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Summary. This article defines and studies a new class of non-stationary random processes
constructed from discrete non-decimated wavelets which generalizes the Cramér (Fourier)
representation of stationary time series. We define an evolutionary wavelet spectrum (EWS) which
quantifies how process power varies locally over time and scale. We show how the EWS may
be rigorously estimated by a smoothed wavelet periodogram and how both these quantities may
be inverted to provide an estimable time-localized autocovariance. We illustrate our theory with a
pedagogical example based on discrete non-decimated Haar wavelets and also a real medical time

series example.
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1 Introduction

If a time series is stationary then classical theory provides optimal and well-tested means
for its analysis. However, we would submit that the majority of actual time series are, in
fact, not stationary. This article introduces representations of non-stationary time series,
i.e. data with atime—varying second order structyran terms of discrete non-decimated
wavelets. This gives us a tool that permits quantification of the autocovariance of a non-
stationary time series as the series evolves through time. Time series can be non-stationary
in many ways and several methods already exist. This article contributes methodology
which is “optimal” for a certain class of non-stationary processes but also presents useful
interpretable information for many others. Our work provides an additional complementary
tool rather than overthrowing existing methodology.
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BS8 1TW, England
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Figure 1: Heart rate recording of 66 day old infant. Series is sampleqlé&tlz and is
recorded from 21:17:59 to 06:27:18. There dfe= 2048 observations.

Stationarystochastic processes§, t € 7, may be written

7l'

Xo= [ Aw)explion dc ), @
-7

whered((w) is an orthonormal increment processes (see Priestley (1981)). Further, the

autocovariance ok, has a well-known Fourier representation in terms of the spectrum:

ex (1) = _W f(w) exp(iwT) dw. (2)

In this article we concentrate on processes whose second-order strabaurges
over time for example we could introduce a time-dependency into the autocovariance or
spectrum. Alternatively, we could replace the amplitudéy), in (1) by a time-varying
version,A;(w) (e.g. theoscillatory andlocally stationaryprocesses of Priestley (1981) and
Dahlhaus (1997) respectively).

Our approach is different in that we replace the set of harmofigs (iwt)|w €
[—m,w]} by a set of discrete non-decimated wavelets (see Nason and Silverman (1994)
or Strang (1993) for introductions to wavelets). Recently, local atomic decompositions
(wavelets, wavelet libraries) have become popular for the analysis of deterministic
signals as alternatives to non-local Fourier representations (Rioul and Vetterli (1991),
Flandrin (1993)). The question immediately arises: is it possible and meaningful to use
such atomic decompositions to represent, not necessarily stationary, stochastic processes?

Figure 1 shows a heart rate (ECG) recording of a infant. It is unlikely that this will
be a stationary time series. One reason for this, of interest to paediatricians, is that the
ECG varies considerably over time and changes significantly between periods of sleep and



waking. For time series such as these Section 2 introduces a possible underlying models
based on discrete non-decimated wavelets, a time-localized spectrum to be estimated using
a wavelet periodogram and a time-localized autocovariance. Section 3 covers rigorous
estimation of these quantities. Section 4 shows how the smoothed wavelet periodogram
of the ECG series can reveal important features of interest that cannot be elicited from the
time series, standard periodogram, or some time-frequency methods.

Our article formalizes the heuristic ideas of Nason and Silverman (1995) who suggested
using non-decimated wavelets as a means for producing “local spectral density estimates”.
Our formalization permits proper identification and estimation of a wavelet spectrum from
a single finite—length stretch of the procegsk;} by restricting the time—variation of the
second order structure ¢, } precisely as in the case of time—varying Fourier spectra, see
Dahlhaus (1997), von Sachs and Schneider (1996), Neumann and von Sachs (1997).

Most existing work on wavelets with stochastic processes (Cambanis and Masry (1994),
Cambanis and Houdr(1995), Kawasaki and Shibata (1995) and Cheng and Tong (1996))
does not aim to give a decomposition with respect to an (orthogonal) increment process
in the time-scale plane. These papers focus on probabilistic approximations and do
not cover estimation. Morettin and Chang (1995) develop a wavelet periodogram based
on an orthonormal wavelet basis but only for stationary time series. Using localized
representations with truly local basis functions is not completely new, see, for example
Section 13.5 of Walter (1994) or Abst al. (1995).

Recent work by Mallat, Papanicolaou and Zhang (1998) proposed a method for
approximating the covariance of a locally stationary process by a covariance which
is diagonal in a specially constructed cosine packet basis. Donoho, Mallat and
von Sachs (1998) extended this work to estimation from sampled data and introduced a new
class of locally stationary processes. Our work is different (although there are obviously
links): firstly we propose a fundamental new process model based on wavelets and constrain
the model to be locally stationary via constraints on the model coefficients (rather than the
covariance). Secondly, our wavelet basis permits tarele decompositions and analyses
as opposed to the time-frequency interpretation obtained using local cosine functions. For
a variety of data sets stochastic modelling and estimation via a time-scale approach is more
natural, see, for example, Nason and von Sachs (1999).

2 Theoretical foundations: The wavelet process model

This section introduces a process model based on discrete non-decimated wavelets (LSW
processes); an evolutionary wavelet spectrum that quantifies power in LSW processes at a
particular time and scale and a time-localized autocovariance.

Let{hx } ez and{gx }rcz be the low- and high-pass quadrature mirror filters commonly
used in the construction of the Daubechies’ (1992) compactly supported continuous-time
wavelets. The associatediscrete waveletsy; = (1jo, ... ,zpj(Nj,l)) are compactly



supported of lengthV; for scalej < 0 and obtained using the formulae

Yoin = Y gn 2k00k = gn, fOrn=0,...,N_; -1, 3)
2

Pi—im = > hm—owtjk, forn=0,... ,N;_y —1, (4)
k

Nj = (27 =DM —1)+1, (5)

wheredyy is the Kronecker delta anty;, is the number of nonzero elements{af; }. For
example, the discrete Haar wavelets at scalésand—2 respectively are

b1 = (90,91) = 55 (1,—1) andy_» = (hogo, k1 9o, hogi, hig1) = 5 (1,1, —1,—1)
(6)

and so on. Except for Haar the discrete wavelgfsare not just sampled versions of
the associated continuous-time wavejdtz). They are however precisely the vectors
¢/ constructed in Daubechies’ (1992, p. 204) cascade algorithm used for producing
continuous-time wavelet approximations. Our implementation uses Daubechies’ real-
valued wavelets although we theoretically admit the possibility of using complex-valued
compactly supported wavelets, such as the ones due to Lawton (1993) that have a linear
phase property (symmetric) which could be useful when estimating our wavelet spectrum.
The key point for discretenon-decimatedwavelets is that they can be shifted
to any location defined by the finest resolution wavelets in Mallat's (1989) discrete
wavelet transform (DWT) and not just by shifts By’ as in the DWT, see Nason and
Silverman (1995) for a description of the non-decimated wavelet transform. We also assume
periodized wavelets so shifting is periodic as well. Hence, in practice our algorithms might
suffer from the usual boundary problems but in fact our theoretical quantities derived below
are only defined to live on the open unit interval anyway.
Discrete non-decimated wavelets are no longer orthogonal but an overcomplete
collection of shifted vectors. We define the quantity. to be thekth element in the vector
; andq;x(7) is thekth element of the vectap; ), i.e.1;;. shifted by integers.

2.1 Locally stationary wavelet (LSW) processes

We first define our process model constructed from genuine time-scale building blocks or
“atoms”, 11, (), with random amplitudesw;?k.T &k as follows.

Definition 2.1 Thelocally stationary wavelet (LSW) processes are a sequence of doubly-
indexed stochastic process¢(;r}i—o,.7—1, T = 27 > 1 having the following
representation in the mean—square sense

—1
Xor =YY wdpq Yikt) & (7)

j=—J k&



whereg;; is a random orthonormal increment sequence and wigrg(t) } ;i is a discrete
non-decimated family of wavelets fpr= —1,-2,... ,—J(T), k = 0,... ,T — 1 based
on a mother wavelep(t) of compact support.

The quantities in representation (7) possess the following properties:

1. B¢ = Oforall j,k. HenceEX;r = 0 forall £ andT'.

2. cov(&jk, Eom) = 0ju0km-

3. There exists for each < —1 a Lipschitz—continuous functioi’;(z) for z € (0,1)
which fulfils the following properties:

-1
> [Wj(2)” < oo uniformlyinz € (0,1). (8)

Jj=—00
The Lipschitz constants; are uniformly bounded in and

-1

Y 271 <. (9)

j=—o0

There exists a sequence of constaiifssuch that for each”

k
sup w?,k;T - W; <T>‘ < C;/T (20)
k
where foreacly = —1,... ,—J(T) = —logy(T) thesup is overk =0,... ,T — 1,
and where{C} } fulfils
—1
Y € <o0. (11)

j==00

Remark 2.2 (Rescaled time)As with Dahlhaus (1997) we are not observing a fixed
continuous time process on an increasingly finer mesh as oo. Instead assumption 3
usesrescaled timez = k/T € (0,1) which permits increasing amounts of data about
the local structure oiV;(z) to be collected ag” — oo. Hence assumption 3 allows us

to (asymptotically) identify the model coefficients determined by uniquely defiigd).

In this sense we have a unique representation (7) given the fixed wavelet basis, although
the {w;'),k;T} themselves cannot be unique because of the overcompleteness of the non-
decimated basis. Our method differs from Dahlhaus (1997) in that we track local power
in the covariance decomposition &f; with respect tescalesinstead of frequencies along
time. The smoothness assumption 1éf)(z), as a function of rescaled time, controls

the variation of each coefficienb;?’k as a function oft so that it can not change too

quickly. Rescaling time byl'~! and the conditions in Definition 2.1 (3) describe how



the local structure becomes increasingly “stationary” along a growing number of local
neighbourhoods with decreasing time variation.

Remark 2.3 (Example: Haar MA processes)Consider the stationary moving average
processX/ = 273 (es.—€1—1), Wwhere{e; } is ani.i.d. sequence with mean zero and variance
o® = 1. The MA(1) processX; is a LSW process with}, ;. (andW;(z)) equal to 1 for

j = —1, k € Z and zero for all othey, £_1;, = € andt;;(t) are the Haar discrete non-
decimated wavelets as defined by (6). The MA coefficients frare just those of the scale

—1 non-decimated Haar wavelets. The LSW proc&gs= 2""(¢; + €, 1 — €, 2 — €;3)

uses scale-2 discrete non-decimated Haar wavelets is MA(3) andzb%éT (andW;(2))

equal to 1 forj = —2, £k € Z and zero for all othef and¢_5;, = ¢;. Continuing

we can build the MA2" — 1) processX; using scale—r discrete non-decimated Haar
wavelets. We call the collectiopX; }9° , theHaar moving averagerocesses (Daubechies

MA processes are similarly constructed using Daubechies’ compactly supported wavelets).
Any MA process can be represented by a linear combination of Haar MA processes and
often the representation is sparse (because any sequel¢g jrcan be decomposed into

a Haar basis). In these examplé5(z) is a constant function of: stationary processes
always have this property. Remark 2.6 shows a non-stationary example Whergis not
constant.

Remark 2.4 (Model interpretation) Roughly speaking, we expect the amplitud%k,T

to be large if at timet = k there is high correlation o with X,_, or Xk+7,7f6r

somer that matches the “wavelength” gf;;(¢) which is proportional t@ 7/ (assuming

that +(¢) is localized at time zero, which it nearly always is in practice). Model (7)
permits a local representation by taking advantage of the standard wavelet property that fast
(high-frequency) oscillations can change quickly, and slow oscillations can change slowly.
Assumption 1 forces LSW processes to have zero mean. In practice, a time series might
need to be detrended using any of the available techniques including those based on wavelets
(see von Sachs and MacGibbon (1997)).

We adopt the usual Meyer-Mallat scale numbering scheme although how it adapts to
increasing numbers of data poifffsequires some explanation. The data live on scale zero,
scale—1 is the scale which contains the finest resolution wavelet detail and schkhe
coarsest (in practice determined by the lengtbf data, i.e.J = J(T')). The advantage
of the altered numbering scheme is that we keep the support of the wavelets on the finest
scale fixed and constant with respect to the lerigthf the observed time series. However,
asT increases longer cycles can appear in the series and so the model includes increasingly
coarser wavelets. In other words/ should tend to-oo with increasingr’.

Wavelet devotees will note that model (7) has no scaling function coefficient.
Asymptotically, it is not required. As in traditional wavelet multiresolution analysis, as
the scale tends teoc, the coarse scale approximation will finally be included in the overall
sum of the details.

More general families could be substituted for the non-decimated wavelets in (7) e.g.
(discretized) continuous wavelet transforms (CWT) or non-decimated waaakets see
Nasonet al. (1997). However, non-decimated wavelets seem to give the right balance
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between orthogonality and too much overcompleteness as they control the redundancy in
the process representation (which CWT-based models do not). The DWT permits for a
rigorous theory (see von Sachs al. (1998)) but does not include traditional stationary
processes in the model. Though assumption 2 appears to be somewhat restrictive, note
that, because we use a shift-equivariant non-decimated wavelets the model includes a
large class of correlated processes. In particular LSW processes include all stationary
processes withh " _|c(7)| < oo: a large class of processes with short-range dependence
(see Proposition 2.17).

2.2 The evolutionary wavelet spectrum

Theevolutionary wavelet spectrumeasures the local power (contribution to variance) in a
LSW process at a particular (rescaled) timand scalej (scale can be loosely interpreted

as the usual time series lag). The EWS is the analogue of the usual stationary process
spectrumf(w).

Definition 2.5 The sequencd X, r}i—o,.. 7—1, for the infinite sequencd > 1, has
evolutionary wavelet spectrum(EWS) defined by

Si(z) == [W;j(2)?, j = —1,...,—J(T),z € (0,1), with respect tds; }. (12)

Using assumption 3 of Definition 2.15;(z) = lim7_, |w;.) [zT]_T| 2 vz e (0,1), and
thus fquiIst_:lfOO S;j(z) < oo uniformly inz € (0,1).

Our LSW model (7) therefore delivers a time—scale decomposition which parallels
the time—frequency decomposition of Dahlhaus’ (1997). (See Remark 4.18 in von Sachs
et al. (1997) for further connections). Our model is similar to Dahlhaus’ model in two other
ways: the EWS is defined only for € (0, 1), as boundaries do not make sense in this
model and the EWS is uniquely defined (in terms of localized autocovariance, shown by
Theorem 2.13).

Remark 2.6 (Example: non-stationary processesPefine the EWS of theth Haar MA
process to be57(z). ThenSj(z) = ;- forall z € (0,1) since |W;(z)|? is equal to

1 for j = —r and zero otherwise. Suppose we concatematidservations from each

of X!, X?, X} and X;}. Within each of the segments ef observations the process is
stationary but as a processé4f observations it is non-stationary. One realization of such a
concatenated series is shown in Figure 2. The EWS for the concatenated series will simply
be S} (z) followed successively b7 (z), 5% () and Sj(z). An estimate of the EWS for

the concatenated series appears in Figure 3 (so, for example, the bottom line of coefficients
in Figure 3 estimates'_; (¢) and shows that it is non-zero only when the A process,
X1(t), is “active”. Then, at time = 128, the MA(3) process,X?(t), becomes active and

this is reflected by the non-zero block 8f 4 (¢) coefficients until timet = 256, and so

on). The estimate is based on a “mean-corrected wavelet periodogram” to be introduced in
section 3.1.
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Figure 2: A concatenation of = 128 observations from consecutive Haar moving average
processes(!, X2, X3 and X*. The variance of the underlying i.i.d. process wéds= 1.
The vertical dotted lines indicate where proc&$schanges to process™t! forr = 1,2, 3.
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Figure 3: Mean of 100 corrected wavelet periodogram estimateS;@f for ; =
—1,...,—9. (Each corrected wavelet periodogram (section 3.1) was computed from an
independent simulation of the concatenated MA process described in the text).



2.3 Local autocovariances and autocorrelation wavelets

If X7 is a LSW process then it is no surprise that its autocovariande,) =

cov {X[zT],T;X[zT] v}, for z € (0,1) and T € Z, also has a “wavelet-type”
representation.  More precisely, Proposition 2.11 shows thattends to alocal
autocovariancee, defined in Definition 2.9, which itself can be represented by a series of
autocorrelation waveletwith coefficients given bys;(z). This is analogous to the classical
stationary case where autocovariance has a Fourier representation in terms of the spectrum
asin (2).

Definition 2.7 (Autocorrelation wavelets) W,(7) := >, 1% (0) ¢ji(7) , j < 0,7 € Z.

Remark 2.8 (Haar autocorrelation wavelets)The Haar autocorrelation wavelt;(7) is
a sampled version of the continuous Haar autocorrelation wavetgty), given by

V) = [ dutaypuo s = { | I PTU R ag)

whereyy (x) is the Haar mother wavelet. In general if the generating wavelét$ are
compactly supported then so is the corresponding autocorrelation wi\eletthe support
of ¥ (u) is [—1, 1]. The discrete autocorrelation wavelét;(7) can be written in terms of
Uy (u)forj <0byU(r) =¥y (2|7]),forr = —(n—1),...,0,... ,(n—1),n =27,
and zero for other values of For smallj, for Haar wavelets, the form oF ;(r) is very
simple: e.g¥_4(7) =1, —%,0 for |7| =0, 1, otherwise.

Autocorrelation wavelets are related to the autocorrelation shell of Saito and Beylkin (1993)
which they use in a multiresolution analysis. Further, the autocorrelation function of
the father wavelet(7) is a fundamental function of the Dubuc and Deslauriers (1989)
interpolation scheme and the relatidn(r) = ¥(27|7|) is valid for all of the Daubechies’
compactly supported wavelets.

Our usage averages the discrete wavelets over all locations within onejsaat
provides a family of symmetric, compactly supported and positive semi-definite functions
on T € 7Z which are well-suited for the construction of autocovariance functions of quasi—
stationary processes as shown next.

Definition 2.9 Define thdocal autocovariance(LACV)c(z, 7) of a LSW process with EWS
{5j(=2)} by

-1
c(z,m) = > Si(2) Vi(r), T€Z,2€(0,1). (14)

j=—00

For stationary processes the dependence: am (14) disappears and in this case one

should compare (14) with the classical Fourier autocovariance representation in (2). The
autocorrelation wavelets take over the role of the complex exponentials and even enjoy
similar properties (without being orthogonal, though). The most important ones are:
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;(0)=1,5% ¥;(r)=0forall jand}_, 270 (1) = 6-9. So we have found a perfectly
suitable set of functions for representing autocovariance functions which, in contrast to the
complex exponentials, are locally supported and hence can deliver sparse representations.

The following relates to stationary processes even though Definition 2.9 refers to the
more general case of LSW processes.

Remark 2.10 (Haar MA process example) The Haar MA processX'(t) has
autocovariance (1) = o2 (4,,0 — 34},,1) Which is precisely the autocorrelation wavelet
U_y(7). Therefore X'(t) has an extremely sparse representation in terms of the
autocorrelation waveletscl () = o?¥_;(r) i.e. equation (14) withS;(z) equal to

0?2 = 1for j = —1 and zero otherwise. Indeed, by construction, the autocovariance of
X7 (t) is always sparsely represented:(r) = o?¥ _,.(7) for all » € Z. Similar sparse
representations occur if we replace Haar by other compactly supported wavelets. Such
representations are instructive as they tell us what processes are sparsely represented in
{S; (z)}j;{OO and thus which are likely to be well-estimated by our wavelet machinery.

The above remark considered a simple stationary case. However, Definition 2.9 applies
for more general LSW processes. The following proposition shows how a LSW process
autocovariance;r, asymptotically tends to(z, 7).

Proposition 2.11 AsT — oo, uniformly int € Zandz € (0, 1), |er(z,7) — c(z,7) | =
O (T 1).

If the process is stationary then the dependence oncr, ¢ and.S; disappears and our
representation turns from a local into a global one (which is possible because of the shift-
equivariant non-decimated wavelets).

2.4 Uniqueness of the autocovariance representation

In the stationary theory representation (2) is invertible: the spectrum is also the Fourier
transform of the autocovariance. The following question naturally arises: is the EWS the
inverse of the LACV? It turns out that inversion is possible using the following invertible
autocorrelation wavelet inner product matrix.

Definition 2.12 Define the operatod = (Aj¢); <o by
Ajg =< \Ifj, \I/g > = Z \I/j(’r) \I/g(T) , (15)

and theJ—dimensional matrixd ; := (A;¢)jr=—1,...,—J-

The following theorem, valid for all Daubechies’ compactly supported wavelets, shows that
A is an invertible operator and that for eaéhthe norm ofA;1 is bounded from above by
some constant’;.

10



Theorem 2.13 The family{ ¥ ;(7) ;:1_00 is linearly independent. Hence:
() The EWS is uniquely defined given the corresponding LSW process.
(b) The operatota is invertible (as all its eigenvalues are positive), and for edd¢he norm

|A; || is bounded above by soris.

Theorem 2.13(b) enables us to supply a representation of the EWS in terms of the LACV
as in the following proposition.

Proposition 2.14 Inverse formula of equation (14).

Si(z) = DALY ez, 7)W(7). (16)
l

T

We emphasize that for eadh the process representation (7) cannot be unique but the
representation of the local autocovariance (14) actually is unique. Further, Corollary 2.16
below shows that if we replaceby c¢r in (16) then its inverse representation converges

to the EWS. This is a stronger result than (16) and requires a finer characterisation of the
redundancy i provided by the next theorem.

Theorem 2.15 Let A\,in(A) denote the smallest eigenvalue 4f Then, for Haar and
Shannon wavelet families, there exists & 0 such that\ i, (A) > ¢ hencel|A || < oo,
i.e. A is positive—definite and has a bounded inverse.

The Shannon wavelet is the limiting wavelet in the Daubechies’ compactly supported
series as the number of vanishing momeNts— oo, see Chui (1997). We conjecture
that Theorem 2.15 is valid for all Daubechies’ compactly supported wavelets and provide
evidence in the appendix.

Corollary 2.16 The EWY S;(2)} as defined in Definition 2.5 also arises as the asymptotic
limit of

—1
Tir(z) =Y Al Y er(z,7) Up(r) i =—1,...,—J(T) =logy(T).  (17)
=—J T
That is,
Jim Tyr(z) = Sj(z) = lim lwlrl®, j < -1, 2€(0,1), (18)

Finally we inspect the links between LSW and stationary processes.

Proposition 2.17 (a) All stationary processes with absolutely summable autocovariance
>, lex(7)] < oo are LSW processes (with respect to wavelets fulfilling Theorem 2.15).
(b) Conversely, any LSW process with time independent EWS fulfilling the additional
assumptiord | y 277 Sj < oo is stationary with absolutely summable autocovariance.

11



3 Estimation theory

3.1 The wavelet periodogram

The wavelet periodogram is constructed using the wavelet family spedifipdori in
representation (7). The interesting situation of what happens when a different wavelet is
used to estimate the EWS is left for future work.

Definition 3.1 Theempirical wavelet coefficientsf an LSW procesX, r are given by

T-1

dikr = > Xex hji(t). (19)

t=0

For fixed j the number of summands in (19) does not change Withecause the
wavelet is compactly supported. The following key statistic is the analogue of the classical
periodogram from stationary theory.

Definition 3.2 The wavelet periodogram of a LSW process; r is given byI,ZT =
|dj i

As for classical periodograms the wavelet periodograms have asymptotically non-
vanishing variance (Proposition 3.3) and need to be smoothed to obtain consistency. Various
local smoothing methods could be used but we choose to use non-linear wavelet shrinkage
as described below. Further, Figure 4 shows that the wavelet periodograms foy scale
contain information from other scalg’s# j (e.g. power from scale4 has leaked into scale
—5). Writing I, := (I])j—_1,...,—s Proposition 3.3 shows that tlverrected periodogram
L, = A;lIk ,fork =0,...,T — 1 is asymptotically unbiased for the EWS. Figure 3
shows the superiority of the corrected periodogram compared to the raw one in Figure 4.
Figure 3 correctly shows abrupt changes as one MA process changes into another. Figure 4
incorrectly exhibits significant power at levels -6 and -5 whereas the process only had power
at scales of -1,-2,-3 and -4 (correspondingktt, r = 1, 2, 3, 4 respectively).

3.2 Asymptotics of the wavelet periodogram

For this section we assume that the conditions of Theorem 2.15 are fulfilled and that the
& In (7) are Gaussian, i.§.X; 7} is Gaussian. The wavelet periodogram has analogous
properties to those of the classical periodogram as follows.

Proposition 3.3 (expectation)

Bl =Y AgSilz) +0(T7Y)  Vze(0,1). (20)
l
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Figure 4: Mean of 100 uncorrected wavelet periodograml;i;gf2 forj = —1,...,-9,

for the simulated concatenated MA processes of Remark 2.6.

Hence, for the vector of periodograri](Sz) = {IZzT T}g:,l,m ., and the vector of
the corrected periodograni(z) := {L? [2T] T}],,l _swithL(2) = A" 1(2)

EL(z) = EA;'I(z) = S(2) + O(T™)  Vze(0,1), (21)
WhereS(z) = {Sj(z)}j:,L...,,J
(variance) var Iy, 1 = 2432, AjeSe(2)}” + 0277/ T).

(covariance) The correlation between two wavelet periodogralfi@ and Ifn’T decays with
increasing distance between the locatioon scalej and locatiorm on scale: For
example, within one scale= /, it is zero as soon ag — m| exceeds the overlap of
the corresponding wavelets support. The form of the covariance cannot be compactly
written so we omit it here but see von Saehal.(1997), Proposition 5.3, Lemma 5.5
and Corollary 5.6.

3.3 Wauvelet periodogram smoothing

Like the stationary case the wavelet periodogramadsa consistent estimator and needs

to be smoothed. For each fixed scaleve smoothI,g - as a function oz = k/T using

DWT shrinkage or the translation-invariant (TI) den0|smg of Coifman and Donoho (1995).

In practice we use the latter but only provide theoretical results only for the first (which
parallels existing theory, e.g. Donoho (1995), Neumann and von Sachs (1997), Johnstone
and Silverman (1997), and von Sachs and MacGibbon (1997). Our results also hold for the
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Tl denoising). Since we know (below) how to do wavelet shrinkage onthelistributed
wavelet periodogram we smooth first, then correct fby'). This results in a simpler
analysis than if we corrected before smoothing.

Von Sacheet al. (1997) describes in detail how to smooth using an orthonormal second-
stage wavelet basi§iy,,} of Ly([0,1]). The smoothing is carried out by non-linear
thresholding of the empirical wavelet coefficieris,,, of I/(z) and then inverting to give
the estimateS;(z). The appropriate threshold = A(j, ¢, m,T) can be determined from
the following theorem.

Theorem 3.4 For a Gaussian LSW processes and using a wavetstbounded variation,
the wavelet coefficienty,,,, with 2¢ = o (T'), obey uniformly inmn,

E Gom — /0 IZA]-“ Su(2) Pem(2) dz = O <2£/2/T>, (22)

and,

1 2
var (Ggn) = 27! /0 (Z Ajn Sn(z)> G2 (2)dz + O (24 T‘2>. (23)

Using process normality we proceed as in Gao (1993) and von Sachs and Schneider (1996)
to show that with the following universal threshold the adaptive estitfigte) attains the
usualL, rate of convergence (this result may be generalized to EWS with other degrees of
regularity).

Theorem 3.5 Under the assumptions of Theorem 3.4, with threshold given by
N2(1,m; §; T) = var (Oy,) log?(T), for each fixed,

/0 B (§j(z) - sj(z))2 dz = O (1og2(T)/T%) : (24)

This theorem is based on existing results on quadratic forms of Gaussian variables, which
are y’—distributed (see Neumann and von Sachs (1995), Theorem 3.1 A). For non-
normality, techniques as in Neumann and von Sachs (1997) could also be applied. In
practice some modification might be appropriate such as thresholding the log periodogram.
This transform stabilizes the coefficient variance, pulls their distribution closer to hormality
(Priestley (1981)), and permits use of a universal threshold suitable for normally distributed
data f = 6+/21logT). Such transforms are well known in the classical periodogram and
time-dependent case (e.g. von Sachs and Schneider (1996).)

3.4 Local variance and autocovariance estimation

Finally we address the problem of local autocovariance estimation by inversion of
(smoothed) wavelet periodograms. A useful descriptive tool for estiméitaj variance
can be obtained by summing the (smoothed) wavelet periodogjtaver scaleg.
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Stationary transform Daub cmpct on ext. phase N=3

Figure 5. Corrected smoothed wavelet periodogram of one realization of the concatenated
process given in Remark 2.6. The Daubechies extremal-phase wavetet3 was used

in the representation and the Daubechies least-asymniétre 4 wavelet was used for
smoothing.

Proposition 3.6 Let S‘;(z) denote the result of applying the inverse matrix! to the
smoothed wavelet periodogra@y(z). Definec(z, 1) by replacing S;(z) by S‘;(z) in
equation (14) and replacing the lower sum linjit="—oco by —Jy. LetT — oo and let
270 = o (T'). Thenc(z, 7) is a consistent estimator ofz, 7) because for each fixede Z,

1
¢l 2 =0 .
E/ (1) —elzy7) )? dz = o(1)

Proof. The proof appears in von Sacésal. (1997).

4 Examples and applications

4.1 Concatenated Haar example

Figure 3 shows the average of wavelet periodogram estimates from 100 realizations of the
concatenated process of Remark 2.6. Figure 5 shows the corrected smoothed é”;majate
computed from one realization of the concatenated process: each level was smoothed by
Coifman and Donoho’s (1995) TI-denoising method using threshold & logT from

section 3.3 on levels 3 and finer using a mean absolute deviation (MAD) estimator of
o using the finest scale coefficients as is standard in wavelet shrinkage, see Baitnoho
al. (1995). Figure 5 is reasonable with power coming and going approximately where it
is meant to in scales -1 to -4. The estimate is not perfect and several issues effect the
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Figure 6: The raw wavelet periodograf ,,,, for the ECG data. Each level in the
periodogram has been scaled independently so that detail at all levels can be seen (some
of the larger scale levelg,more negative, are almost 10 times as large).

estimate’s quality. Firstly, which analyzing wavelet should the wavelet periodogram use?
Even though the underlying process was Haar we used a smoother Daubechies extremal-
phase wavelefv = 3. We advocate smoother analyzing wavelets to avoid “leakage” to
surrounding scales because of their shorter support in the Fourier domain and they also help
with the smoothing itself as the raw estimate looks less spiky and variable (indeed for the
ECG data we us&v = 10). Secondly, the smoothing is not perfect and the estimate is
more variable in scale-4 and over-smoothed in scalesl and—2 (a consequence of the

raw wavelet periodogram being more variable in the coarser scales and the correction by
A~" only helping to reduce bias, but not necessarily variance). The question of how best to
smooth needs to be investigated further.

4.2 The infant ECG data (continued from Section 1)

Figure 6 shows the raw wavelet periodogram for the series of 2048 points in Figure 1, for
all possible scales from1to J = —11. Figure 7 shows a smoothed corrected estimate of
the EWS for the ECG series. The Daubechies’ (1992) least-asymmetric wavelets of order
N = 10 were used to form both the wavelet periodogram and to do Tl wavelet smoothing
of the log periodogram with a soft universal threshale: 5/21og T on scales 7 and finer
using a MAD estimate of.

The information in Figure 7 is actually highly meaningful as is shown by the
enlargement of scalg = —1 in Figure 8 (solid line). The dotted line in Figure 8 indicates
the sleep state as judged by a trained human observer (from brain wave measurements, EEG,
and eye movements, EOG). The observer classifies the sleep state as quiet (1), between
quiet and active (2), active (3) and awake (4). There is a strong association between the
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Figure 7: Estimate of EW§;(z) for ECG data (levels scaled independently).
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|
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Smoothed inverted spectrum estimate at scale -1

Time (hours)

Figure 8: Solid line is EWS estimate at scal¢: S* (=) for ECG data. The dotted line
indicates sleep state as determined by expert analysis of EEG and EOG (independent of
ECG). The dotted line value is indicated by the right-hand axis: 1=quiet sleep, 2=between
1 and 3, 3=active sleep, 4=awake.
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estimate,S* | (z), and the sleep state. Recall ti#it, (z) estimates the power in the ECG
signal at time locationg corresponding to the finest scale oscillations. In particular, note
wakefulness occurs whilsﬁ’il(z) is large and quiet sleep occurs when it is small. Our
estimate is useful for feeding into models that can predict sleep state from the ECG (ECG
is easy and routine to measure, sleep state is more tricky and can be distressing for parent
and infant, see Nasagt al. (1997) for more discussion). In effecﬁ,*j1 measures the local
stochastic variability of the ECG at that scale and it correlates fairly well with the sleep state
variable. Figure 7 also indicates that scales -2 through to -5 also contain similar information
to that presented in scale -1. Power at scales coarser than -5 does not appear to correlate
much with the sleep state which seems to be a signal living at finer scales.

5 Appendix: Proofs

Proof of Proposition 2.11
Using the representation of the procé§sr given in (7) the covariance is given by

cr(z,7) = cov{ X Xorjar ) = Z |w] i (2T sk ([2T] + 7)
ik
= Z |w?,[zT}+é;T|2¢j,[zT}+é([ZT])Tﬁj,[zT]Jre([ZT] +17)
it

= Z |w2,[zT}+k;T|2¢jk(0) Yik(T).
ik

With condition (10) |w Tk 2= Si(z+ k/T)‘ O(C;/T), and sinceS; is Lipschitz
|S;j(z + k/T) — S;(2)| = O(L;|k|/T). Hence,

D 10 ke ik Ok (1) — ez, m) | = D [0 g g Pk (0) ¢ (7 ZS

Jjk Jjk

T (Ljlkl + C)) |wjk(0)¢jk(f)| =0(T ),

jk

IN

due to conditions (9) and (11). Note also tha}; Sj(2)¥;(r) < oo, by (8) and as
U,;(1) = O(1) uniformly in 7.

Proof of Theorem 2.13
Suppose there were two spectral representations of the same LSW process, i.e. there existed

](,I)T anduw! ,2 . With, fori = 1,2,

sup |w
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and with the same covariance. This means that, for eaelf0, 1) and each € Z,

-1

-1
clz,m) = Y SV = 3 SP()w(n),

with S (z) = [W " (2)[,i = 1,2. DefineA;(z) := St (2) — 51 (2). We have to show
that

—1
0= Aj(2)T;(r), (25)

j=—o0

for eachz € (0,1) and eachr € Z, implies thatA;(z) = 0, V5 < 0, z € (0,1) hence
proving part (a). This also demonstrates the linear independence of the {alrr_;ﬂ’y)}j<o.
We actually show that (25) implies that

Aj(z) =0  Vj<0,z€(0,1), (26)

whereﬁj (z) := 27A;(2). To do so, observe that by Parseval’s relation, starting from the
definition in (15),

Aje = S 0000) = 5 [ T @), @)
with
L - _ _ —(j+2)
T(0) = [ ()P =2 7m0 0 T lmo(2'w), (28)
{=0

wheremg(w) = 27123, hy exp(—iwk), with 3, 2 = 1, 1/V23, b = 1, and
|mi(w)]? = 1 — |mo(w)|?. Formula (28) is just the Fourier domain expression of the
the inverse DWT operator (squared). The repeated convolutions in (3) and (4) simply
turn into —j — 1 multiplications ofmg (corresponding to repeatédd convolutions) and

a multiplication ofm; (corresponding to the singleconvolution). Now we show that (25)
implies (26): assume = Zj_:lfoo Aj(2)¥;(7) hence, forall < 0, all T € Z,

0= "3 Aj(2)An(z) Y Wi(r) (7).
l i T

Using Parseval (27) we obtain= 3", 3. Aj(2)A(2) [ dwl;(w)Ty(w), i. €.,
2
0= /dw (Z &(@@@)) . (29)
J
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With 3. Sj(2) < oo we infer that)_ Ej(z)@(w) is continuous inw € [—m, 7|, because
everyQJ\/I/;(w) is, (as it is a trigonometric polynomial uniformly bounded above by one),
and becaus®; 277|A;(2)| < o0. Hence, equation (29) is equivalent to

-1
0= Aj(x)¥j(w) Ywe[-ma] Vze(0,1). (30)

j==o0

To show the pointwise implication of (26) by (30), we again use continuity arguments and
successively insert zeros fof(2 U+ Dw)|? which are atr /2~ 0+, j < 0. Fixz € (0, 1),

and letA; := A(z) for this fixedz. First insertw = 7 to show thatA _; = 0. This is due

to [mo(m)[2 = 0, i.e. U () = 0,5 = —2,=3,...and ¥ () # 0 (as|m, ()2 = 1). In

order to show thaﬂ,g = (0, observe that

—o0 —o0 —(j+2)
0= Y &) = Imofe)l* (Z A2 @ O ] mo(%w)?) .
J

As |mg(w)|? is analytic andng(w), as a trigopnometric polynomial, has only finitely many
zeros, the function in brackets, which is again continuous, must vanish identically. Insertion
of w = 7/2 results iNtoA_y = 0, as|my(2- 7/2)]2 = 1 # 0, and|mg(2 - 7/2)2 = 0.
Iteration of this scheme for = —3, —4, ... leads to the assertion (26).

For part (b) we use the linear independence of¥heand that fact tha#l is the Gram
matrix of the ¥'; to establish that is positive definite and hence all its eigenvalues are
positive.

Proof of Proposition 2.14
To verify the inversion formula substitute the definitionc6f, 7) in (14) into (16):

S AN Su() (1) (7). (31)
l T n

Use that by (8) and (12)_, S;(z) < oo for all z and that the sum overis finite to exchange
the order of summation:

DALY Su(2) < WUy >=8u(2) > A Ay =Y Su(2)djm = Sj(2). (32)
l n Y/ n

n

Proof of Theorem 2.15 (for the Haar wavelet)

We show that there exists sofie- 0 such that\,;,(A) > ¢ by showing that\,;,(B) > 4,
whereB = D' - A - D with diagonal matrixD = diag(2//?) <o, i.e., Bje = 27/2A4;42%/2,
This is sufficient by (i) of the following matrix properties and Toeplitz matrix theory:

(i) If A is a Hermitian (symmetric) matrix with = D' . C - D, D diagonal, then
Amin(A) 2 Amin(D)Amin(C) Amin(D)-
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(i) (Weyl) If A = B+ C, whereB andC are Hermitian (Ssymmetric), theky,,(4) >
Amin(B) + Amin(o)-

(i) (Reichel and Trefethen (1992), Theorem 3.1(i)) Uebe Toeplitz (and Hermitian)
with elements{to, ¢1,...} Let f(z) = Y00 t,2" for z € C be the symbol of the
operator associated withi. If > |t,| < oo, thenf(z) is analytic in the open unit
disk D in the complex plane and continuous in the closed unit disk= D U S,
where S denotes the unit circle. The spectrumof the (Laurent) operatof” is
A(T) = f(S). If, additionally, T is symmetric then an estimate of the smallest

eigenvalue off" is

1
E= B ~

min f(z) = mlnto—i-QRe(Zt z ) (33)

For convenience our indices will now run from 1 4o rather than—1 to —oo. Using
straightforward algebra we can explicitly derive formulae for entriesl éfom ', given
by (13) (see von Saclet al. (1997) for more detail). The elements 4fare:

2% +5 _2%- 1+1

Now, with B;, = 279/2 4,27/ and using equation (34),

23]'/271 + 27]'/2

_ =25 L
Bjj—1/3+5/3'2 ],ng— 5302

, 0>7>0. (35)
For¢ = j +m,m > 0,5 fixed Bjjim = 273/271(1 + 2. 27%). Note thatB is
symmetric becausa is. However, Formulae (35) only refer to the upper triangular portion
of the matrixB (you cannot switch indices in these formulae). To use properties (i)—(iii) to
bound the smallest eigenvalue Bffrom below, decompos® as follows: B =T + R =

T + DTTD, whereT is a symmetric Toeplitz wittty = 1/3 andt,, = 273™/2~!, where

D = D%is diagonal Wlthd] = 277,57 > 0, and whereT is again symmetric Toeplitz
with £ = 5/3 andt,, = 27™/2. Because by (i) Amin(B) > Amin(T) + Amin(R), it is
sufficient to show that both,i, (7)) > § > 0 andAnin(T) > § > 0, the latter implying
Amin(R) > 0, using (i), as clearly,i, (D) > 0. Use (iii) to treat the two Toeplitz matrices
as follows. We start by showingi, (7) > 6 > 0. In (iii), to = 1/3 andt,, = 1/2t"! with

t = 273/2_ In equation (33)(z) takes the form, fofz| = 1:

©© 3n/2 m Re(z) —t
f(z):1/3+R€<22 3/2z):1/3—i_tl—i—t2(—)2tRe(z)’

n=1

by some elementary algebra. This is a strictly monotonically increasing function in

—1 < Re(z) < 1, minp iy f(2) = f(=1) with f(~1) = 3‘4’((2@;11)) —=:§ > 0. By
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exactly the same principle, now with = 5/3 andt,, = (2'/2)",

NG e = _1\no—n/ — (9+4\/§) _. 5
Amin(T) > 5/3 + 2R (Z( 1)"2 2) 3@v3+3) 0> 0.

n=1

Hence Amin(B) > § which, by (i) implies that\ i, (4) > A2 (D™ Apin(B) = 26 > 0.
Remark There is strong evidence that the above Haar proof can be extended to other
Daubechies compactly supported wavelets with ordérs> 1. We briefly outline this
extension, see von Sacks al. (1997)) for further details. The key to the extension is
the relationship betweedA and B to equivalentA* and B* arising from the continuous
autocorrelation function built from time—continuous Daubechies wavelets. By using the
scaling relation for continuous wavelets one can show Biais truly Toeplitz for all V.
Estimates of the decay of its off—diagonals, increasing Withcan serve to generalize the
result forN = 1, for which B* equals thel' derived above. (In von Sacles al. (1997)

we show that,,, = O(2-7"V"™), with, by Daubechies (1992), page 238, > 3/2,v;3 >
5/2,v4 > 7/2,....) On the other hand, in the Haar case, as the numbérows tends to
infinity, the matrix B itself approaches this ToeplifZ = B* from above. Equations (28)

and (27) help to show this for the general cae> 1. Finally, we observe that a&
increases the limiting” becomes progressively more diagonal (as does the staBijng
which is due to the increasing decay of the Fourier transfpbrfw)| for || — 0 and

|w| — oo, @asN increases. In the limiting cas&/(= oo) of Shannon wavelets the matrices
are diagonal because of the non-overlapping support in the Fourier domain (next proof). We
leave rigorous completion of the above for future work.

Proof of Theorem 2.15 (for the Shannon wavelet)

We computeA using the Fourier domain formula given by (27). The formula for the
non-decimated wavelets in the Fourier domain is given by (28) and the corresponding
formulae form(w) andm; (w) for the Shannon wavelet can be obtained from the FT of the
continuous time mother and father wavelets which can be found in Chui (1997), pages 46
and 64. Define the s€t; = [—3=—=, — 55| U [5%5, 35=7]- Then after some algebra we
obtainy; (w) = —27]‘/26727]717:“))((;]. (w), wherey 4 (w) is the indicator function of the set

A. Hence, from (28) we obtaiﬁf;(w) = |¢Aj(w)|2 = 2*chj (w). Clearly A;, = 0 for

j # £ since the supports of diﬁere@(w) do not overlap. Simple integration shows that
Aj;j = 277 for j < 0. Hence theB operator is the identity. The proof for the continuous
time operatorsA* and B* is virtually the same and shows that they are equal tand B
respectively.

Proof of Corollary 2.16

Recall first thatB = D’ - A - D where D is a diagonal matrix:D = diag(2//2); o,

i.e. Bj, = 2//24;2!2. Replacing in (17)r(z,7) by its asymptotic limitc(z, 7) with

Ry = |er(z,7) —c(z,7)| = O(T ') uniformly in both arguments, we continue as follows,
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while using>>_|¥,(7)| = O(27%).

Tir(z) = ZA](Z ZCTZT\I/g ZAEJIZ 2,7) + Rp] Wy(7)

l=—1 {=—-1
= §:<A%1§: (2, 7)Uy(T %—E&T
{=—1

Observe that, a§" — oo, J(T') — oo, the first part tends t&;(z), see equations (31)
and (32). The remainder behaves like

Rjr < 77! Z AEJIZNIE )| =77 Z 212B;1220(27")
l=—1 {=—1

= 7! Z 2B o2 %) = 027?20 )
l=—1

because the norm aB~! is~bounded by Theorem 2.;5. Further, we need to check the
summability condition:3_, Tjr(2) = >_, 5j(2) + >2; Rjr, with 37, Sj(2) < oo from
definition (2.5) and

ZR]T— Z Rir+ Y Rjp=0Q"*T ) +0(T™)

j=-1 i>—J
as) ;. ;2//? = 0(277/?). Observing thap’/?> = T'/2 ends the proof.

Proof of Proposition 2.17

a) For stationary processes withi_ |c(7)| < oo we observe that under the conditions of
Theorem 2.155 . |r(7)| < oo uniformly in 7, hence_, S; < oco.

b) is an immediate consequence of the following corollary to Proposition 2.11.

Corollary 5.1 Let}";2775;(z) < oo, uniformly inz. Then,>" _|c(z,7)| < oo, uniformly
inzand)_lcr(z,7) —c(z,7)| = o(1), asT — oo, uniformly inz.

Proof of Corollary 5.1
Define the following approximatior: s, (z,7) = ;ZI_JO S;j(z)¥; (7). As a continuation
of the proof of Proposition 2.11, using thgt_|¥,(7)| = O(277), we observe that

Do lelz <Y1 Si(2)T5(n)] < O 2778)(2) < 00
T T i

Further, ZT|C]0(Z,T) — cr(z, 1) = 0O(27°/T) and Yoolen(z,m) = ez, 1) <
e 2 785(2) = ol1).
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Proof of Proposition 3.3
For theexpectationpart we have:

2
E(Ilg;T) (d 7) Z Z{ EmT} {Zwm(t)?/}jk(t)} :

l=—J m

since thet;;, are orthogonal increments. Now substitiiie= n + £ to obtain

2
IIZT Z Z{wz ks T} {Z W,n+kt¢j,kt}
t

l=—J n

and since the sum oveiis from —oo to co we have

B(t]r) - ZZ{&(””“)W }{antw}

using (10) and (12). Using the Lipschitz propertyl&f (and hences) we have

B(I ) = Zz{sg( >+OnT }{an twj,} o),

the remainder term can come out of the inner bracket because the number of terms in the
wavelet inner produc} _, 1, ,—1;,—¢ is finite (and bounded as a functionef because of

the compact support, the Lipschitz constant summability, jaisdfixed and therefore after
expanding the square we obtain

PURERS sg( )ZZZ% Wi ttbin stbyis + O(T ).

{=—1J

Now make the substitution = s — ¢ and rearrange giving

II]cT Z SZ( >ZZT/U, tz/)j, —v— tzwfn tz/)én v— t+0( )

{=—1J
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The last sum can be replaced Wy(v) to give

E(I,z;T) = Z Sg( )Z‘Ife Z%, g, vt +O(T 1)

{=—J

= ZSZ< )Z‘Pz v) +O0(T 1)

{=—J

= i A8, (;) +o(T .

t=—J

which completes the proof of the expectation.

For the variance part we note that the wavelet periodogramg “ardistributed, and
they have the same asymptotic behaviour as their Fourier analogues, i.e. the variance is
asymptotically proportional to the expectation squared, with rate of convergence of the
remainderO(2=7/T).
Proof of Theorem 3.4
With our modelS); andS]? are both Lipschitz, too. Then (22) is an immediate consequence
of Proposition 3.3, part 1, and equation (20) with the rates there. For the variance note
that this formula is very similar to the variance of empirical wavelet coefficients of time—
dependent “Fourier” periodograms, where the expectation limit is the spectrum and the
variance limit is the squared spectrum (see, e.g., von Sachs and Schneider (1996), Thm 4.3,
equation (4.7). Note that ours is ffixed “frequency”.) We just substitute the squared
spectrum by the squared expectation limit of the wavelet periodogram in (22).
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