haar-Fisz transform, introduced in Fryzlewicz and
Nason (2004).

2.4.1 The Haar discrete wavelet transform

The Haar-Fisz transform combines a Gaussianizing transform with the Haar discrete wavelet trans-
form. We now give the fast computational description of this wavelet transform by Mallat (1989).
The Haar discrete wavelet transform (DWT) is performed on an input data vector v by iterating
the steps
ik = (Cj41,2k + Cj41,26+1) /2
djk = (Cjs1,2k — Cjt1,2k+1)/2,

forj=J—-1,...,0. "
The inverse DWT can be expressed in the two equations

Cit12k = Cik+djk
Ciy12k+1 = Cjk — djp.

"Note that the forward and inverse steps described above translate into using wavelet filters %(1, 1) and %(1, —1). This
differs from the Haar filters used in many descriptions of the Haar transform, which make the Haar basis orthonormal.



2.4.2 The Fisz transform

The properties of the Haar-Fisz transform follow from a result by Fisz (1955), which asserts the
asymptotic normality of a special ratio of random variables under certain conditions. We now give
some notation which are used in the Fisz theorem and which we will use later.

Let £1(A1) and &2(\2) be two independent non-negative random variables based on distributions
with respective parameters \,.. We denote, for r = 1, 2,

m, =E(&), of =var(&), and 1 =/o}+03. 3)
Theorem 1. (Fisz, 1955). If
(a) the variable £(\)/m(\) converges in probability to the number 1,
(b) the variable £ () is asymptotically normal N(m (), a2()\)),

(c) the variables &1 and &5 are independent and

lim L =1, “)
A1—00 M9
Ao —00
then the variable € — ¢
YA he) = 5)
< ) (€2 + &)™
where « is an arbitrary positive number, is asymptotically normal
_ 2
M2 M , 2 5o | when A\ — 00, Ay — 0. (6)
(m1 + mg)® (m1 + mg)?@

(We use the convention here that if £ and & are both zero, then (* takes the value zero as well).

We now explicitly define the Fisz transform of two random variables.

Definition 2. The Fisz transform with exponent o of two non-negative random variables X1 and
X2 is
Xo— Xy

(X1, X2) = X, T X7’

with the convention that 0/0 = 0.

2.4.3 The Haar-Fisz transform

Suppose a positive data vector, v, of length N = 27 has been observed. The Haar-Fisz algorithm
proposed in FryZzlewicz and Nason (2004) is as follows:

1. Perform the Haar discrete wavelet transform on the data, to transform v=c y into (cg,dg,d1,. - . ,dj—1),
where as usual, cg denotes the smooth component and the d; represent the detail components
in the transform. However, as each level is computed, perform the modification

— 0 if cj,k = 0,
fik = { dji/\/Cjk otherwise (7



2. Perform the inverse Haar DWT on the vector (co, fo,f1,- - . »f.7—1). Call the result u.

These two steps are known as the Haar-Fisz transform of v. We denote the transform as an oper-
ator by w:=Fv. Note that these steps can be easily inverted.

Fryzlewicz and Nason (2004) use the above observation to prove the following result for Poisson
observations:

Proposition 3. If v is a sequence of observations (of length N) of i.i.d Poisson random variables with
mean \. Let u=FV be the Haar-Fisz transform of v. Then Vk € {0,..., N — 1}

up — A=v+Yg,
where v — 0as A\/k — 0and Yy, — N(0,1) as (A, k) — (00, 00).

In other words, (asymptotically) the vector u is just the Poisson intensity, A, with additional Gaus-
sian noise. This result motivates FryZlewicz and Nason (2004) to propose a method for Poisson
intensity estimation as follows:

1. Perform the Haar-Fisz transform on a vector of Poisson observations, v, to bring the data closer
to normality.

2. Use any denoiser suitable for Gaussian noise.

3. Invert the Haar-Fisz transform to obtain the estimate of the Poisson intensity.

The argument for the modification to the detail coefficients in the Haar-Fisz transform needs a few
words of explanation.

Applying the Fisz transform to Poisson random variables &, (\,) ~ Poi(\;), 7 = 1,2 the asymp-
totic distribution in (6) becomes

( A2 — A1 A1+ A2 > @)

(A1 + A2)®7 (A1 + Ag)?

when Ay — 00, Ay — 0.

The choice of @« = 1/2 in equation (8) demonstrates the variance stabilizing property of the
Fisz transform — it causes the asymptotic normal distribution in (6) to have unit variance for Poisson
random variables.

The Haar-Fisz transform is motivated by this observation: FryZlewicz and Nason (2004) shows
that each of the transformed points u:=Fv are expressed in terms of the original observations as linear
combinations of ratios of the form of the Fisz theorem, with & = 1/2 (see equations (9) — (16) in
Section 2.2 of Fryzlewicz and Nason (2004)). Hence if the observations {vy } come from independent
Poisson random variables, then all the terms in (7) will be approximately normal, provided that the
Poisson means satisfy the conditions at the beginning of Theorem 1. FryZlewicz and Nason (2006)
also take advantage of the variance-stabilizing properties of the Fisz transform (with exponent o = 1)
for 2 random variables.



2.4.4 Fisz-transformed binomial random variables

Let us apply the Fisz theorem to two binomial random variables, as in Fisz (1955). Suppose X1 ~
Bin(ni,p1) and X9 ~ Bin(ng, ps) are independent random variables. Assuming that condition (c)
holds with m, = n,p, for r = 1,2, Fisz notes that the hypothesis of equal binomial probabilities p,.
can be tested for binomial random variables. In this case (p; = p2 = p), the asymptotic Gaussian
distribution reduces to

N < Ng—N1  1_q (1-p) 1—2a> . 9)

(TLl + ng)a ’ (’I’Ll + ’I’L2)2O‘_1

If we further impose that the random variables X; and Xy have equal size, i.e. n; = no, this
asymptotic distribution simplifies further to

1—
¥ (0 g ™)

Note that even in this special case, the variance function of the asymptotic normal distribution
depends on p; there is no choice of « in (9) which produces an asymptotic variance constant in p and
so the variance cannot be stabilized by the usual Fisz transform (with any exponent).

For the Haar-Fisz transform to be effective for binomial variables, we would like to have variance
stability on each decomposition level j in equation (7).

Unfortunately this cannot be achieved for binomial random variables with the Fisz transform,

unlike the case of Poisson variables. Hence we propose a different Gaussianizing transform, similar
to the Fisz transform, with which asymptotic normality with stabilized variance can be obtained.

3 The NN variance-stabilizing transform

3.1 The transform and its theoretical properties

In this section we introduce a new transform for binomial random variables. The idea stems from
the Fisz theorem (Fisz, 1955). In our new transform, we divide the Haar difference X9 — X7 by
its standard error, /var(X1) + var(X2). This essentially uses the observations from X; and X, as
estimates for the individual binomial means n,p (r = 1,2) and combines them in the expression for
the standard error.

We first state our alternative theorem to Theorem 1, the proof of which can be found in the ap-
pendix.

Theorem 4. Let X, ~ Bin(n,,p,), for r = 1,2 with p, € (0,1) (fixed). Let m, and 1 be as in
Theorem 1. If the random variables X1 and X4 are independent and

lim L =1, (10)
A1—00 M9
Ao —00
then the random variable defined by
Xo—X
(—iiifj (n1+mn2 — (X1 + X2)))



is asymptotically normal N (mp,0%) when ny — oo, ng — oo, where

mo — M
mp = 2 3 (11)
(%(m Fng — (my + mz)))
and
op = v 75 (12)
(22 (0 + mp — (1 +m)) )

In the definition of (5, we assume that the random variable takes the value zero when both X
and X5 are zero.

We now give an example of Theorem 4. Suppose X, ~ Bin(n,,p) for r = 1,2, i.e. the binomial
random variables have equal trial probabilities. Due to the theorem, the random variable {5( X7, X2)

will be asymptotically normal
_ 1/2
N <(( (n2 nl)p ))1/2’1> ) (13)

ny +mn2)(l —p

when ny — o0, ng — oo. In other words, using the transform (p(X7, Xo) will stabilize the
variance of the asymptotic distribution.

Note also, that if in addition we impose the constraint that the binomial sample sizes are equal
(i.e. n1 = ng), the asymptotic distribution will be N(0,1).

3.2 Gaussianization and variance-stabilization properties of the NN transform

In this section we demonstrate through simulations how well the transform (p can bring binomial
data closer to normality, whilst stabilizing the variance of the data. We might also like to know how
fast the mean of (p converges to the asymptotic normal mean. Even though the asymptotic normal
distribution the theorem only holds when the means of the two binomial random variables are close
(and large) through condition (10), it is interesting to study these properties in the finite sample case.

In some of the simulations below, we compare properties of our transform with that of Anscombe’s
angular transformation (1) and the Freeman-Tukey transformation (2) outlined in Section 2.

We follow a similar approach to these simulations as FryZlewicz and Nason (2004). However,
since the size of the binomial means depends on the trial success probability, p, as well as the binomial
size, n, the effect of both of these parameters feature in our simulations.

Let X, ~ B(n,p,) for r = 1,2. For each experiment, we sampled 10° values of X, for binomial
sizesn = 1,2,4,32,128 and for each probability lattice point (p1, p2), where p, ranged from O to 1
in steps of 0.05. The binomial samples were then used to compute 10° values of the random variable
(B(X1, X2), denoted z,(p1, p2).

For the comparisons with the Anscombe and Freeman-Tukey inverse sine transformations, the
values of the binomial variable corresponding to the larger of the two probabilities p, was used.
Since these transformations work better for larger means, doing this is favourable to Anscombe and
Freeman-Tukey.



3.2.1 Mean simulations

To investigate the convergence of the samples of (5(X7, X2) to the asymptotic mean m p in equation
(11), we computed their difference |Z,, (p1, p2) —mp|, where the mean Z is taken over the 10° samples.

Figure 1 shows the surface plots across the lattice of binomial probabilities (p1,p2) for increasing
binomial size, n. The surfaces show that for larger n, the difference approaches zero across the whole
lattice, with only a slight difference at the lattice boundary.

3.2.2 Variance simulations

The sample variance was computed over the 10° samples of (p arising from the samples of X and
X, for each point (p1, p2). Figure 2 gives a series of contour plots of the sample variance for each of
the binomial sizes n = 1, 2,4, 32, 128, renormalized so that the asymptotic distribution will have unit
variance.

The plots show a “flattening” of the surface peaks as the binomial size increases, with the variance
of the peak approaching one. In fact, this feature happens most near the line p; = po. This reflects
the observation that equal binomial probabilities will result in an asymptotic distribution with unit
variance.

To further examine the case when the two binomial proportions are equal, we display this graphi-
cally for (5, Anscombe’s transformation .4, and the Freeman-Tukey transformation /3, on the interval
p1 = p2 € (0, 1), for increasing n.

Figure 3 plots the squared residual of the variance from one against the (equal) binomial propor-
tion. From this plot, it is more obvious that for small binomial sizes, our transform has variance closer
to one for low and high proportions, especially when compared against Anscombe’s transformation,
although the Freeman-Tukey comes quite close to our transform. It is comparable to the two competi-
tors for the middle half interval (0.25,0.75). For larger n, all three transforms do well at stabilizing
the variance at one.

3.2.3 Gaussianization simulations

For judging the relative Gaussianizing properties of the transform ¢z, we computed the Kolmogorov-
Smirnov statistics for (p and for the two competitor transformations over the binomial proportion
lattice. Lower Kolmogorov-Smirnov statistics are representative of samples which are more Gaussian.

Figure 4 shows contour plots of the difference in Kolmogorov-Smirnov statistics between Anscombe’s
transform and (5. A positive difference in these plots corresponds to our transform being more Gaus-
sian. The corresponding plot for the difference between the Freeman-Tukey transform and ( g is very
similar.

The overall trend is that the difference in Kolmogorov-Smirnov statistics is positive for small
and moderate binomial sizes, irrespective of the binomial proportions p; and po. This demonstrates
that our transform has better Gaussianization properties than both Anscombe and the Freeman-Tukey
transformation. As expected, as the binomial size becomes high, the differences between the Kolmogorov-
Smirnov statistics becomes negligible, due to both transforms having good Gaussianizing properties.
However, examining the statistics further, the means of the statistics for (p are lower compared to
those of its competitors (for all values of the binomial size, n). This indicates that the transformed
data using our transform is more Gaussian than those of the Anscombe or Freeman-Tukey transforms.
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4 The Haar-NN transform for binomial random variables

4.1 The transform

We now introduce an algorithm similar to the Haar-Fisz transform described in Section 2.4, based on
the asymptotic result from the preceding section. Suppose we have an observed vector v=(vq, v1, ..., VN—1)
of length N = 27 with 0 < v; < n, for some integer n. The algorithm is as follows.

1. Perform the Haar DW'T on v to obtain the vector (cq,dg,d1,. - .,dj—1). As each level is pro-
duced, modify the coefficients by defining

fin = { 0 ifcjp=0o0rcj,=mn, (14)

djk/\/¢ie(n —cjr)/n  otherwise
2. Perform the inverse Haar DWT on the vector (cg, fo,f1,- - - »f7—1)- Call the result u.

We denote this transform by u:=Fpgv. As with the usual Haar-Fisz transform, g can be inverted
by “undoing” the steps 1 and 2.

Let us examine the effect of the modification in step 1 of the above procedure. Consider the
coefficients vy and v1. The modified detail coefficient d ;1 o is produced by

fr—10 = %(Ul — )
; (% (U0+U1) (n_ %) /n)1/2
(Ul - Uo)

((vo +v1) (2n — (vo +v1)) /n)l/g'

Similarly, for the next coarsest level coefficient, we have

S(cs—11—cy-1p)

(% (cj—10+cr-11) (n - 70"71’0?‘]71’1> /”) v
((vo +v1) — (v3 + v4))
((vo + v1 4 va2 +v3) (4n — (vo + v1 + v2 4 v3)) /n)

fr—20 =

1/2°

This computation is similar for every coefficient within a level, and for each DW'T decomposition
level. If the data vector v is representative of observations from i.i.d. binomial random variables
Xj ~ (n,p), then the modified detail coefficients can be expressed as f;; = 2~/ =9/2¢5(Y1, Ya),
where Y7 and Y; are both sums of 2/77=! of the random variables X}, and thus are binomially
distributed as well. Since the application of the inverse Haar transform is identical for Fpv as for
JFv, after performing the transform Fpv, the original data can be expressed as linear combinations of
quantities of the form (p(Y7,Ys) for binomial random variables Y7 and Y3, analogous to the Haar-
Fisz transform (see Section 2.2 in FryZlewicz and Nason (2004)). Thus Fpv represents a diagonal
transformation of v, that is, there is one transformed value for each v;.

14
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Figure 5: Blocks mean intensity vector A based on p and binomial size n = 2, together with an
example sample path (dotted).

4.2 Finite sample Gaussianization and Variance stabilization properties of the Haar-
NN transform

The following investigation compares the Gaussianization and variance-stabilizing properties of the
transform Fp introduced in Section 4, with Anscombe’s transformation (1), the Freeman-Tukey trans-
formation (2) and the identity transformation. Again, we follow an approach similar to FryZlewicz
and Nason (2004).

For these simulations, we have chosen a binomial proportion vector, p of length N = 1024
sampled from a (normalized and stretched) version of the well-known Blocks test signal of Donoho
and Johnstone (1994). For each binomial size n = 1, 2,4, 32,128, we will denote by A := np the
mean intensity vector corresponding to n. It should be noted that although the mean vector depends
on the binomial size, n, this is not included in the notation explicitly, since it will be obvious from
the context which value of n we will use. A sample path generated from binomial random variables
with the mean vector A will be denoted by v. Figure 5 shows the (mean) intensity vector for n = 2,
overlaid with a sample path generated from it. As expected, the sample path takes the value 1 more
often when p is near 1, and hits zero more frequently when p is near zero.

4.2.1 Gaussianizing simulations

We compared the Gaussianizing properties of the different transforms by considering the Q-Q plots of
v—A (identity transform), Av—AA\ (Anscombe), Bv—BA (Freeman-Tukey) and Fpv—FpA (Haar-
NN), averaged over 100 sample paths, v. These paths were created from the mean vector A for the
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Figure 6: Q-Q plot comparison for four different transforms, averaged over 100 paths sampled from
binomial variables with size n = 2 and proportion vector p: v—A\ (black); Av—AX (red); Bv—BA
(blue); Fpv—FpA (green). Solid line has slope 1, indicating unit variance.

binomial sizes n = 1, 2,4, 32, 128. Figures 6 — 8 show this comparison for the binomial sizes n = 2,4
and 128.

For the lowest binomial sizes, namely n = 1 and 2, the raw data (marked in black) is quite
“stepped”. This is expected since the data are discrete.

The Anscombe-transformed data and those transformed by Freeman-Tukey transformation still
exhibit this characteristic, whilst for our transform, F 5, they have lost most of this stepped character;
the data lies closer to a straight line, showing that the data is more Gaussian. Moreover, the data is
closer to the solid line (which has a slope of 1), which indicates a variance of one.

As n increases, the Q-Q lines become similar, although it can be said that our transform dis-
plays slightly better Gaussianization (and also variance-stabilization), since the quantile points do not
deviate from the (solid) straight line as much as the other transforms, especially at the tails.

For large n, all three transforms do very well at bringing the data to normality. Furthermore, the
variance is very close to one. However, this is mostly expected due to the high value of n, since at this
large binomial size, the Central Limit Theorem comes into effect.

4.2.2 Variance simulations

To assess how well the transformations A, B and F g force the data to have variance nearer to one, we
plotted the squared residual |Av—AM|2, [Bv—BA|? and |Fpv—FpA|? for the Anscombe transform,
Freeman-Tukey transform and our transform (respectively), rescaled by their respective asymptotic
variances. The residuals were averaged over 1000 sample paths, which were generated from the mean
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Figure 7: Q-Q plot comparison for four different transforms, averaged over 100 paths sampled from
binomial variables with size n = 4 and proportion vector p: v—X (black); Av—AM (red); Bv—BA
(blue); Fpv—FpA (green). Solid line has slope 1, indicating unit variance.
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Figure 8: Q-Q plot comparison for four different transforms, averaged over 100 paths sampled from
binomial variables with size n = 128 and proportion vector p: v—X (black); Av—AN\ (red); Bv—BA
(blue); Fpv—FpA (green). Solid line has slope 1, indicating unit variance.
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intensity vector A for binomial sizes n = 1,2, 4,32, 128. When performance is optimal, the squared
residuals stabilize at one when the proportion is nonzero, since the squared residuals form an estimate
of the variance. The squared residuals for the three transforms are given in Figures 9 — 11 forn = 2,4
and 128.

‘When the binomial size is small, the simulations show that our transform does much better than the
competitors, A and 13, at stabilizing the sample path variances. For example, for n = 2, the Anscombe
transform has the squared residual in the range 0.6 to 0.8, and the Freeman-Tukey transform has the
squared residual in the range 0.9 to 1.1, whereas for our transform, the residual is nearer 1 for most
of the sample path range. Further, our transform does relatively well compared to Anscombe and
slightly better than Freeman-Tukey when the binomial proportion is small, that is in the three non-zero
‘troughs’. However, there is a degree of erratic behaviour near the discontinuities in the proportion
vector.

Moderate binomial sizes have the competitor transformations beginning to achieve similar stabi-
lization as our transform; when n = 128, all three transforms do very well at variance stabilization,
though Anscombe can be considered to do slightly better in performance in this case, due to the
occasional downward spikes in the Haar-NN transform (see Figure 11).
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Figure 10: Squared residuals for different Gaus-
sianizing transforms, averaged over 1000 sam-
ple paths from binomial variables with size n =
4 and proportion vector p: |Av—AA|? (top
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20



Squared residuals (Anscombe)

Squared residuals (Nunes-Nason)

12

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

200

400

600

800

1000

200

400

600

800

T
1000

0.8

Squared residuals (Freeman-Tukey)
0.4

0 200 400 600 800 1000

Figure 11: Squared residuals for different Gaus-
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S Binomial proportion estimation

Motivated by these observations about the properties of the transform Fp, we now propose an algo-
rithm for probability curve estimation for a binomial sequence, similar to that in Section 2.4:

Suppose v=(vg, ..., vn_1) is a vector of observations of length N = 27 from a binomial process
with size n and unknown probability vector p.

1. Perform the transform Fp on v to produce u=Fpv. The vector u should be approximately
normally distributed with constant variance.

2. Use any denoiser suitable for handling Gaussian noise with constant variance.

3. Invert the Haar-NN transform to obtain the estimate of the binomial probability vector.

5.1 Simulation Study

A simulation study was performed to assess the curve estimation procedure above. Several proportion
functions were chosen to be estimated, each exhibiting different properties. These were the Sinlog
function in Antoniadis and LeBlanc (2000):

Pi(t) = (0.7 + [sin(5m(t — 0.4)) + sin(6m(t — 0.4 — 1/60))

4 sin(Tr(t — 0.4 — 1/35)) + sin(8m(t — 0.4 — 3/80))
4 sin(9n(t — 0.4 — 2/45)) + sin(107(t — 0.4 — 1/20))
n
n

sin(11m(t — 0.4 — 3/55))] /7
cos((6/5)m(t — O.5))> /3;

a scaled and reflected version of the P» function described in Antoniadis and LeBlanc (2000):

_J1ap2t) telo,d)
Fs(t) = {1.4 Poy(1-2t) t 62[%, 1] (1

where )
t
Py(t) = (t + 0.01)1/4e(‘?f> te0,1);

and the modified Blocks proportion from Section 4.2.

These functions were sampled on regular grids of length N = 128,256,512 and 1024. The
sampled vectors were then used to create binomial sample paths (from binomial sizes n = 1,4, 8 and
16) using the sample vectors to define the binomial trial probabilities, i.e.

pi = Pj(t;)

fori =1,...,n and each proportion function P; (Sinlog, P3 and Blocks).

For each grid length/binomial size combination, 1000 sample paths were created. These sample
paths were then denoised using the estimation procedure described at the beginning of this section
(transform-denoise-invert) with both Fp and A as pre- and post-processors in steps 1 and 3 of the
procedure, truncating the proportion estimates if necessary to lie within [0,1]. In the denoising step,
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the DW'T was used with Daubechies’ Least Asymmetric wavelets. The thresholding implemented was
the SureShrink procedure of Donoho and Johnstone (1995). The AMSE of the 1000 simulations for
each wavelet and processor was recorded. For each binomial size and signal length, Table 1 shows the
percentage difference in errors between Fp and A for the primary resolution level/vanishing moment
combination with best performance (for both methods), for the proportion functions P (t), Ps(t) and
Blocks. Positive differences show percentage average error improvement of our transform over that of
Anscombe.

Table 1: Percentage improvement of F 5 over A for binomial sizes n = 1,4, 8, 16 and signal lengths
N = 128,256,512,1024 for primary resolution/vanishing moment combinations with best perfor-
mance.

Sinlog P Blocks
Binomial Signal length (V) Signal length (V) Signal length (N)
size (n) || 128 256 512 1024 128 256 512 1024 || 128 256 512 1024
11 1.76 2.51 3.44 444 5.73 1217 1354 7.38 | 0.42 0.44 1.77 2.45
41 750 9.22 1230 18.69 || 11.36 6.52 6.50 9.76 || 3.44 4.22 4.37 5.05
8 || 5.57 6.67 10.00 15.52 1.13 0.21 347 3.59 | 1.85 3.30 2.25 4.71
16 || 3.49 324 5.02 6.73 | —142 —457 -3.21 3.18 | 1.01 —-737 —-513 —-3.32

The results of the simulation study are very encouraging. Overall, the algorithm with our method
outperforms the algorithm when used with Anscombe nearly all of the time, especially with medium
binomial sizes. The relative performance of the Haar-NN transform seems to increase as the signal
length increases. The error improvement over Anscombe is in some cases quite substantial (> 15%).

5.2 Application: DNA Isochore detection

There has been substantial work in the field of bioinformatics in recent years, and the quest to improve
existing methods and computational techniques is also of great importance.

In particular, DNA sequencing and gene expression methods are a couple of the topics in this
area. One important problem in these areas is the modelling and prediction of isochore clusters in
DNA sequence data (Bernardi, 2000). This information is useful to know for a range of biological
applications. In this section we hope to use the Gaussianizing and variance stabilizing properties of
the random variable (5(X1, X5) for this application.

5.2.1 Biological background to the isochore problem

Before expressing the problem in a mathematical context, we now outline the problem in a biological
setting.

DNA sequences are strings (polymers) of nucleotides, which store genetic information. Nu-
cleotides are chemical compounds which play important roles, for example in cellular behaviour and
enzyme regulation.

Each nucleotide is characterized by its nitrogen base, represented by a letter: A (adenine); C
(cytosine); G (guanine); and T (thymine). These four nucleotide bases come from two compound
groups, namely purines (adenine and thymine) and pyrimidines (cytosine and guanine), differing in
structure. The nucleotides from a specific compound group are referred to as base pairs. For a more
detailed discussion of the structure of DNA, see any introductory text on genomics, for example
Brown (2002); Dale and von Schantz (2002); Cooper and Hausman (2004).
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A DNA isochore is a long DNA segment which is (fairly) homogeneous in G+C content (Oliver
et al., 2004). G+C content can be seen as the ratio between the number of pyrimidine nucleotides to
the total number of nucleotides in a DNA segment.

A school of thought in bioinformatics accepts an isochore model for DNA, which asserts that
genomes (chromosome DNA sequences) are mosaics of long DNA segments with different G+C con-
tent in adjacent segments; under this model, the G+C content mosaics differs for different organisms,
especially between warm- and cold-blooded vertebrates (Bernardi, 2000), and so these features of
DNA G+C content could be used, for example, in organism classification applications. Although the
isochore features of certain vertebrates has already been investigated, an effective prediction method
is of obvious interest.

5.2.2 IsoFinder: an existing approach to the isochore problem

In Oliver et al. (2004) and Zhang and Chen (2004), a procedure of sequential hypothesis testing is
implemented to attempt to model the distribution of G+C cluster sizes of a DNA sequence.

The procedure works as follows. The G+C content of the sequence is counted, and a ¢-statistic is
used to assess the significance of the difference in mean G+C values on either side of a sliding pointer
moving along the DNA sequence. After heterogeneity is filtered out, the information is used to split
the original sequence into two distinct regions of differing G+C mean value. This is method is then
repeated on successive blocks until the original sequence is divided into a number of regions with
significantly different mean G+C levels. These obtained clusters are predictions of isochores of the
original DNA sequence. This method is known as the IsoFinder procedure.

5.2.3 Haar-NN transform approach to the isochore problem

Let us consider a DNA sequence. Since we are interested in the sections of the strand containing
G+C content, we can view the DNA section as a binary sequence with a corresponding sequence of
indicator values at each nucleotide site, showing whether or not a particular nucleotide comes from
the pyrimidine (G or C) base pair:

DNA sequence: ATGCGCTACGTGCATGCAGTACCATGGACG. ..
Converted sequence: 001111001101100110100110011011. ..

For an unseen strand, if we assume each molecule along the sequence is from one of the two
nucleotide base pairs independently, we can assign (independent) Bernoulli random variables on the
nucleotide sites. Suppose we have a DNA sequence of length n = 27. Let X}, indicate the type of
nucleotide k. Then X, ~Bernoulli(p;), and so

P(nucleotide k has G+C content) = P(X; =1) = pi
P(nucleotide k has A+T content) = P(Xy, =0) =1 — pr = ¢x.

Estimating equal p;, for long consecutive sequences of k indicate regions of equal G+C content,
and is representative of an isochore.

5.2.4 Examples

To test the G+C proportion estimation procedure, two chromosome strands were acquired from the
Wellcome Trust Sanger Institute Human Genome Sequencing Group, namely the chromosome 6 MHC
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strand (examined in Oliver et al. (2004)) as well as chromosome 20 of the human genomez. To make
it feasible to process this data with our method, the sequence strands were cropped to 22! = 2097152
bases, and then converted into binary sequences indicating G+C content as outlined above.

In the denoising step of the algorithm in Section 5, we used the Haar DW'T with Sureshrink
thresholding (Donoho and Johnstone, 1995), with primary resolution level 3. However, we modified
the smoothing procedure. Recall that in the IsoFinder procedure, there is an in-place heterogeneity
filtering. This is usually applied to filter out isochores of less than 3 kilobases from the resulting
isochore maps, so that these map estimates resemble mammalian genomes (Oliver et al., 2004). To
mimic this filtering, in the denoising step of the procedure, we set the finest 11 detail coefficient levels
to zero (after thresholding) before inverting the discrete wavelet transform. This has the effect of
ensuring that isochore regions of less than 2! = 2048 bases do not feature in our estimates of G+C
content produced after inversion of the wavelet transform.

To assess our isochore map estimates, the IsoFinder method was applied to the cropped nucleotide
sequences, using the online IsoFinder implementation. Figures 12 and 14 were created using this web
interface?.

Isochore Predictions by IseFinder {(0liver et al. NAR 32 M28§7-M292)

55

RGC

a heoens le+06 1,5e+06 2e+06
Sequence position (bp)

Figure 12: Isochore map of the chromosome 6 MHC nucleotide sequence, as estimated by the
Isofinder procedure (with 3 kilobase filtering).

Figures 12 and 13 show the isochore maps of the MHC nucleotide sequence for the two estima-
tion procedures, whereas Figures 14 and 15 give the corresponding estimates for the chromosome 20
of the human genome. Whilst the estimates produced using our method are more “spiky” and show
shorter isochore regions, the estimates for both procedures exhibit similar overall features. It should
be noted here that our estimates use SureShrink thresholding, with no consideration for the effect of
the primary resolution level. More complex thresholding procedures could produce more accurate es-
timates, for example, EbayesThresh (Johnstone and Silverman, 2005a, 2004, 2005b), which is known
to be more insensitive to wavelet primary resolution choice. Also, our method uses a low kilobase

2All sequences produced by the Sanger Institute are available online from the website http://www.sanger.ac.uk/HGP/ .
3This can be found at http://bioinfo2.ugr.es/IsoF/isofinder.html.
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Figure 13: Isochore map of chromosome 20 of the human genome, as estimated by our Haar-Fisz
Gaussianizing procedure (with 11 finest detail coefficient levels set to zero).

filtering compared to the IsoFinder procedure (due to being constrained to a power of two) so is more
likely to produce estimates which exhibit less homogeneity.

6 Conclusions

This article has proposed a new transform, (g, that possesses variance-stabilizing properties for bino-
mial random variables, which the Fisz transform (Fisz, 1955) cannot achieve.

An asymptotic result was established about this transform for binomial random variables, and
simulations for different binomial sizes and probabilities were performed to investigate how well it
Gaussianizes and stabilizes the variance compared to Anscombe’s transformation. The results indi-
cate that our transform does very well for smaller binomial sizes, n, and/or for extreme binomial
proportions. As n is increased, the two transforms are comparable.

Section 4 introduced a new modified Haar transform using our Gaussianizing transform. This
was compared to the Anscombe transform also, and it was found to again outperform the traditional
transformation for smaller binomial sizes and/or binomial proportions nearer the boundaries of the
interval (0,1). This improvement for small n and extreme proportions is important, since in practice,
large binomial sizes and “nice” success probabilities could be unrealistic. Both methods perform well
when n is large.

The evidence of good properties from the simulations lead us to suggest an algorithm for binomial
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Figure 14: Isochore map of chromosome 20 of the human genome, as estimated by the Isofinder
procedure (with 3 kilobase filtering).
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Figure 15: Isochore map of chromosome 20 of the human genome, as estimated by our Haar-Fisz
Gaussianizing procedure (with 11 finest detail coefficient levels set to zero).
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proportion curve estimation. Investigations show error improvements over a competitor in all but a
few cases, with improvements in some cases being large.

7 Software and Acknowledgements

Software code that implements our Haar-NN transform is freely available at the CRAN R software
archive as an R package. It can also be found at

http://www.stats.bris.ac.uk/ maman/computerstuff/Binfisz.html
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A Proof of Theorem 4

The proof of this theorem follows the ideas used for the proof of Theorem 1 of Fisz (1955). We begin
by presenting some introductory lemmas.

Lemma 5. If { and & are independent and &, (\,) /m..(\) converges in probability to 1, then

Jim P(‘M—1‘>s> —0, (16)
A1 —00 mi + mso
)\2—>OO

where ¢ is an arbitrary positive number.

For the proof of this lemma, see Fisz (1955).
Due to the Law of Large Numbers, X, /m, converges in probability to 1 for p, € (0,1) and
r = 1, 2. Thus, taking &, to be the binomial random variables X, it follows that R(n1,ng) = X1+ Xy

mi+ma2
also converges to 1 in probability when n; — oo and ny — o0.
Lemma 6. For the random variable Ri(nq,n2) = %,
n}linoo]P) (\Rl(nl,ng) — 1’ > 8) =0, a7
no—00

where ¢ is an arbitrary positive number.

Proof of lemma 6. For ¢; > 0, Lemma 5 implies that for sufficiently large values of n; and no, the
inequality
—e1 < 1- R(nl,ng) <ér (18)
occurs with probability greater than 1 — §, for > 0 an arbitrarily small positive number. Then
using the definition of R and R,

—e1 < 1-— R(nl,ng) <ér
—(m1 + mo)er (ma+ma)—(X1+Xa) (m1 +ma)er
ny + ng — (m1 + mg) nit+nz—(mi+mz) ny + ng — (m1 + mg)
—(m1 + Tng)El (m1 + m2)€1
ny + ng — (mq + me) n1+n2—(m1+m2)'

< Rl(nl,n2) -1 <
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Now let € = %, where p = max{p1, p2}. Since

0 < (m1 + ma) my + me (n1 +n2)p
T ny+ng — (m1 +m2) - (n1 +n2)(1 —p) - (n1 +n2)(1 —p

] = ¢/eq,

for the values of n; and ng such that the inequality (18) holds, we have

I—p
> P(|1 - R(ni,n2)| <e1) >1-4,

]P’(]Rl(nl,ng) — 1‘ < 8) = P <]R1(n1,n2) — 1‘ < P el >

where the numbers ¢, €1 and ¢ are arbitrarily small. Hence

n}iLnOOP(\Rl(nl,ng) — 1’ > 8) =0, (19)

ng—00
i.e. Ry(n1,n9) converges in probability to 1.
O

Lemma 7. (Fisz, 1955) If &-(\,) is asymptotically normal N(m,(\.),02(\.)), then the random

»rr
variable &o — &1 is asymptotically normal N (mo — my,¥?) when A\| — 00, Ay — 00.

For the proof of this lemma, see Fisz (1955).
We now state a theorem by Cramér (1946)* which we will also use in the proof of our theorem.
Theorem 8 and its proof can be found in Cramér (1946), Section 20.6, p.254.

Theorem 8. (Cramér, 1946) Let £1,&2, . . . be a sequence of random variables with distribution func-
tions Fy, Fy, ... . Suppose that F,,(x) tends to a distribution function F(x) as n — oo.
Let n1,m2, . .. be another sequence of random variables and suppose that n,, converges in proba-

bility to a constant c. Put
bn
n

Then the distribution function of X,, tends to F(x — c). Further, if ¢ > 0, the distribution function
of Yy, tends to F (%) while the distribution function of Z,, tends to F(cx).

Xn = fn + Mns Yn = gnnm Zn =

We can now prove our theorem, Theorem 4. Let

X1+ Xo
A=21TR2  p  — (X 4 X)),
——— (n1 +n2 — (X3 2))

o= Mt me

, D = (ny+ng— (m1+ms)),
T (n1 4+ ng — (m1 +ma))

and

y = (AB)/(CD) = <X1+X2> <n1+nz— (X1+X2)>.

m1 + mg ny + ng — (M1 + ma)

“Theorem 8 and its proof can be found in Cramér (1946), Section 20.6, p.254.
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Then

~ (p—mp
T(nl, ng) = —
OB
Xo—X1 _ mo—my
. (AB)1/2 (C’D)l/2
o Y
(CD)1/2
_ (CD)2(Xy — X1) — (mg —m1)(AB)'/? " (CD)!/?
B (ABCD)/2 P
. (CD)1/2(X2 — Xl — (?TLQ — ml)) + (CD)1/2(?TL2 — ml) — (m2 — ml)(AB)1/2
- (AB)1/2y
_ (CD)V2(Xy — Xy — (ma —m1)) + (ma — m1)((CD)'/* — (AB)'/?)
N (AB)!/2y)
oy P (X — X — (mp — ) L (m2 — my)(y~'? = 1)
(G Y
n+ ma—mi (| _ y1/2
- v /(2 ) (20)
Y
where n(ni,ng) = Xp=Xi=(mz=m) i the random variable defined in the proof of Lemma 7 for

¥

our specific binomial case (see Fisz (1955)). Note that y(ny,ns) = < f)fb ﬁii) (Ziigj:gﬁiiii%) =

R(n1,mn2)R1(n1,n2), where R and Ry are as defined in Lemma 5 and Lemma 6.

Note also that 7(n1, ng) is the random variable ((n1, no) standardized by the asymptotic normal
mean (11) and standard deviation (12). To prove the theorem, we need to show that 7 is asymptotically
normal N (0, 1).

Due to Lemmas 5 and 6, the random variables R(n1,n2) and Ry (n1,n2) both converge in proba-
bility to 1. It follows from a proposition due to Slutsky>, Section 20.6, p.255), a corollary to Theorem
8, that their product y(n1,n2) also converges in probability to 1.

Using the same proposition again, this in turn implies that the function y'/2 (n1,n2) converges in
probability to 11/2 = 1, since this is a rational function in y(ni,na).

Since X7 and X are asymptotically normal N (m,., o2), then Lemma 7 applies here; thus 1(n1, 1)
is asymptotically normal N (0, 1), i.e. its distribution function converges to ®(z).

Let us now consider the other expression in the numerator of 7. Note that when regarded as a
function of y, we can write

1—y"?) =1/2+0)(1—y),
1y

where 0(y) = ) Note that § — 0 as y — 1, which means that

389 >0 suchthat |y — 1| < §p = |0 < eo, (21
for any positive number (. Since y converges in probability to 1, for sufficiently large n1,no we

also have
P(ly — 1] < do) > 1 -1, (22)

>This proposition can be found in Cramér (1946), Section 20.6, p.255.
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for the g > 0 as in equation (21) and for any arbitrarily small number . Combining equations
(21) and (22), we obtain
P(|0| <eo) > P(ly — 1| < dp) > 1 — 7,

for the values of n; and ng valid for the relation in equation (22); since y can be arbitrarily small,
0 converges in probability to 0.

Let us now write

mo —m

=1y = L(1/2+0)(1 —y).

Now y = <X1+X2) B using the quantities B and D defined earlier. Thus

mi+meo | D’
X X B
|y = 1- <¥> B

mi1—+mso ) D
(my 4+ mo)D — (X1 + X2)B
(m1 +m2)D ’
So
Xi+X9)B — D
Lo m2— (1/2 )( 1+ X2) (mq + mo)
mi + Mg D
mo —
= ——=——(1/2+0)o(n1,n9),
m1+m2( /2 +0)o(n1,n2)
where o(n1,n9) = (X1+X2)Bw[()m1+m2)D.

(X1+X2)Rl (m1+m2)

Note that o can be expressed as o(n1,n2) =

A slight modification to the proof of Lemma 7 shows that (X1 + X32) is asymptotically normal
N(my + mg,wz). Due to Theorem 8, the random variable (X; + X2)R; is also asymptotically
normal N (my + ma,?), since from Lemma 6, R; converges in probability to 1. It follows that g is
asymptotically normal N (0, 1).

We want to show that z converges to zero in probability, in order to use Theorem 8 again to com-
plete the proof of our theorem.

Let e, > 0 be arbitrary given numbers. Then
P(lz| > &) = P <|z| > e(|9| > 5) P(|0] > ) + P <|z| > e(|9| < 5) P8 <8).  (23)

Now

IP(|z| >5‘|9| >5> P(|6] > §) — 0, (24)

since @ converges in probability to zero, and thus it remains to show that the second summand in
the expression (23) converges to zero. From the definition of z, we have

]P’(]z\ >€‘ye\ < 5) < P(‘:‘j%

P(‘mz— 1
my + my
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Let the first event in the last expression above be denoted by E. Then conditional on |f| < 4, the
probability of E° can be expressed as

P(‘m—m
mi + mg

mo — M7 S mo — MMy —&
= P - - - | —-P - @ - - -
<‘m1+m2 o(ni;n2) < 1/2+5> <‘m1+m2 o(ni,nz) < 1/2+5>

— 1-0=1,

(12 + 8)lo(m.n2)] < )

mo—mi
mi1+ma

that o(n1,n2) is asymptotically normal N(0,1) .
This implies that

since — 0 (due to the assumption (10) of the theorem) and the fact

mo—my
< ‘ 2min{mi,mo}

P(‘mz—ml
mi + mo

(1/2+ ) olm. n2)] > <o <5> Y 25)
The two relations (24) and (25) together imply that z converges in probability to 0.

Recall that we have

n(ni,n2) + z(ni,n2)
y(n1,m2)
Using the Cramér result, we see that the distribution of (74 z)(n1, n2) tends to ®(z —0) = ®(z),
since 17(n1,ng) is asymptotically normal N (0, 1) and z converges in probability to 0.

T(nl,ng) =

Using the result again, the distribution of 7(n,ny) = %) (n1,n9) tends to ®(1 - x) = ¢(z),

since the distribution of (1 + z)(n1,n2) tends to ®(z) and y converges in probability to 1. This
completes the proof of the theorem.

O

B Simulation graphics

This appendix gives extra graphical representation of the findings in this article; the plots are related
to the investigation into the Gaussianization and variance-stabilizing properties of ( g corresponding
to Section 3.2 in the main text.

e Contour plot for convergence of the sample mean to the asymptotic mean (Figure 16)
e Perspective plot for the (normalized) sample variance (Figure 17)

e Comparison between (3 and Anscombe’s transformation of sample variance for equal binomial
proportions (Figure 18)

e Perspective plot for difference in Kolmogorov-Smirnov statistics between Anscombe and (g
(Figure 19).
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Figure 16: Contour plots showing the conver-
gence of the sample mean of (g to the asymp-
totic normal mean (,(my, mo) across the bi-
nomial probability lattice for different binomial
sizes: n = 1 (top left); n = 2 (top right); n = 4
(left middle); n = 32 (right middle); n = 128
(bottom).

33



(@ l’gmezgel\ =

.o °

(@ l’gmezgel\ =

.o °

34

(@ l’gmezgel\ =

.o 9

(@ l’gmezgel\ =

o

Figure 17: Plots showing the sample variance

of (p across the binomial probability lattice for
different binomial sizes: n = 1 (top left); n = 2
(top right); n = 4 (left middle); n = 32 (right
middle); n = 128 (bottom).
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Figure 18: Plots showing the sample variance
of (g (solid) and A (dotted) when p; = po for
different binomial sizes: n = 1 (top left); n = 2
(top right); n = 4 (left middle); n = 32 (right
middle); n = 128 (bottom).
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Figure 19:  Plots showing the difference be-
tween Kolmogorov-Smirnov statistics computed
on Anscombe samples with binomial probability
max(p1, pe) for different binomial sizes: n = 1
(top left); n = 2 (top right); n = 4 (left mid-
dle); n = 32 (right middle); n = 128 (bottom).
Positive difference indicates that (g is closer to
Gaussian.
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