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summary

Wavelets are orthonormal basis functions with special properties that show potential in many areas of mathematics
and statistics. This article concentrates on the estimation of functions and images from noisy data using wavelet
shrinkage. A modified form of twofold cross-validation is introduced to choose a threshold for wavelet shrinkage
estimators operating on data sets of length a power of two. The cross-validation algorithm is then extended to
data sets of any length and to multi-dimensional data sets. The algorithms are compared to established threshold
choosers using simulation. An application to a real data set arising from anaesthesia is presented.
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1 Introduction

Recent work by Donohet al. (1995a) has introduced the method of wavelet shrinkage for general
curve estimation problems. There are several good reasons why wavelet shrinkage can be used
for function estimation. The main reasons are that wavelet shrinkage estimators are: nearly
minimax for a wide range of loss functions and for general function classes; simple, practical and
fast; adaptable to spatial and frequency inhomogeneities; readily extendable to high dimensions;
applicable to various other problems such as density estimation and inverse problems. A review
of these reasons and justification for them appears in Doabhb(1995a).

This paper introduces two cross-validation methods for choosing the threshold parameter in
wavelet shrinkage. Wavelet shrinkage is briefly reviewed in Section 2. Section 3 introduces the
cross-validation algorithms and Section 4 illustrates the algorithms in one- and two-dimensions
using simulations and by application to some real data collected on breathing patterns.

For further information on wavelets see Strang (1993), who provides an accessible
introduction, and Nason and Silverman (1994) who discuss wavelets in a statistical context.
Meyer (1992) and Daubechies (1992) both give detailed expositions of the mathematical aspects
of wavelets.

2 Wavelet Function Estimation

2.1 Wavelets

Wavelet estimators may be used as a special kind of orthogonal series estimator because wavelets
can form orthonormal bases for various function spaces. For example, a fufictidi (R) may
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be represented in terms of one of Daubechies’ (1988) families of orthonormal waug)gts) }

by
fl@) = dixtpn(z), (1)

JEZ KET
where

b= [ Faypie(o)do

are thewavelet coefficientsf f. Note that wavelets are doubly-subscripted. Roughly speaking
the j subscript localizes analysis ¢fin frequency and thé subscript localizes analysis in time.
This simultaneous time-frequency localization of informatiorf is the key to understanding why
wavelets are attractive for function approximation and estimation.

The basis function wavelets are usually of the form

Yip(z) = Q%Tﬁ(?jﬁc — k),

wherej andk are integers ang(z) is a function, called avavelet of class fspecially constructed

so that:{v; () } forms an orthonormal basis for the function space under considergifenand

all its derivatives up to ordef: exist and decrease rapidly as— +oo and(z) is orthogonal to

all polynomials of degreémn — 1). These properties and the wavelet series given in (1) all relate to

a continuous domain. There is also a discrete version of the wavelet transform which is described
next in the context of function estimation.

2.2 Wavelet shrinkage

Given datagy, . . . g, assume the model

gi = f(t:) + €, (2

where the{e;} is some noise process with varianeg, ¢; = i/n and f is the function to be
estimated. The discrete wavelet transform can be represented by an orthogonalimathrn

w=Wg )

performs the wavelet transform on the noisy data. The wavelet coefficients are then modified by
some procedure to form an array of coefficietitand then the inverse transfori¥,”, is applied
to obtain:
f=wha, (4)
where f is the estimate off at the points{t;}. In practice, a fast algorithm developed by
Mallat (1989) is used to perform the transform@{n) operations and matrix multiplication is
not used. However, use of the fast algorithm limit® be a power of 2. In practice one is unlikely
to receive a real data set with= 2 points and there are various ways around this limitation:

1. truncate or extend the series in some way and pretend that yo@Hapeints;
2. devise some method of using wavelet shrinkage estimators for any number of points.

This article uses Daubechies’ (1988) wavelets with periodic boundary correction. Further details
of this transform can be found in Nason and Silverman (1994).

The key question for wavelet shrinkage is how should the wavelet coefficiene modified
to form«w? Donohcet al. (1995a) advise that thresholding wavelet coefficients produces estimates
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that possess the desirable properties in the list at the beginning of the introduction. Given a wavelet
coefficientw and a threshold > 0 the hard-thresholdedalue is given by

Thard(w; t) = wI(Jw| > t),
and thesoft-thresholded/alue by
Tso(w; 1) = sgn(w) (|w| — ) I(|w| > 1),

wherel is the usual indicator function. This article considers soft thresholding although in many
situations hard thresholding is a suitable alternative. The question of how coefficients should
be modified then reduces to the numerical choice of the thregholthe choice is critical: if
the threshold is too small/large then wavelet shrinkage estimators will tend to over/underfit the
data. Donoho and Johnstone (1994) proposed various policies for choosing a threshold value.
One policy used thresholds precomputed to minimize a constant term in the upper bound for the
minimax risk of estimating a function using a shrinkage estimator. Donoho and Johnstone (1994)
also propose theniversalthreshold that is incorporated into thafisuShrinkprocedure. The
universal threshold is

Tuv = V/(2logn)o, (5)

wheren is the number of data points aidis an estimate of the noise level An important

feature ofVisuShrinkis that it “guarantees” a noise-free reconstruction although by doing so

it usually underfits the data (see also Faral. (1993)). Another threshold chooser based on
Stein’s (1981) unbiased risk estimation was proposed by Donoho and Johnstone (1995) and called
SureShrink The SureShrinkchooser specifies a threshold vatydor each resolution level in a

wavelet transform. This article introduces another threshold chooser based on cross-validation. At
the present time the cross-validation algorithm chooses one threshold applicable to all resolution
levels in the wavelet transform, although it could be modified to select a threshold for each level.
For comparison purposes this article uses a modified versinm@ShrinkcalledGlobalSurethat

fixes one threshold by using Stein estimation on all applicable coefficients.

We stress that the goal ®isuShrinkis not the minimization of mean squared error. Instead
VisuShrinkthresholds may be viewed as general purpose threshold selectors that exhibit “near-
optimal” minimax error properties and ensure, with high probability, that the estimates are as
smooth as the true underlying functions. Thus allowing increased bias to reduce variance is
a design goal olisuShrink This contrasts witlSureand cross-validation methods that have
the single goal of minimizing mean squared error. This difference should be remembered when
comparing the simulation results of the two methods that appear later in this article.

Given a particular thresholding meth@dthewavelet shrinkage estimatat threshold, f;(z),
is given by (4) with

wjr =T (wjk; t),

wherew;,, are the wavelet coefficients of the data as in (3).
3 Cross-validation for wavelet regression
The aim of function estimation in this article is the minimization of the mean integrated square

error (MISE) between the wavelet shrinkage estimatdr:) and the true functiory (z). In
symbols the thresholtishould minimize

M) = E [ {fio) - 1)} o ©
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In practice the functiory is not known and so an estimate df has to be devised. It is often
desirable that a loss function other than MISE be used and this can be easily achieved by replacing
MISE by the appropriate loss in the estimate\df

Cross-validation is widely used as an automatic procedure to choose a smoothing parameter
in many statistical settings (for reviews in the context of nonparametric regression see Green and
Silverman (1994); for density estimation see Silverman (1986)).

The classic cross-validation method is performed by systematically expelling a data point
from the construction of an estimate, predicting what the removed value would have been and
comparing the prediction to the value of the expelled point. This simple leave-one-out procedure
cannot be directly applied to wavelet shrinkage estimation because the discrete wavelet transform
using Mallat’s fast algorithm only operates on data sets of size a power of 2.

Section 3.1 describes a “leave-half-out” cross-validation method which can make use of
Mallat’s algorithm directly. Section 3.2 describes a method for extending a data set of any size to
one containin@ points.

3.1 Two-fold cross-validation

This section describes a cross-validation procedure that can be used to automatically select a
threshold for a wavelet shrinkage estimator based™rpoints.

The procedure works by leaving out half of the data points. This lea¥es' data points
that are then used to form a wavelet shrinkage estimator using a particular threshold. The values
of the expelled points can then be compared with the shrinkage estimator to form an estimate of
prediction error at a particular threshold. This quantity can be then numerically minimized over
values of the threshold.

Two-fold cross-validation algorithm

Given datag,, ..., g, wheren = 2™, remove all the odd-indexeg from the set. This leaves
2M=1 evenly indexedy; which are reindexed from = 1,...,2" -1 A function estimate;ftE is
then constructed using a particular threshbfdom the re-indexed;. To compare the function
estimator with the left-out noisy data an interpolated versioﬁfdfs formed:

1. R _
ij:a(ijH"‘ij)v j=1,...,n/2 (7)

setting ffn/QH = fE, becausef is assumed to be periodic. TH¢ is computed for the odd

indexed points and the interpolafif computed as above. The full estimate fdi(t) compares
the interpolated wavelet estimators and the left-out points:

M(t) = Z { (ftEy - 92j+1>2 + (ftoj - 92]‘)2} : (8)

i=1

ME]

Note that the estimat&/ relies on two estimates qf, based upom /2 data points. We can use
Donoho and Johnstone’s (1994) universal threshold (5) to supply a heuristic method for obtaining
a cross-validated threshold far data points. If the threshold for points isTyy(n) then the
threshold forn/2 points will beTyy (n/2) and therefore

log 2

-1/2
Tuv(’n,) ~ (1 — > Tuv(n/2). (9)

logn
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After the estimate/ (t) has been minimized the correction (9) is applied to obtain the final cross-
validated threshold.

This correction can be extended t@%fold cross-validation procedure, whe2é estimates
f are obtained, each based oyR"* data points selected in a regular way from the original data.
Each estimate is interpolated to the original grid and validated by comparing to the remaining
n(1 — 27%) data points. The correction term (9) is easily extended to this case and will give a

correction factor of
| klog?2 —1/2
logn ’

This extension is not considered for the one-dimensional case in this paper, but we will need to
use it when we consider the multivariate case in Section 3.3 below.

Our terminology is not the same as that used, for example, by Burman (1989), whofoeds
cross-validation — a procedure where each training set is ofrgize- 1)/ and each test set is
of sizen/v. Another difference is that Burman considers regression problems where the design
pointst; are random (and identically distributed) and the cross-validation test sets are randomly
selected. In Stone’s (1974) terminology our method is a caseadntrollablecross-validation.

3.2 Leave-one-out cross-validation

This section develops a leave-one-out cross-validation method that wordsyfoumber of data
points removing the previous algorithm’s restrictior2df points.

Leave-one-out cross-validation algorithm

Given the data set¥ = {g1,...,9,} Wheren > 1 choose such thatl < i < n. Removey; from
G and split the remaining points into two groups:

GL = {gla' .. agi—l}
Gr={Gi+1s---Gn}-

Form G re and Grge by reflection at the left and right ends 6f. and G respectively and then
extend each set to the next largest power of two by filling wijthy for G\ re andg;+1 for Grre
to obtain

GLRE = {gifl, - 9i-1,9i-25---,92,91,91,92, - - - 79i72,9i71}
GRRE = {gi+lag’i+27 <5 9n—-1,9n,9n,9n—-15 - - -, 9i+2,Gi+1,Gi+15 - - - 7g’i+1}'

The setd7| re andGRrge are illustrated in Figure 1. Denote the number of point&jre by n
and inGrgre by nr. Thenn, is the smallest power of two greater than or equal(io- 1) andngr
is the smallest power of two greater than or equa(to — ). Now form two wavelet shrinkage
estimatorst,t and fR,t using G re and Grre and threshold valuée. The removed poing; is
predicted by

~ _ 1 A P
Gt,—i = 5 (fL,t,nL + fR,t,1> ,

wheref ; », is the rightmost point of|_; andfr 1 the leftmost point ofr ;. The cross-validation
score is given by
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Figure 1: Reflection and extension of left and right series generated by removal of a point to form
setsG re andGrgre. The reflected parts are indicated by dashed lines and the extended parts by
dotted lines.

3.3 Cross-validation in more dimensions

The extension of the two-fold cross-validation of Section 3.4 timensions is achieved by using
the multidimensional DWT of Mallat (1989). As in Section 3 the cross-validation algorithm
will minimize an estimate of thé-dimensional MISE (the: in equation (6) is now a vector in
k-dimensional space). The next section develops an estimate kfdimensional MISE.

2k fold cross-validation algorithm

Assume now that thé-dimensional data may be denoted gy, ;, with i; € {1,...,2M} for

j =1,...,k. Suppose the data are arranged on a fixed equally sgadedensional hypergrid

H. For each of the: subscripts of; it is possible to select either the odd or evenly subscripted
observations. Denote the selection of an even subscript by 0 and an odd subscript by 1. Then
a 0/1 selection for each subscript provides a subséf dhat is2~* times the size off and
equally spaced on a subgrid Bf. We will denote a particular subgrid ly,) whereb is the binary
number formed by concatenating the 0/1 selections in dimension order. For example, the selection
9o Would select all the odd-indexed observations on subscripts 1 and 3 and the even-indexed
observations on subscript 2. Let the subgrid defined pye denoted?;.

Denote thek-dimensional wavelet shrinkage estimator with threshidbdsed on datg;; by
f[i] (t). Denote the quantitﬁl(t) to be the interpolant ofm (t) to the grid defined byy; by
multiple repeats of the univariate interpolation scheme (7). This interpolation scheme is invariant
with respect to the order in which each univariate interpolant is applied. Thendieensional
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a. b. C.

Figure 2: Organization fo22-fold cross-validation. a. Thg x 8 pixel grid H. b. The datayp g
forming the first subgridds. c. The other three subgrills= H,,O0=H; andJ=H| containing data

gno}s 9jo1] @ndgog) respectively.

cross-validation score is given by:

ok_1 92k_1

=Y ¥ SR —gnm} .

i=0 j=0,j#i

where the final sum is over all indices in the subgridH ;.

3.3.1 Cross-validation for images

Images are two-dimensional objects and thereftrdold cross-validation can be used. This
section illustrates the above algorithm using & 8 image on the pixel grid in Figure 2a. The
grid Hj is illustrated in Figure 2b. Mallat's two-dimensional DWT will be applied to the data in
H3 and a wavelet shrinkage estimator constructed from it at thregholthe estimator is then
interpolated:

right to match theH, grid;
down to match theH; grid.

To matchH, it is possible to either interpolate thé, grid downwards or théf; grid to the right
— this demonstrates the invariance with respect to the ordering of the univariate interpolating
procedure. Each of the interpolatd%}]{} (1), f[lﬁ] (t), and fﬁou (t)) is compared t@q;, g19 andgoo

using quadratic loss and each component summed to form the part of the estimatesofg H
as a starting point for constructing a wavelet estimator. This procedure is then repeateHysing
H, and H, as starting points and the contributions are summed to form theifinal

3.4 Computational effort and optimization

The leave-one-out cross-validation algorithm requires approximaéh?) operations for each
evaluation ofV/. The twofold algorithm require®(n) operations. The*-fold requiresO{(2n)*}
operations where is the length of each side of the hypercutie

The optimization algorithm that is used in all cases is the simple golden section search as
mentioned in Presst al. (1992). The algorithm works extremely well in practice. This is mainly
because the functiof/ is very nearly convex (to the eye on a large scale it looks convincingly
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convex). Detailed investigation d¥/ by Nason (1994) shows that the first derivativeldit)

is continuous and linear increasing on intervals defined by incredsing|} where{w,;} are

the noisy wavelet coefficients formed from the transforngof .. , g,. At the pointst = |w;y|

the derivative may experience a discontinuity. Nason (1994) provides heuristics that indicate that
although these jumps may be negative they are usually small (only negative jumps cause non-
convexity of M) and therefore the zero-derivative point/df is usually well-determined. Since

the first derivative is known it would be possible to use a gradient-based algorithm to minimize
M or better still only the points = |w;x| would need to be checked (following Donoho and
Johnstone (1995)).

4 Some Examples

Some of the examples given here are discussed in much greater detail in Nason (1994).
Nason (1994) also presents some other examples.
4.1 Piecewise polynomial

The first example uses the piecewise polynomial with discontinuity fungtiohthat appeared in
Nason and Silverman (1994). The function definition was:

12(3 — 4x) for z € |0, %]
y(z) ={ sz(4s?—-102+7) -3 forz €[}, 3] (10)
Lz(z—1) forz € [2,1]

and was sampled 512 times in the inter{@l1]. Figure 3 shows, plotted againstz. The

figure was generated by the SPlus functe@mmple.1() that comes with th&VaveThresh

software developed by Nason (1993). A noisy version was created by adding independent pseudo-
random normal deviates with standard deviation of 0.k.to A particular noisy version is
shown in Figure 4a. The cross-validation algoritivisuShrinkand GlobalSurereconstruction
methods were applied to the noisy data and the reconstruction results appear in Figure 4b, ¢ and
d. Note that theVisuShrinkestimate is noise-fregzlobalSureoverfits slightly and the cross-
validated reconstruction minimizes the integrated squared error (ISE) with this example. Although
GlobalSureis a valid estimation procedure it is not nhecessarily a good one for this function. The
reason why is thaBureShrinkfiorms level-dependent thresholds and uselsersalthresholding

when it deems that there are few true coefficients at a level (sparsity). In contrast we ailyehe
technology on nearly all coefficients and the piecewise polynomial is simple and sparse. There are
some signals that even wavelets do not represent sparsely and then the perforn@&obal&ure

is much better (see the chirp example in Nason (1994)).

Naturally, one example is not of much use on its own. Table 1 gives results of 100 simulations.
The “true” threshold referred to in Table 1 refers to the threshold that minimizes the ISE when the
true function is known. The mean squared errors and their standard deviations appear in Table 2.
This table shows that the cross-validation method performs best under the normal independent and
Student’st noise conditions, but fails to cope with serial correlation.

One aspect of the simulation results that Tables 1 and 2 do not show is any correlation of
the estimates with the “true” threshold (see Hall and Johnstone (1992) for discussion of this
phenomenon). The correlations for the experiments in Table 1 are displayed in Table 3. 1t is
difficult to draw any general conclusions for Table 3 except that for experiment A the correlations
are negligible apart from the leave-one-out method. The correlation for the leave-one-out method
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Figure 3: Piecewise polynomial with discontinuity function of Nason and Silverman (1994)
sampled 512 times on the interyal 1].

Table 1: The mean and standard deviatiorn$000) of the “true” and estimated thresholds that
minimize M (t) (true) andM . The summary statistics were computed from 100 simulations with:

A. independent normally distributed deviates, B. independent Studentis3 d.f. distributed
deviates, C. correlated normally distributed deviates with autocorrelatiér @idded to the true
functiony as defined in (10). In each case the standard deviation of the noise was 0.1. Daubechies’
least asymmetriev = 8 wavelets were used.

Mean Estimated Threshold (s.d.)

Simulation True VisuShrink GlobalSure  twofold Leave-1-out
A. 187 (12) 362 (20) 104 (12) 182 (33) 209 (22)
B. 274 (189) 293 (18) 87 (12) 206 (94) 244 (44)
C. 228 (33) 298 (17) 90 (13) 47 (B 30 (17

Table 2: The mean squared error1000) and standard deviations of the simulation runs given

in Table 1. The summary statistics were computed from 100 simulations with: A. independent
normally distributed deviates, B. independent Studentsn 3 d.f. distributed deviates, C.
correlated normally distributed deviates with autocorrelatiord.6fadded to the true function

y as defined in (10). In each case the standard deviation of the noise was 0.1. Daubechies’ least
asymmetricN = 8 wavelets were used.

Mean Squared Error (s.d.)

Simulation True VisuShrink GlobalSure twofold Leave-1-out
A. 503 (93) 904 (120) 1020 (213) 634 (103) 617 (98)
B. 857 (376) 1030 (728) 1760 (1200) 968 (540) 980 (760)

C. 860 (177) 937 (206) 1600 (356) 2650 (435) 3430 (819)
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Figure 4: a. Piecewise polynomigl with added independent pseudo-normal deviates with
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standard deviation of 0.1. Reconstructions using Daubechies’ extremal phase Waveletvith
thresholdg and integrated squared errét, between original and reconstruction: \isuShrink
t = 0.35, R = 0.95; c. GlobalSure t = 0.14, R = 0.83; d. Cross-validationt = 0.20, R = 0.77.

The dotted line is the true function.
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Table 3: Correlation between 100 “true” threshold and estimates. The summary statistics
were computed from 100 simulations with: A. independent normally distributed deviates, B.
independent Studentison 3 d.f. distributed deviates, C. correlated normally distributed deviates
with autocorrelation of).5 added to the true functiop as defined in (10). In each case the
standard deviation of the noise was 0.1. As a rough guide a correlationl @ or above
would be significant at the 5% level (0.256 at the 1% level) given a bivariate normal model (see
Chatfield (1983)).

Sample Correlation
Simulation VisuShrink GlobalSure twofold Leave-1-out

A. 0.071 0.134 -0.027 0.355
B. 0.311 0.477 0.813 0.501
C. 0.060 0.354 -0.287 -0.278

is positive whereas the corresponding correlation in Hall and Johnstone (1992) was negative. It
is also interesting, but perhaps not surprising, thaMisaShrinkalgorithm tends to exhibit little
correlation.

Serially-correlated data

It is clear from Table 2 that the cross-validation method does not do very well with serially
correlated data. This is a well known problem with cross-validation methods (see Diggle (1990),
Altman (1990) and Hart (1994)). Nason (1995) gives an example using real exchange rate data
where serial correlation causes wavelet cross-validation to choose too small a threshold. 1t is
possible that the problem may be alleviated by leaving out other groups within the cross-validation
and then summing over the prediction error contributions from each of these groups.

4.2 Inductance Plethysmography Data

The following example arises from data collected by inductance plethysmography. A
plethysmograph is an apparatus for measuring variations in the size of parts of the body. In this
experiment the inductance plethysmograph consists of a coil of wire encapsulated in a belt. A
radio-frequency carrier signal is passed through the wire and size variations change the inductance
of the coil that can be detected as a change in voltage. When properly calibrated the output voltage
of the inductance plethysmograph is proportional to the change in volume of the part of the body
under examination.

It is of both clinical and scientific interest to discover how anaesthetics or analgesics may alter
normal breathing patterns post-operatively. Sensors exist that measure blood oxygen saturation but
by the time they indicate critically low levels the patient is often apnoeic (cease breathing) and in
considerable danger. It is possible for a nurse to continually observe a patient but this is expensive,
prone to error and requires training. In this example the plethysmograph is arranged around the
chest and abdomen of a set of patients and is used to measure the flow of air during breathing.
The recordings below were made by the Department of Anaesthesia at the Bristol Royal Infirmary
after the patients had undergone surgery under general anaesthetic. Figure 5a shows a section of
plethysmograph recording lasting approximately 80 seconds (4096 data points). The two main
sets of regular oscillations correspond to normal breathing. The disturbed behaviour in the centre
of the plot where the normal breathing pattern disappears corresponds to the patient vomiting.
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Twofold cross-validation

Figures 5b, ¢ and d show the reconstructions\VigsaShrink GlobalSureand cross-validation. At
present signals such as the one in Figure 5a are classified using neural networks. Wavelet shrinkage
can act as a dimension reducer, compressing the signal into few coefficients, so that maybe:

¢ the subsequent neural networks may be smaller and simpler;
o the classification rates will be better as the noise is removed.

For the purposes of dimension reduction it is possible that any of the shrinkage procedures here
will be adequate. Although the cross-validation method best retains the sharpness of the peaks,
but is still noisy in places whereas tMsuShrinkprocedure effectively suppresses the noise but
has slightly more rounded peaks.

Leave-one-out cross-validation

We apply the leave-one-out cross-validation method to a 30 second section of the data in Figure 5a.
This section contains 1500 observations, not a power of two. The reconstruction is shown in
Figure 6 as the top trace. The bottom trace shows the (translated) cross-validation reconstruction
of the corresponding 1500 observations from Figure 5d. The leave-one-out method has chosen a
similar threshold to the two-fold algorithm albeit on a reduced set of data. In extensive simulations
on data sets that are a power of 2 in length the leave-one-out method performs similarly to the two-
fold algorithm.

4.3 Cross-validation using images

The Lennon image of Nason and Silverman (1994) is used to illustrate the two-dimensional cross-
validation algorithm. Figure 7 shows the original Lennon image which consis2§6ok 256

pixels. Figure 8 shows a noisy Lennon image. The noisy image was composed by adding the
original image to independent pseudo-random deviates generated by the SPlus furartion

using a noise level of twice the standard deviation of the signal (image pixels). Figure 9 shows the
VisuShrinkthresholded reconstruction from the noisy image. Figure 10 shows the cross-validated
reconstruction. As mentioned in Section 2 WisuShrinkreconstruction is free of noise, but also
appears to be underfitting the data. The cross-validated method obtains a smaller sum of squares
with respect to the original image compared/AsuShrinkand indeed more features of the original
appear in the reconstruction and are better defined than those\fisti&hrinkreconstruction. As

with the one-dimensional examples the first four levels of wavelet coefficients (low-frequencies)
are not touched by the thresholding procedure. The drastic underfitting in Figures 9 and 10 could
be improved if fewer levels were thresholded. For example, in Figure 11 levels 5,6 and 7 have
been thresholded and levels zero to four have been left alone. Compare this to the previous two
reconstructions in Figures 9 and 10 where levels three and four were thresholded as well.

5 Conclusion

This article has introduced cross-validation to the estimation of functions using wavelets. In
particular, twofold cross-validation appears to be particularly adept at selecting a threshold for
normally distributed independent data, but suffers from the usual affliction of overfitting in the
presence of serial correlation. The cross-validation method extends to higher dimensions in a
straightforward manner.
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Figure 5: a. Section of inductance plethysmograph recording. Reconstructions using Daubechies’
least asymmetric wavelé¥ = 6 with thresholdst: b. VisuShrink ¢ = 0.048; c. GlobalSure
t = 0.025; d. Cross-validationt = 0.010.
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Figure 6: Top trace: leave-one-out cross validation reconstructioa (.012). Bottom trace:
corresponding 1500 observations of the two-fold cross-validation reconstruction from Figure 5d
translated down by 0.1% (= 0.010). The two-fold cross-validation reconstruction has been
translated down so it may be compared to the upper trace.

Figure 7: Original Lennon image.
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Figure 8: Noisy Lennon image (signal to noise ratié)s

Figure 9:VisuShrinkreconstruction of noisy image in Figure 8 using Daubechies’ extremal phase
waveletsN = 8, soft thresholding and thresholding above level 3. VisiShrinkthreshold was
534 and the integrated squared error between this reconstruction and the original was 6543.
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Figure 10: Cross-validated reconstruction of noisy image in Figure 8 using Daubechies’ extremal
phase wavelet&v = 8, soft thresholding and thresholding above level 3. The cross-validated
threshold was 222 and the integrated squared error between this reconstruction and the original
was 5660.

Figure 11: Cross-validated reconstruction of noisy image in Figure 8 using Daubechies’ extremal
phase wavelet&v = 8, soft thresholding and thresholding above level 5. The cross-validated
threshold was 514 and the integrated squared error between this reconstruction and the original

was 4772.
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A leave-one-out cross-validation algorithm has been devised and in simulation experiments on
power of two data sets has performed comparably to twofold cross-validation. This leave-one-out
algorithm has the advantage that it is applicable to data sets of any length. In common with many
statistical methods, especially wavelet methods, the leave-one-out algorithm works best with large
data sets.

We fully intend to deposit the Splus code that performs all the above analyses onto the Statlib
public archive with the next release \WaveThresh (see Nason (1993)).

Further Developments

Further developments include modification to level-dependent thresholding which would improve
performance on non-normal and correlated data sets; improving the optimization algorithm to take
account of derivative information and theoretical developments that study the asymptotic and other
properties of estimation by cross-validation with wavelets.

Level-dependent thresholding in cross-validation for wavelet shrinkage has already been
undertaken successfully by Wang (1994) and Weyrich and Warhola (1994). In our view, it would
not be too computationally demanding to extend our methods to choose a different threshold at
each level by cross-validation. Hopefully it would be possible to choose a threshold for one level
at a time whilst holding the other thresholds fixed and then repeat for all levels until convergence.
Remarkably the computational effort of this procedure is $#{lN) because the number of
coefficients halves at each level. In practice though the computational effort is likely to be more
because there is an optimization step at each level and probably cycling through the levels will
occur more than once. Also, the cross-validation method will not work well at low resolution levels
where there are few coefficients. However, this is just the situation whereShrinkperforms
well. Therefore a possible hybrid procedure would be toSis@Shrinkior low resolution levels
and cross-validation for medium and high resolution levels.

We should also mention that further improvements may occur when the “first-generation”
wavelet transforms used in this paper are replaced by more flexible systems such as wavelet
packets (Wickerhauser (1994)) and the stationary wavelet transform (Pestgabt(1994),
Silverman (1995)) Indeed preliminary investigations indicate that the stationary transform will
be a promising method for regression problems (Donethad. (1995b) and Langt al. (1995)).
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