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Summary. This article defines and studies a new class of non-stationary random processes

constructed from discrete non-decimated wavelets which generalizes the Cramér (Fourier)

representation of stationary time series. We define an evolutionary wavelet spectrum (EWS) which

quantifies how process power varies locally over time and scale. We show how the EWS may

be rigorously estimated by a smoothed wavelet periodogram and how both these quantities may

be inverted to provide an estimable time-localized autocovariance. We illustrate our theory with a

pedagogical example based on discrete non-decimated Haar wavelets and also a real medical time

series example.
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1 Introduction

If a time series is stationary then classical theory provides optimal and well-tested means
for its analysis. However, we would submit that the majority of actual time series are, in
fact, not stationary. This article introduces representations of non-stationary time series,
i.e. data with atime–varying second order structure, in terms of discrete non-decimated
wavelets. This gives us a tool that permits quantification of the autocovariance of a non-
stationary time series as the series evolves through time. Time series can be non-stationary
in many ways and several methods already exist. This article contributes methodology
which is “optimal” for a certain class of non-stationary processes but also presents useful
interpretable information for many others. Our work provides an additional complementary
tool rather than overthrowing existing methodology.

�Address for correspondence:Department of Mathematics, University Walk, University of Bristol, Bristol,
BS8 1TW, England
E-mail: G.P.Nason@bristol.ac.uk
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Figure 1: Heart rate recording of 66 day old infant. Series is sampled at1
16Hz and is

recorded from 21:17:59 to 06:27:18. There areT = 2048 observations.

Stationarystochastic processesXt, t 2 Z, may be written

Xt =

Z �

��
A(!) exp(i!t) d�(!); (1)

whered�(!) is an orthonormal increment processes (see Priestley (1981)). Further, the
autocovariance ofXt has a well-known Fourier representation in terms of the spectrum:

cX(�) =

Z �

��
f(!) exp(i!�) d!: (2)

In this article we concentrate on processes whose second-order structurechanges
over time, for example we could introduce a time-dependency into the autocovariance or
spectrum. Alternatively, we could replace the amplitude,A(!), in (1) by a time-varying
version,At(!) (e.g. theoscillatoryandlocally stationaryprocesses of Priestley (1981) and
Dahlhaus (1997) respectively).

Our approach is different in that we replace the set of harmonicsfexp(i!t)j! 2
[��; �]g by a set of discrete non-decimated wavelets (see Nason and Silverman (1994)
or Strang (1993) for introductions to wavelets). Recently, local atomic decompositions
(wavelets, wavelet libraries) have become popular for the analysis of deterministic
signals as alternatives to non-local Fourier representations (Rioul and Vetterli (1991),
Flandrin (1993)). The question immediately arises: is it possible and meaningful to use
such atomic decompositions to represent, not necessarily stationary, stochastic processes?

Figure 1 shows a heart rate (ECG) recording of a infant. It is unlikely that this will
be a stationary time series. One reason for this, of interest to paediatricians, is that the
ECG varies considerably over time and changes significantly between periods of sleep and
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waking. For time series such as these Section 2 introduces a possible underlying models
based on discrete non-decimated wavelets, a time-localized spectrum to be estimated using
a wavelet periodogram and a time-localized autocovariance. Section 3 covers rigorous
estimation of these quantities. Section 4 shows how the smoothed wavelet periodogram
of the ECG series can reveal important features of interest that cannot be elicited from the
time series, standard periodogram, or some time-frequency methods.

Our article formalizes the heuristic ideas of Nason and Silverman (1995) who suggested
using non-decimated wavelets as a means for producing “local spectral density estimates”.
Our formalization permits proper identification and estimation of a wavelet spectrum from
a single finite–length stretch of the processfXtg by restricting the time–variation of the
second order structure offXtg precisely as in the case of time–varying Fourier spectra, see
Dahlhaus (1997), von Sachs and Schneider (1996), Neumann and von Sachs (1997).

Most existing work on wavelets with stochastic processes (Cambanis and Masry (1994),
Cambanis and Houdr´e (1995), Kawasaki and Shibata (1995) and Cheng and Tong (1996))
does not aim to give a decomposition with respect to an (orthogonal) increment process
in the time-scale plane. These papers focus on probabilistic approximations and do
not cover estimation. Morettin and Chang (1995) develop a wavelet periodogram based
on an orthonormal wavelet basis but only for stationary time series. Using localized
representations with truly local basis functions is not completely new, see, for example
Section 13.5 of Walter (1994) or Abryet al. (1995).

Recent work by Mallat, Papanicolaou and Zhang (1998) proposed a method for
approximating the covariance of a locally stationary process by a covariance which
is diagonal in a specially constructed cosine packet basis. Donoho, Mallat and
von Sachs (1998) extended this work to estimation from sampled data and introduced a new
class of locally stationary processes. Our work is different (although there are obviously
links): firstly we propose a fundamental new process model based on wavelets and constrain
the model to be locally stationary via constraints on the model coefficients (rather than the
covariance). Secondly, our wavelet basis permits time-scaledecompositions and analyses
as opposed to the time-frequency interpretation obtained using local cosine functions. For
a variety of data sets stochastic modelling and estimation via a time-scale approach is more
natural, see, for example, Nason and von Sachs (1999).

2 Theoretical foundations: The wavelet process model

This section introduces a process model based on discrete non-decimated wavelets (LSW
processes); an evolutionary wavelet spectrum that quantifies power in LSW processes at a
particular time and scale and a time-localized autocovariance.

Letfhkgk2Zandfgkgk2Zbe the low- and high-pass quadrature mirror filters commonly
used in the construction of the Daubechies’ (1992) compactly supported continuous-time
wavelets. The associateddiscrete wavelets j = ( j0; : : : ;  j(Nj�1)) are compactly
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supported of lengthNj for scalej < 0 and obtained using the formulae

 �1n =
X
k

gn�2k�0k = gn; for n = 0; : : : ; N�1 � 1, (3)

 (j�1)n =
X
k

hn�2k jk; for n = 0; : : : ; Nj�1 � 1; (4)

Nj = (2�j � 1)(Nh � 1) + 1; (5)

where�0k is the Kronecker delta andNh is the number of nonzero elements offhkg. For
example, the discrete Haar wavelets at scales�1 and�2 respectively are

 �1 = (g0; g1) =
1p
2
(1;�1) and �2 = (h0g0; h1g0; h0g1; h1g1) =

1
2 (1; 1;�1;�1)

(6)

and so on. Except for Haar the discrete wavelets j are not just sampled versions of
the associated continuous-time wavelet (x). They are however precisely the vectors
cj constructed in Daubechies’ (1992, p. 204) cascade algorithm used for producing
continuous-time wavelet approximations. Our implementation uses Daubechies’ real-
valued wavelets although we theoretically admit the possibility of using complex-valued
compactly supported wavelets, such as the ones due to Lawton (1993) that have a linear
phase property (symmetric) which could be useful when estimating our wavelet spectrum.

The key point for discretenon-decimatedwavelets is that they can be shifted
to any location defined by the finest resolution wavelets in Mallat’s (1989) discrete
wavelet transform (DWT) and not just by shifts by2�j as in the DWT, see Nason and
Silverman (1995) for a description of the non-decimated wavelet transform. We also assume
periodized wavelets so shifting is periodic as well. Hence, in practice our algorithms might
suffer from the usual boundary problems but in fact our theoretical quantities derived below
are only defined to live on the open unit interval anyway.

Discrete non-decimated wavelets are no longer orthogonal but an overcomplete
collection of shifted vectors. We define the quantity jk to be thekth element in the vector
 j and jk(�) is thekth element of the vector j(k��), i.e. jk shifted by integers� .

2.1 Locally stationary wavelet (LSW) processes

We first define our process model constructed from genuine time-scale building blocks or
“atoms”, jk(t), with random amplitudes,w0

j;k;T �jk, as follows.

Definition 2.1 Thelocally stationary wavelet (LSW) processes are a sequence of doubly-
indexed stochastic processesfXt;T gt=0;::: ;T�1; T = 2J � 1 having the following
representation in the mean–square sense

Xt;T =
�1X

j=�J

X
k

w0
j;k;T  jk(t) �jk; (7)
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where�jk is a random orthonormal increment sequence and wheref jk(t)gjk is a discrete
non-decimated family of wavelets forj = �1;�2; : : : ;�J(T ), k = 0; : : : ; T � 1 based
on a mother wavelet (t) of compact support.

The quantities in representation (7) possess the following properties:

1. E�jk = 0 for all j; k. HenceEXt;T = 0 for all t andT .

2. cov(�jk; �`m) = �j`�km.

3. There exists for eachj � �1 a Lipschitz–continuous functionWj(z) for z 2 (0; 1)
which fulfils the following properties:

�1X
j=�1

jWj(z)j2 <1 uniformly inz 2 (0; 1): (8)

The Lipschitz constantsLj are uniformly bounded inj and

�1X
j=�1

2�j Lj <1 : (9)

There exists a sequence of constantsCj such that for eachT

sup
k

����w0
j;k;T �Wj

�
k

T

����� � Cj=T (10)

where for eachj = �1; : : : ;�J(T ) = � log2(T ) thesup is overk = 0; : : : ; T � 1;
and wherefCjg fulfils

�1X
j=�1

Cj <1 : (11)

Remark 2.2 (Rescaled time)As with Dahlhaus (1997) we are not observing a fixed
continuous time process on an increasingly finer mesh asT ! 1. Instead assumption 3
usesrescaled timez = k=T 2 (0; 1) which permits increasing amounts of data about
the local structure ofWj(z) to be collected asT ! 1. Hence assumption 3 allows us
to (asymptotically) identify the model coefficients determined by uniquely definedWj(z).
In this sense we have a unique representation (7) given the fixed wavelet basis, although
the fw0

j;k;Tg themselves cannot be unique because of the overcompleteness of the non-
decimated basis. Our method differs from Dahlhaus (1997) in that we track local power
in the covariance decomposition ofXt with respect toscalesinstead of frequencies along
time. The smoothness assumption onWj(z), as a function of rescaled time,z, controls
the variation of each coefficientw0

j;k as a function ofk so that it can not change too
quickly. Rescaling time byT�1 and the conditions in Definition 2.1 (3) describe how
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the local structure becomes increasingly “stationary” along a growing number of local
neighbourhoods with decreasing time variation.

Remark 2.3 (Example: Haar MA processes)Consider the stationary moving average
process:X1

t = 2�
1

2 (�t��t�1), wheref�tg is an i.i.d. sequence with mean zero and variance
�2 = 1. The MA(1) processX1

t is a LSW process withw0
j;k;T (andWj(z)) equal to 1 for

j = �1, k 2 Z and zero for all otherj, ��1k = �k and jk(t) are the Haar discrete non-
decimated wavelets as defined by (6). The MA coefficients inX1

t are just those of the scale
�1 non-decimated Haar wavelets. The LSW processX2

t = 2�1(�t + �t�1 � �t�2 � �t�3)
uses scale�2 discrete non-decimated Haar wavelets is MA(3) and hasw0

j;k;T (andWj(z))
equal to 1 forj = �2, k 2 Z and zero for all otherj and ��2k = �k. Continuing
we can build the MA(2r � 1) processXr

t using scale�r discrete non-decimated Haar
wavelets. We call the collectionfXr

t g1r=1 theHaar moving averageprocesses (Daubechies
MA processes are similarly constructed using Daubechies’ compactly supported wavelets).
Any MA process can be represented by a linear combination of Haar MA processes and
often the representation is sparse (because any sequence inl2(Z) can be decomposed into
a Haar basis). In these examplesWj(z) is a constant function ofz: stationary processes
always have this property. Remark 2.6 shows a non-stationary example whereWj(z) is not
constant.

Remark 2.4 (Model interpretation) Roughly speaking, we expect the amplitudew0
j;k;T

to be large if at timet = k there is high correlation ofXk with Xk�� or Xk+� , for
some� that matches the “wavelength” of jk(t) which is proportional to2�j (assuming
that  (t) is localized at time zero, which it nearly always is in practice). Model (7)
permits a local representation by taking advantage of the standard wavelet property that fast
(high-frequency) oscillations can change quickly, and slow oscillations can change slowly.
Assumption 1 forces LSW processes to have zero mean. In practice, a time series might
need to be detrended using any of the available techniques including those based on wavelets
(see von Sachs and MacGibbon (1997)).

We adopt the usual Meyer-Mallat scale numbering scheme although how it adapts to
increasing numbers of data pointsT requires some explanation. The data live on scale zero,
scale�1 is the scale which contains the finest resolution wavelet detail and scale�J the
coarsest (in practice determined by the lengthT of data, i.e.J = J(T )). The advantage
of the altered numbering scheme is that we keep the support of the wavelets on the finest
scale fixed and constant with respect to the lengthT of the observed time series. However,
asT increases longer cycles can appear in the series and so the model includes increasingly
coarser wavelets. In other words�J should tend to�1 with increasingT .

Wavelet devotees will note that model (7) has no scaling function coefficient.
Asymptotically, it is not required. As in traditional wavelet multiresolution analysis, as
the scale tends to�1, the coarse scale approximation will finally be included in the overall
sum of the details.

More general families could be substituted for the non-decimated wavelets in (7) e.g.
(discretized) continuous wavelet transforms (CWT) or non-decimated waveletpackets, see
Nasonet al. (1997). However, non-decimated wavelets seem to give the right balance
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between orthogonality and too much overcompleteness as they control the redundancy in
the process representation (which CWT-based models do not). The DWT permits for a
rigorous theory (see von Sachset al. (1998)) but does not include traditional stationary
processes in the model. Though assumption 2 appears to be somewhat restrictive, note
that, because we use a shift-equivariant non-decimated wavelets the model includes a
large class of correlated processes. In particular LSW processes include all stationary
processes with

P
� jc(�)j < 1: a large class of processes with short-range dependence

(see Proposition 2.17).

2.2 The evolutionary wavelet spectrum

Theevolutionary wavelet spectrummeasures the local power (contribution to variance) in a
LSW process at a particular (rescaled) time,z and scale,j (scale can be loosely interpreted
as the usual time series lag). The EWS is the analogue of the usual stationary process
spectrum,f(!).

Definition 2.5 The sequencefXt;T gt=0;:::;T�1, for the infinite sequenceT � 1, has
evolutionary wavelet spectrum(EWS) defined by

Sj(z) := jWj(z)j2; j = �1; : : : ;�J(T ); z 2 (0; 1);with respect tof jkg: (12)

Using assumption 3 of Definition 2.1:Sj(z) = limT!1 jw0
j;[zT ];T j 2; 8z 2 (0; 1), and

thus fulfils
P�1

j=�1 Sj(z) <1 uniformly inz 2 (0; 1).

Our LSW model (7) therefore delivers a time–scale decomposition which parallels
the time–frequency decomposition of Dahlhaus’ (1997). (See Remark 4.18 in von Sachs
et al.(1997) for further connections). Our model is similar to Dahlhaus’ model in two other
ways: the EWS is defined only forz 2 (0; 1), as boundaries do not make sense in this
model and the EWS is uniquely defined (in terms of localized autocovariance, shown by
Theorem 2.13).

Remark 2.6 (Example: non-stationary processes.)Define the EWS of therth Haar MA
process to beSrj (z). ThenSrj (z) = ��jr for all z 2 (0; 1) since jWj(z)j2 is equal to
1 for j = �r and zero otherwise. Suppose we concatenaten observations from each
of X1

t , X2
t , X3

t andX4
t . Within each of the segments ofn observations the process is

stationary but as a process of4n observations it is non-stationary. One realization of such a
concatenated series is shown in Figure 2. The EWS for the concatenated series will simply
beS1

j (z) followed successively byS2
j (z); S

3
j (z) andS4

j (z). An estimate of the EWS for
the concatenated series appears in Figure 3 (so, for example, the bottom line of coefficients
in Figure 3 estimatesS�1(t) and shows that it is non-zero only when the MA(1) process,
X1(t), is “active”. Then, at timet = 128, the MA(3) process,X2(t), becomes active and
this is reflected by the non-zero block ofS�2(t) coefficients until timet = 256, and so
on). The estimate is based on a “mean-corrected wavelet periodogram” to be introduced in
section 3.1.
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Figure 2: A concatenation ofn = 128 observations from consecutive Haar moving average
processesX1;X2;X3 andX4. The variance of the underlying i.i.d. process was�2 = 1.
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Figure 3: Mean of 100 corrected wavelet periodogram estimates ofSj(t) for j =
�1; : : : ;�9. (Each corrected wavelet periodogram (section 3.1) was computed from an
independent simulation of the concatenated MA process described in the text).
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2.3 Local autocovariances and autocorrelation wavelets

If Xt;T is a LSW process then it is no surprise that its autocovariancecT (z; �) =
cov

�
X[zT ];T ;X[zT ]+�;T

	
, for z 2 (0; 1) and � 2 Z, also has a “wavelet–type”

representation. More precisely, Proposition 2.11 shows thatcT tends to a local
autocovariance, c, defined in Definition 2.9, which itself can be represented by a series of
autocorrelation waveletswith coefficients given bySj(z). This is analogous to the classical
stationary case where autocovariance has a Fourier representation in terms of the spectrum
as in (2).

Definition 2.7 (Autocorrelation wavelets): 	j(�) :=
P

k  jk(0)  jk(�) ; j < 0; � 2 Z:

Remark 2.8 (Haar autocorrelation wavelets)The Haar autocorrelation wavelet	j(�) is
a sampled version of the continuous Haar autocorrelation wavelet,	H(u), given by

	H(u) =

Z 1

�1
 H(x) H(x� u) dx =

�
1� 3juj for juj 2 [0; 1=2];
juj � 1 for juj 2 (1=2; 1];

(13)

where H(x) is the Haar mother wavelet. In general if the generating wavelets (x) are
compactly supported then so is the corresponding autocorrelation wavelet	(u): the support
of 	H(u) is [�1; 1]. The discrete autocorrelation wavelet,	j(�) can be written in terms of
	H(u) for j < 0 by	j(�) = 	H

�
2j j� j�, for � = �(n�1); : : : ; 0; : : : ; (n�1), n = 2�j ,

and zero for other values of� . For smallj, for Haar wavelets, the form of	j(�) is very
simple: e.g.	�1(�) = 1;�1

2 ; 0 for j� j = 0; 1; otherwise.

Autocorrelation wavelets are related to the autocorrelation shell of Saito and Beylkin (1993)
which they use in a multiresolution analysis. Further, the autocorrelation function of
the father wavelet�(�) is a fundamental function of the Dubuc and Deslauriers (1989)
interpolation scheme and the relation	j(�) = 	(2j j� j) is valid for all of the Daubechies’
compactly supported wavelets.

Our usage averages the discrete wavelets over all locations within one scalej and
provides a family of symmetric, compactly supported and positive semi-definite functions
on � 2 Z which are well-suited for the construction of autocovariance functions of quasi–
stationary processes as shown next.

Definition 2.9 Define thelocal autocovariance(LACV)c(z; �) of a LSW process with EWS
fSj(z)g by

c(z; �) =
�1X

j=�1
Sj(z) 	j(�) ; � 2 Z ; z 2 (0; 1) : (14)

For stationary processes the dependence onz in (14) disappears and in this case one
should compare (14) with the classical Fourier autocovariance representation in (2). The
autocorrelation wavelets take over the role of the complex exponentials and even enjoy
similar properties (without being orthogonal, though). The most important ones are:
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	j(0) = 1,
P

� 	j(�) = 0 for all j and
P

j 2
j	j(�) = ��0. So we have found a perfectly

suitable set of functions for representing autocovariance functions which, in contrast to the
complex exponentials, are locally supported and hence can deliver sparse representations.

The following relates to stationary processes even though Definition 2.9 refers to the
more general case of LSW processes.

Remark 2.10 (Haar MA process example) The Haar MA processX1(t) has
autocovariancec1X(�) = �2

�
��;0 � 1

2�j� j;1
�

which is precisely the autocorrelation wavelet
	�1(�). ThereforeX1(t) has an extremely sparse representation in terms of the
autocorrelation wavelets:c1X(�) = �2	�1(�) i.e. equation (14) withSj(z) equal to
�2 = 1 for j = �1 and zero otherwise. Indeed, by construction, the autocovariance of
Xr(t) is always sparsely represented:cr(�) = �2	�r(�) for all r 2 Z. Similar sparse
representations occur if we replace Haar by other compactly supported wavelets. Such
representations are instructive as they tell us what processes are sparsely represented in
fSj(z)g�1j=�1 and thus which are likely to be well-estimated by our wavelet machinery.

The above remark considered a simple stationary case. However, Definition 2.9 applies
for more general LSW processes. The following proposition shows how a LSW process
autocovariance,cT , asymptotically tends toc(z; �).

Proposition 2.11 AsT !1, uniformly in� 2 Z andz 2 (0; 1), jcT (z; �) � c(z; �) j =
O (T�1).

If the process is stationary then the dependence onz in cT , c andSj disappears and our
representation turns from a local into a global one (which is possible because of the shift-
equivariant non-decimated wavelets).

2.4 Uniqueness of the autocovariance representation

In the stationary theory representation (2) is invertible: the spectrum is also the Fourier
transform of the autocovariance. The following question naturally arises: is the EWS the
inverse of the LACV? It turns out that inversion is possible using the following invertible
autocorrelation wavelet inner product matrix.

Definition 2.12 Define the operatorA = (Aj`)j;`<0 by

Aj` :=< 	j;	` > =
X
�

	j(�) 	`(�) ; (15)

and theJ–dimensional matrixAJ := (Aj`)j;`=�1;::: ;�J .

The following theorem, valid for all Daubechies’ compactly supported wavelets, shows that
A is an invertible operator and that for eachJ , the norm ofA�1J is bounded from above by
some constantCJ .
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Theorem 2.13 The familyf	j(�)g�1j=�1 is linearly independent. Hence:
(a) The EWS is uniquely defined given the corresponding LSW process.
(b) The operatorA is invertible (as all its eigenvalues are positive), and for eachJ the norm
kA�1J k is bounded above by someCJ .

Theorem 2.13(b) enables us to supply a representation of the EWS in terms of the LACV
as in the following proposition.

Proposition 2.14 Inverse formula of equation (14).

Sj(z) =
X
`

A�1j`
X
�

c(z; �)	`(�): (16)

We emphasize that for eachT the process representation (7) cannot be unique but the
representation of the local autocovariance (14) actually is unique. Further, Corollary 2.16
below shows that if we replacec by cT in (16) then its inverse representation converges
to the EWS. This is a stronger result than (16) and requires a finer characterisation of the
redundancy inA provided by the next theorem.

Theorem 2.15 Let �min(A) denote the smallest eigenvalue ofA. Then, for Haar and
Shannon wavelet families, there exists a� > 0 such that�min(A) � � hencekA�1k <1,
i.e.A is positive–definite and has a bounded inverse.

The Shannon wavelet is the limiting wavelet in the Daubechies’ compactly supported
series as the number of vanishing momentsN ! 1, see Chui (1997). We conjecture
that Theorem 2.15 is valid for all Daubechies’ compactly supported wavelets and provide
evidence in the appendix.

Corollary 2.16 The EWSfSj(z)g as defined in Definition 2.5 also arises as the asymptotic
limit of

eTj;T (z) := �1X
`=�J

A�1j`
X
�

cT (z; �) 	`(�) ; j = �1; : : : ;�J(T ) = log2(T ): (17)

That is,

lim
T!1

eTj;T (z) = Sj(z) = lim
T!1

jwo
jk;T j2 ; j � �1 ; z 2 (0; 1) ; (18)

with limT!1
P�1

j=�J(T ) eTj;T (z) <1:

Finally we inspect the links between LSW and stationary processes.

Proposition 2.17 (a) All stationary processes with absolutely summable autocovarianceP
� jcX(�)j <1 are LSW processes (with respect to wavelets fulfilling Theorem 2.15).

(b) Conversely, any LSW process with time independent EWS fulfilling the additional
assumption

P
j 2

�j Sj <1 is stationary with absolutely summable autocovariance.
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3 Estimation theory

3.1 The wavelet periodogram

The wavelet periodogram is constructed using the wavelet family specifieda priori in
representation (7). The interesting situation of what happens when a different wavelet is
used to estimate the EWS is left for future work.

Definition 3.1 Theempirical wavelet coefficientsof an LSW processXt;T are given by

dj;k;T :=

T�1X
t=0

Xt;T  jk(t): (19)

For fixed j the number of summands in (19) does not change withT because the
wavelet is compactly supported. The following key statistic is the analogue of the classical
periodogram from stationary theory.

Definition 3.2 The wavelet periodogram of a LSW processXt;T is given byIjk;T :=

jdj;k;T j2.

As for classical periodograms the wavelet periodograms have asymptotically non-
vanishing variance (Proposition 3.3) and need to be smoothed to obtain consistency. Various
local smoothing methods could be used but we choose to use non-linear wavelet shrinkage
as described below. Further, Figure 4 shows that the wavelet periodograms for scalej
contain information from other scalesj0 6= j (e.g. power from scale�4 has leaked into scale
�5). Writing Ik := (Ijk)j=�1;::: ;�J Proposition 3.3 shows that thecorrected periodogram
Lk = A�1J Ik , for k = 0; : : : ; T � 1 is asymptotically unbiased for the EWS. Figure 3
shows the superiority of the corrected periodogram compared to the raw one in Figure 4.
Figure 3 correctly shows abrupt changes as one MA process changes into another. Figure 4
incorrectly exhibits significant power at levels -6 and -5 whereas the process only had power
at scales of -1,-2,-3 and -4 (corresponding toXr, r = 1; 2; 3; 4 respectively).

3.2 Asymptotics of the wavelet periodogram

For this section we assume that the conditions of Theorem 2.15 are fulfilled and that the
�jk in (7) are Gaussian, i.e.fXt;T g is Gaussian. The wavelet periodogram has analogous
properties to those of the classical periodogram as follows.

Proposition 3.3 (expectation)

E Ij[zT ];T =
X
`

Aj` S`(z) +O (T�1) 8z 2 (0; 1): (20)
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Figure 4: Mean of 100 uncorrected wavelet periodograms ofIjk;512 for j = �1; : : : ;�9,
for the simulated concatenated MA processes of Remark 2.6.

Hence, for the vector of periodogramsI(z) := fI`[zT ];Tg`=�1;::: ;�J , and the vector of

the corrected periodogramsL(z) := fLj[zT ];Tgj=�1;::: ;�J withL(z) = A�1J I(z)

E L(z) = E A�1J I(z) = S(z) + O (T�1) 8z 2 (0; 1) ; (21)

whereS(z) := fSj(z)gj=�1;::: ;�J .

(variance)var Ij[zT ];T = 2 fP`Aj`S`(z)g2 +O(2�j=T ):

(covariance)The correlation between two wavelet periodogramsIjk;T andI`m;T decays with
increasing distance between the locationk on scalej and locationm on scalè : For
example, within one scalej = `, it is zero as soon asjk �mj exceeds the overlap of
the corresponding wavelets support. The form of the covariance cannot be compactly
written so we omit it here but see von Sachset al.(1997), Proposition 5.3, Lemma 5.5
and Corollary 5.6.

3.3 Wavelet periodogram smoothing

Like the stationary case the wavelet periodogram isnot a consistent estimator and needs
to be smoothed. For each fixed scalej we smoothIjk;T as a function ofz = k=T using
DWT shrinkage or the translation-invariant (TI) denoising of Coifman and Donoho (1995).
In practice we use the latter but only provide theoretical results only for the first (which
parallels existing theory, e.g. Donoho (1995), Neumann and von Sachs (1997), Johnstone
and Silverman (1997), and von Sachs and MacGibbon (1997). Our results also hold for the

13



TI denoising). Since we know (below) how to do wavelet shrinkage on the�2–distributed
wavelet periodogram we smooth first, then correct (byA�1). This results in a simpler
analysis than if we corrected before smoothing.

Von Sachset al.(1997) describes in detail how to smooth using an orthonormal second-
stage wavelet basisf ~ `mg of L2([0; 1]). The smoothing is carried out by non-linear
thresholding of the empirical wavelet coefficients,bv`m, of Ij(z) and then inverting to give
the estimate~Sj(z). The appropriate threshold� = �(j; `;m; T ) can be determined from
the following theorem.

Theorem 3.4 For a Gaussian LSW processes and using a wavelet~ of bounded variation,
the wavelet coefficientsbv`m, with 2` = o (T ), obey uniformly inm,

E bv`m �
Z 1

0

X
n

Ajn Sn(z) ~ `m(z) dz = O
�
2`=2=T

�
; (22)

and,

var (bv`m) = 2 T�1
Z 1

0

 X
n

Ajn Sn(z)

!2

~ 2
`m(z) dz + O

�
2` T�2

�
: (23)

Using process normality we proceed as in Gao (1993) and von Sachs and Schneider (1996)
to show that with the following universal threshold the adaptive estimateeSj(z) attains the
usualL2 rate of convergence (this result may be generalized to EWS with other degrees of
regularity).

Theorem 3.5 Under the assumptions of Theorem 3.4, with threshold given by
�2(l;m; j;T ) = var (bvlm) log2(T ), for each fixedj,Z 1

0
E
�eSj(z) � Sj(z)

�2
dz = O

�
log2(T )=T

2

3

�
: (24)

This theorem is based on existing results on quadratic forms of Gaussian variables, which
are �2–distributed (see Neumann and von Sachs (1995), Theorem 3.1 A). For non–
normality, techniques as in Neumann and von Sachs (1997) could also be applied. In
practice some modification might be appropriate such as thresholding the log periodogram.
This transform stabilizes the coefficient variance, pulls their distribution closer to normality
(Priestley (1981)), and permits use of a universal threshold suitable for normally distributed
data (� = �̂

p
2 log T ). Such transforms are well known in the classical periodogram and

time-dependent case (e.g. von Sachs and Schneider (1996).)

3.4 Local variance and autocovariance estimation

Finally we address the problem of local autocovariance estimation by inversion of
(smoothed) wavelet periodograms. A useful descriptive tool for estimatinglocal variance
can be obtained by summing the (smoothed) wavelet periodogram~Ijk over scalesj.
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Figure 5: Corrected smoothed wavelet periodogram of one realization of the concatenated
process given in Remark 2.6. The Daubechies extremal-phase waveletN = 3 was used
in the representation and the Daubechies least-asymmetricN = 4 wavelet was used for
smoothing.

Proposition 3.6 Let ~S�j (z) denote the result of applying the inverse matrixA�1 to the

smoothed wavelet periodogrameSj(z). Defineec(z; �) by replacingSj(z) by ~S�j (z) in
equation (14) and replacing the lower sum limitj = �1 by�J0. Let T ! 1 and let
2J0 = o (T ). Thenec(z; �) is a consistent estimator ofc(z; �) because for each fixed� 2 Z,

E

Z 1

0
( ec(z; �) � c(z; �) )2 dz = o (1) :

Proof. The proof appears in von Sachset al. (1997).

4 Examples and applications

4.1 Concatenated Haar example

Figure 3 shows the average of wavelet periodogram estimates from 100 realizations of the
concatenated process of Remark 2.6. Figure 5 shows the corrected smoothed estimate~S�j (z)
computed from one realization of the concatenated process: each level was smoothed by
Coifman and Donoho’s (1995) TI-denoising method using threshold� = �̂ log T from
section 3.3 on levels 3 and finer using a mean absolute deviation (MAD) estimator of
� using the finest scale coefficients as is standard in wavelet shrinkage, see Donohoet
al. (1995). Figure 5 is reasonable with power coming and going approximately where it
is meant to in scales -1 to -4. The estimate is not perfect and several issues effect the
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Figure 6: The raw wavelet periodogramIjk;2048 for the ECG data. Each level in the
periodogram has been scaled independently so that detail at all levels can be seen (some
of the larger scale levels,j more negative, are almost 10 times as large).

estimate’s quality. Firstly, which analyzing wavelet should the wavelet periodogram use?
Even though the underlying process was Haar we used a smoother Daubechies extremal-
phase waveletN = 3. We advocate smoother analyzing wavelets to avoid “leakage” to
surrounding scales because of their shorter support in the Fourier domain and they also help
with the smoothing itself as the raw estimate looks less spiky and variable (indeed for the
ECG data we useN = 10). Secondly, the smoothing is not perfect and the estimate is
more variable in scale�4 and over-smoothed in scales�1 and�2 (a consequence of the
raw wavelet periodogram being more variable in the coarser scales and the correction by
A�1 only helping to reduce bias, but not necessarily variance). The question of how best to
smooth needs to be investigated further.

4.2 The infant ECG data (continued from Section 1)

Figure 6 shows the raw wavelet periodogram for the series of 2048 points in Figure 1, for
all possible scales from�1 to J = �11. Figure 7 shows a smoothed corrected estimate of
the EWS for the ECG series. The Daubechies’ (1992) least–asymmetric wavelets of order
N = 10 were used to form both the wavelet periodogram and to do TI wavelet smoothing
of the log periodogram with a soft universal threshold� = �̂

p
2 log T on scales 7 and finer

using a MAD estimate of�.
The information in Figure 7 is actually highly meaningful as is shown by the

enlargement of scalej = �1 in Figure 8 (solid line). The dotted line in Figure 8 indicates
the sleep state as judged by a trained human observer (from brain wave measurements, EEG,
and eye movements, EOG). The observer classifies the sleep state as quiet (1), between
quiet and active (2), active (3) and awake (4). There is a strong association between the
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Figure 7: Estimate of EWS~S�j (z) for ECG data (levels scaled independently).
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Figure 8: Solid line is EWS estimate at scale�1: ~S��1(z) for ECG data. The dotted line
indicates sleep state as determined by expert analysis of EEG and EOG (independent of
ECG). The dotted line value is indicated by the right-hand axis: 1=quiet sleep, 2=between
1 and 3, 3=active sleep, 4=awake.
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estimate,~S��1(z), and the sleep state. Recall that~S��1(z) estimates the power in the ECG
signal at time locationsz corresponding to the finest scale oscillations. In particular, note
wakefulness occurs whilst~S��1(z) is large and quiet sleep occurs when it is small. Our
estimate is useful for feeding into models that can predict sleep state from the ECG (ECG
is easy and routine to measure, sleep state is more tricky and can be distressing for parent
and infant, see Nasonet al. (1997) for more discussion). In effect,~S��1 measures the local
stochastic variability of the ECG at that scale and it correlates fairly well with the sleep state
variable. Figure 7 also indicates that scales -2 through to -5 also contain similar information
to that presented in scale -1. Power at scales coarser than -5 does not appear to correlate
much with the sleep state which seems to be a signal living at finer scales.

5 Appendix: Proofs

Proof of Proposition 2.11
Using the representation of the processXt;T given in (7) the covariance is given by

cT (z; �) = covfX[zT ];T ;X[zT ]+�;Tg =
X
jk

jw0
j;k;T j2 jk([zT ]) jk([zT ] + �)

=
X
j`

jw0
j;[zT ]+`;T j2 j;[zT ]+`([zT ]) j;[zT ]+`([zT ] + �)

=
X
jk

jw0
j;[zT ]+k;T j2 jk(0)  jk(�):

With condition (10)
���jw0

j;[zT ]+k;T j2 � Sj(z + k=T )
��� = O(Cj=T ); and sinceSj is Lipschitz

jSj(z + k=T )� Sj(z)j = O(Lj jkj=T ): Hence,������
X
jk

jw0
j;[zT ]+k;T j2 jk(0) jk(�)� c(z; �)

������ =

������
X
jk

jw0
j;[zT ]+k;T j2 jk(0) jk(�)�

X
j

Sj(z)	j(�)

������
� T�1

X
jk

(Lj jkj+ Cj) j jk(0) jk(�)j = O(T�1);

due to conditions (9) and (11). Note also that
P

j Sj(z)	j(�) < 1, by (8) and as
	j(�) = O(1) uniformly in � .

Proof of Theorem 2.13
Suppose there were two spectral representations of the same LSW process, i.e. there existed
w
(1)
j;k;T andw(2)

j;k;T with, for i = 1; 2,

sup
k

����w(i)
j;k;T �W

(i)
j

�
k

T

����� = O(T�1)
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and with the same covariance. This means that, for eachz 2 (0; 1) and each� 2 Z,

c(z; �) =

�1X
j=�1

S
(1)
j (z)	j(�) =

�1X
j=�1

S
(2)
j (z)	j(�);

with S(i)
j (z) = jW (i)

j (z)j2; i = 1; 2: Define�j(z) := S
(1)
j (z)� S

(2)
j (z). We have to show

that

0 =
�1X

j=�1
�j(z)	j(�); (25)

for eachz 2 (0; 1) and each� 2 Z, implies that�j(z) = 0, 8j < 0, z 2 (0; 1) hence
proving part (a). This also demonstrates the linear independence of the familyf	j(�)gj<0.

We actually show that (25) implies that

e�j(z) = 0 8j < 0 ; z 2 (0; 1); (26)

wheree�j(z) := 2j�j(z). To do so, observe that by Parseval’s relation, starting from the
definition in (15),

Aj` :=
X
�

	j(�)	`(�) =
1

2�

Z
d!c	j(!)c	`(!); (27)

with

c	j(!) = jc j(!)j2 = 2�j jm1(2
�(j+1)!)j2

�(j+2)Y
`=0

jm0(2
`!)j2; (28)

wherem0(!) = 2�1=2
P

k hk exp(�i!k), with
P

k h
2
k = 1, 1=

p
2
P

k hk = 1, and
jm1(!)j2 = 1 � jm0(!)j2. Formula (28) is just the Fourier domain expression of the
the inverse DWT operator (squared). The repeated convolutions in (3) and (4) simply
turn into�j � 1 multiplications ofm0 (corresponding to repeatedh convolutions) and
a multiplication ofm1 (corresponding to the singleg convolution). Now we show that (25)
implies (26): assume0 =

P�1
j=�1 e�j(z)	j(�) hence, for all̀ < 0, all � 2 Z,

0 =
X
`

X
j

e�j(z)e�`(z)
X
�

	j(�)	`(�):

Using Parseval (27) we obtain0 =
P

`

P
j
e�j(z)e�`(z)

R
d!c	j(!)c	`(!), i. e.,

0 =

Z
d!

0@X
j

e�j(z)c	j(!)

1A2

: (29)
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With
P

j Sj(z) <1 we infer that
P

j
e�j(z)c	j(!) is continuous in! 2 [��; �], because

every2jc	j(!) is, (as it is a trigonometric polynomial uniformly bounded above by one),
and because

P
j 2

�j je�j(z)j <1. Hence, equation (29) is equivalent to

0 =

�1X
j=�1

e�j(z)c	j(!) 8! 2 [��; �] 8z 2 (0; 1): (30)

To show the pointwise implication of (26) by (30), we again use continuity arguments and
successively insert zeros ofjm0(2

�(j+1)!)j2 which are at�=2�(j+1); j < 0. Fix z 2 (0; 1),
and lete�j := e�j(z) for this fixedz. First insert! = � to show thate��1 = 0. This is due
to jm0(�)j2 = 0, i.e.c	j(�) = 0; j = �2;�3; ::: and b	�1(�) 6= 0 (asjm1(�)j2 = 1). In
order to show thate��2 = 0, observe that

0 =

�1X
j=�2

e�j
c	j(!) = jm0(!)j2 �

0@ �1X
j=�2

e�j2
�j jm1(2

�(j+1)!)j2
�(j+2)Y
`=1

jm0(2
`!)j2

1A :

As jm0(!)j2 is analytic andm0(!), as a trigonometric polynomial, has only finitely many
zeros, the function in brackets, which is again continuous, must vanish identically. Insertion
of ! = �=2 results intoe��2 = 0, asjm1(2 � �=2)j2 = 1 6= 0, andjm0(2 � �=2)j2 = 0.
Iteration of this scheme forj = �3;�4; ::: leads to the assertion (26).

For part (b) we use the linear independence of the	j and that fact thatA is the Gram
matrix of the	j to establish thatA is positive definite and hence all its eigenvalues are
positive.

Proof of Proposition 2.14
To verify the inversion formula substitute the definition ofc(z; �) in (14) into (16):X

`

A�1j`
X
�

X
n

Sn(z)	n(�)	`(�): (31)

Use that by (8) and (12)
P

j Sj(z) <1 for all z and that the sum over� is finite to exchange
the order of summation:X

`

A�1j`
X
n

Sn(z) < 	`;	n >=
X
n

Sn(z)
X
`

A�1j` A`n =
X
n

Sn(z)�jn = Sj(z): (32)

Proof of Theorem 2.15 (for the Haar wavelet)
We show that there exists some� > 0 such that�min(A) � � by showing that�min(B) � �,
whereB = D0 � A � D with diagonal matrixD = diag(2j=2)j<0, i.e.,Bj` = 2j=2Aj`2

`=2.
This is sufficient by (i) of the following matrix properties and Toeplitz matrix theory:

(i) If A is a Hermitian (symmetric) matrix withA = D0 � C � D, D diagonal, then
�min(A) � �min(D)�min(C) �min(D).
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(ii) (Weyl) If A = B + C, whereB andC are Hermitian (symmetric), then�min(A) �
�min(B) + �min(C).

(ii) (Reichel and Trefethen (1992), Theorem 3.1(i)) LetT be Toeplitz (and Hermitian)
with elementsft0; t1; :::g Let f(z) =

P1
n=�1 tnz

n for z 2 C be the symbol of the
operator associated withT . If

P
n jtnj < 1, thenf(z) is analytic in the open unit

disk D in the complex plane and continuous in the closed unit disk� = D [ S,
whereS denotes the unit circle. The spectrum� of the (Laurent) operatorT is
�(T ) = f(S). If, additionally, T is symmetric then an estimate of the smallest
eigenvalue ofT is

min
jzj=1

f(z) = min
jzj=1

t0 + 2Re

 1X
n=1

tnz
n

!
: (33)

For convenience our indices will now run from 1 to1 rather than�1 to �1. Using
straightforward algebra we can explicitly derive formulae for entries ofA from 	j given
by (13) (see von Sachset al. (1997) for more detail). The elements ofA are:

Ajj =
22j + 5

3 � 2j ; Aj` =
22j�1 + 1

2`
; ` > j > 0: (34)

Now, withBj` = 2�j=2Aj`2
�`=2 and using equation (34),

Bjj = 1=3 + 5=3 � 2�2j ; Bj` =
23j=2�1 + 2�j=2

23`=2
; ` > j > 0: (35)

For ` = j + m;m > 0; j fixed Bj;j+m = 2�3m=2�1(1 + 2 � 2�2j). Note thatB is
symmetric becauseA is. However, Formulae (35) only refer to the upper triangular portion
of the matrixB (you cannot switch indices in these formulae). To use properties (i)–(iii) to
bound the smallest eigenvalue ofB from below, decomposeB as follows:B = T + R =
T + eDT eT eD, whereT is a symmetric Toeplitz witht0 = 1=3 andtm = 2�3m=2�1, whereeD = D2 is diagonal withedj = 2�j ; j > 0; and whereeT is again symmetric Toeplitz
with et0 = 5=3 andetm = 2�m=2. Because by (ii),�min(B) � �min(T ) + �min(R), it is
sufficient to show that both�min(T ) � � > 0 and�min( eT ) � e� � 0, the latter implying
�min(R) � 0, using (i), as clearly�min(D) � 0. Use (iii) to treat the two Toeplitz matrices
as follows. We start by showing�min(T ) � � > 0. In (iii), t0 = 1=3 andtn = 1=2tjnj with
t = 2�3=2. In equation (33)f(z) takes the form, forjzj = 1:

f(z) = 1=3 +Re

 1X
n=1

2�3n=2zn
!

= 1=3 + t
Re(z) � t

1 + t2 � 2tRe(z)
;

by some elementary algebra. This is a strictly monotonically increasing function in

�1 � Re(z) � 1, minjzj=1 f(z) = f(�1) with f(�1) = 2(
p
2�1)

3(2
p
2+1)

=: � > 0. By
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exactly the same principle, now withet0 = 5=3 andetn = (2�1=2)n,

�min(eT ) � 5=3 + 2Re

 1X
n=1

(�1)n2�n=2
!

=
(9 + 4

p
2)

3(2
p
2 + 3)

=: e� > 0:

Hence,�min(B) � � which, by (i) implies that�min(A) � �2min(D
�1)�min(B) = 2� > 0.

Remark: There is strong evidence that the above Haar proof can be extended to other
Daubechies compactly supported wavelets with ordersN > 1. We briefly outline this
extension, see von Sachset al. (1997)) for further details. The key to the extension is
the relationship betweenA andB to equivalentA� andB� arising from the continuous
autocorrelation function built from time–continuous Daubechies wavelets. By using the
scaling relation for continuous wavelets one can show thatB� is truly Toeplitz for allN .
Estimates of the decay of its off–diagonals, increasing withN , can serve to generalize the
result forN = 1, for whichB� equals theT derived above. (In von Sachset al. (1997)
we show thattm = O(2�
Nm), with, by Daubechies (1992), page 239,
2 > 3=2; 
3 >
5=2; 
4 > 7=2; : : : .) On the other hand, in the Haar case, as the numberj of rows tends to
infinity, the matrixB itself approaches this ToeplitzT = B� from above. Equations (28)
and (27) help to show this for the general caseN > 1. Finally, we observe that asN
increases the limitingT becomes progressively more diagonal (as does the startingB),
which is due to the increasing decay of the Fourier transformjb	(!)j for j!j ! 0 and
j!j ! 1, asN increases. In the limiting case (N =1) of Shannon wavelets the matrices
are diagonal because of the non-overlapping support in the Fourier domain (next proof). We
leave rigorous completion of the above for future work.
Proof of Theorem 2.15 (for the Shannon wavelet)
We computeA using the Fourier domain formula given by (27). The formula for the
non-decimated wavelets in the Fourier domain is given by (28) and the corresponding
formulae form0(!) andm1(!) for the Shannon wavelet can be obtained from the FT of the
continuous time mother and father wavelets which can be found in Chui (1997), pages 46
and 64. Define the setCj =

�� �
2�j�1 ;� �

2�j

� [ � �
2�j

; �
2�j�1

�
. Then after some algebra we

obtainc j(!) = �2�j=2e�2�j�1i!�Cj (!), where�A(!) is the indicator function of the set

A. Hence, from (28) we obtainc	j(!) = jc j(!)j2 = 2�j�Cj (!). ClearlyAj` = 0 for

j 6= ` since the supports of differentc	j(!) do not overlap. Simple integration shows that
Ajj = 2�j for j < 0. Hence theB operator is the identity. The proof for the continuous
time operatorsA� andB� is virtually the same and shows that they are equal toA andB
respectively.
Proof of Corollary 2.16
Recall first thatB = D0 � A � D whereD is a diagonal matrix:D = diag(2j=2)j<0,
i.e. Bj` = 2j=2Aj`2

`=2: Replacing in (17)cT (z; �) by its asymptotic limitc(z; �) with
RT = jcT (z; �)�c(z; �)j = O(T�1) uniformly in both arguments, we continue as follows,
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while using
P

� j	`(�)j = O(2�`).

eTj;T (z) =
�JX
`=�1

A�1j`
X
�

cT (z; �)	`(�) =
�JX
`=�1

A�1`j
X
�

[c(z; �) +RT ] 	`(�)

=

�JX
`=�1

A�1`j
X
�

c(z; �)	`(�) + eRj;T

Observe that, asT ! 1; J(T ) ! 1, the first part tends toSj(z), see equations (31)
and (32). The remainder behaves like

eRj;T � T�1
�JX
`=�1

A�1`j
X
�

j	`(�)j = T�1
�JX
`=�1

2j=2B�1
`j 2`=2O(2�`)

= T�1
�JX
`=�1

2j=2B�1
`j O(2

�`=2) = O(2J=22j=2T�1)

because the norm ofB�1 is bounded by Theorem 2.15. Further, we need to check the
summability condition:

P
j
eTj;T (z) =

P
j Sj(z) +

P
j
eRj;T , with

P
j Sj(z) < 1 from

definition (2.5) and

X
j

eRj;T =

�JX
j=�1

eRj;T +
X
j>�J

eRj;T = O(2J=2T�1) +O(T�1)

as
P

j>�J 2
j=2 = O(2�J=2). Observing that2J=2 = T 1=2 ends the proof.

Proof of Proposition 2.17
a) For stationary processes with

P
� jc(�)j < 1 we observe that under the conditions of

Theorem 2.15,
P

j j�j(�)j <1 uniformly in � , hence
P

j Sj <1.
b) is an immediate consequence of the following corollary to Proposition 2.11.

Corollary 5.1 Let
P

j 2
�jSj(z) <1, uniformly inz. Then,

P
� jc(z; �)j <1, uniformly

in z and
P

� jcT (z; �)� c(z; �)j = o(1), asT !1, uniformly inz.

Proof of Corollary 5.1
Define the following approximation:cJ0(z; �) =

P�1
j=�J0 Sj(z)	j(�). As a continuation

of the proof of Proposition 2.11, using that
P

� j	j(�)j = O(2�j); we observe thatX
�

jc(z; �)j �
X
�

j
X
j

Sj(z)	j(�)j � C
X
j

2�jSj(z) <1:

Further,
P

� jcJ0(z; �) � cT (z; �)j = O(2J0=T ) and
P

� jcJ0(z; �) � c(z; �)j �P
j<�J0 2

�jSj(z) = o(1).
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Proof of Proposition 3.3
For theexpectationpart we have:

E(Ijk;T ) = E(d2j;k;T ) =

�1X
`=�J

X
m

�
w0
`;m;T

	2(X
t

 `m(t) jk(t)

)2

;

since the�jk are orthogonal increments. Now substitutem = n+ k to obtain

E(Ijk;T ) =

�1X
`=�J

X
n

�
w0
`;n+k;T

	2(X
t

 `;n+k�t j;k�t

)2

and since the sum overt is from�1 to1 we have

E(Ijk;T ) =
�1X

`=�J

X
n

�
S`

�
n+ k

T

�
+O(T�1)

�(X
t

 `;n�t j;�t

)2

using (10) and (12). Using the Lipschitz property ofW (and henceS) we have

E(Ijk;T ) =
�1X

`=�J

X
n

�
S`

�
k

T

�
+O(nT�1)

�(X
t

 `;n�t j;�t

)2

+O(T�1);

the remainder term can come out of the inner bracket because the number of terms in the
wavelet inner product

P
t  `;n�t j;�t is finite (and bounded as a function ofn) because of

the compact support, the Lipschitz constant summability, andj is fixed and therefore after
expanding the square we obtain

E(Ijk;T ) =

�1X
`=�J

S`

�
k

T

�X
n

X
s

X
t

 `;n�t j;�t `;n�s j;�s +O(T�1):

Now make the substitutionv = s� t and rearrange giving

E(Ijk;T ) =

�1X
`=�J

S`

�
k

T

�X
t

X
v

 j;�t j;�v�t
X
n

 `;n�t `;n�v�t +O(T�1):
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The last sum can be replaced by	`(v) to give

E(Ijk;T ) =

�1X
`=�J

S`

�
k

T

�X
v

	`(v)
X
t

 j;�t j;�v�t +O(T�1)

=

�1X
`=�J

S`

�
k

T

�X
v

	`(v)	j(v) +O(T�1)

=

�1X
`=�J

AjlS`

�
k

T

�
+O(T�1):

which completes the proof of the expectation.
For the variance part we note that the wavelet periodograms are�2–distributed, and

they have the same asymptotic behaviour as their Fourier analogues, i.e. the variance is
asymptotically proportional to the expectation squared, with rate of convergence of the
remainderO(2�j=T ).
Proof of Theorem 3.4
With our modelSj andS2

j are both Lipschitz, too. Then (22) is an immediate consequence
of Proposition 3.3, part 1, and equation (20) with the rates there. For the variance note
that this formula is very similar to the variance of empirical wavelet coefficients of time–
dependent “Fourier” periodograms, where the expectation limit is the spectrum and the
variance limit is the squared spectrum (see, e.g., von Sachs and Schneider (1996), Thm 4.3,
equation (4.7). Note that ours is forfixed “frequency”.) We just substitute the squared
spectrum by the squared expectation limit of the wavelet periodogram in (22).
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