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Abstract

This article shows how a non-decimated wavelet packet transform (NWPT) can be used to model a response
time seriesY;, in terms of an explanatory time series;. The proposed computational technique transforms the
explanatory time series into a NWPT representation and then uses standard statistical modelling methods to identify
which wavelet packets are useful for modelling the response time series. We exhibit S-Plus functions from the
freewareWaveThresh package that implement our methodology.

The proposed modelling methodology is applied to an important problem from the wind energy industry: how to
model wind speed at a target location using wind speed and direction from a reference location. Our method improves
on existing target site wind speed predictions produced by widely used industry standard techniques. However,
of more importance, our NWPT representation produces models to which we can attach physical and scientific
interpretations and in the wind example enable us to understand more about the transfer of wind energy from site
to site.

Key Words: nonstationary transfer function; nondecimated wavelet packets; wind time &&gaes;Thresh .

1 Introduction

This article models the relationship betweersponsédime series{Y; }.cz, and arexplanatorytime series{ X; },cz.

We hope that any model we choose might be interesting in its own right but we shall also be interested in using it to
predict future values of; from future values ofX;. When both time series fall into the class of ARMA type models

then it is appropriate to use “transfer function” models (see, e.g. Priestley 1981, chap. 9). However, our modelling
methodology can be used when either or both time series are not stationary although it is intended for series that exhibit
patches of stationarity or are locally stationary (e.g. fall into the class of oscillatory processes, see Priestley 1981,
Chapter 11, locally stationary (Fourier) processes, see Dahlhaus 1997 or locally stationary wavelet processes, see
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Nason, von Sachs and Kroisandt 2000). Although established “transfer function” models are usually exclusively
frequency domain quantities we widen the scope of the term to include the time-frequency quantities described in this
article.

The models that we build first expres§ in terms of (non-decimated) wavelet packets which analyseat
different scales, frequencies and locations. Then standard statistical modelling techniques can be usedfjttorelate
the non-decimated wavelet packet transform (NWPTXef The selected model often reveals valuable information
about which types of oscillatory behaviour Iy influenceY; and also supplies a method to predict future values of
Y; from futurevalues ofX;. Appendix 1 provides instructions on how to compute the NWPT and use all the methods
described in this article in the freewaaveThresh package for S-Plus.

We do not (yet) have a theoretical formulation of our modelling procedure. Our aim is to introduce the
computational method and show that it can produce interesting and verifiable results on real time series. Recently,
Walden and Contreras Cristan (1998) used the NWPT in the analysisioigke non-stationary series of hourly
averaged Southern Hemisphere solar magnetic field magnitude observations. Our work differs in that we relate a time
series,)Y;, to the NWPT ofanothertime seriesX;. Ramsey and Lamport (1998) carried out similar analyses to ours
but they only used standaddcimatedvavelets and decomposbdthtime series:X; andY; which in their example
were economic series of income and consumption. They extract decimated wavelet coefficients at the same dyadic
scale for each time series and then statistically model one set in terms of the other using linear regression (one for
each scale). With decimated wavelets it is tricky to relate coefficients from different scales or relate coefficients from
a scale to the original time series (because the number of coefficients and their location varies with scale). This article
usesnon-decimatetransforms which have the same number of coefficients at each scale and coefficients within each
scale are located according to the same time grid. Moreover, we use waaeletghat can elicit a greater variety of
behaviours than can wavelets alone.

Wavelet packets form an organized but extremely flexible class of functions of which wavelets are a subset.
Section 3 gives a more detailed overview of non-decimated wavelet packets. Section 4 explains how wE model
in terms of the NWPT ofX; and describes the modelling advantages of using non-decimated wavelet packets. First
though, in Section 2 we introduce our methodology in the context of modelling and predicting wind speeds at a
proposed wind farm site from data taken at a reference wind speed site. This example contains all the essential
features of our methodology: representation of the wind speeds at the reference site in terms of a NWPT transform;
relating the wind speed at the proposed site to the NWPT and selecting the best NWPT variables for predicting the
proposed site speeds and then interpreting those NWPT variables and evaluating their predictive performance.

2 Wind speed modelling and prediction

Before construction of a wind farm an analysis is undertaken to establish whether a patdigéasiteis suitable.
One aspect of this analysis involves the prediction of the long-term mean wind speed at the target site. Typically, wind
speeds are measured by a pilot anemometer at a height of 10m at the target site for several months. These target speeds
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Figure 1: Hourly wind speeds from 00:00 on 6th April 1995 at Valley (solid line) and Aberporth (dashed line). (Data
provided by M&N Wind Power.)

are related to contemporaneous wind speeds measured at a nearby reference site (a Meteorological Office station in
the UK) and a model predicting target from reference speeds is constructed. The long-term mean wind speed at the
target site can the be estimated using the model and the long-term mean at the reference site. Modelling of this kind

is described, for example, by Cook (1985) and Haslett and Raftery (1989). For reasons of cost, only one explanatory

series{ X;}L,, for some integef” > 0, is usually available although our methodology could be easily extended if

data from other Meteorological Office stations became available.

Figure 1 shows hourly wind speeds recorded at two Welsh Meteorological Office stations: Valley and Aberporth.

Valley is located approximately 120km north of Aberporth and they are mostly separated by Cardigan Bay. In the
following example our aim is to model Valley’s wind speed3(7_,) in terms of those at Aberport{ &;}7_,).
We show how our modelling methodology can be used to predict the wind regime at Valley from future Aberporth
values and improves on existing methodology. More importantly, our model is highly physically interpretable (unlike
existing methodology) and explains what types of wind activity at Aberporth are important for predicting Valley wind
speeds.

We should emphasize that baty andY; arenot stationary and so classical methods should not be used blindly



(indeed, the wind speed relationship depends on the wind direction). It is possible that the speed relationship is
piecewise stationary (linked to wind direction) so a modified form of classical “transfer function model” methodology
might possibly be made to work. The obvious technical problem is how does one “join-up” the different segments
of the series that exhibit similar stationarity? Piecewise stationarity, or more generally local stationarity does not
cause problems for our wavelet packet methodology since the wavelet packets naturally adapt to the dominant local
oscillatory behaviour.

2.1 An established wind industry method.

Linear regression is extremely simple, effective and is widely used in practice (e.g. the measure-correlate-predict
Hannah, Palutikof, Rainbird, and Shein 1996). First, the data is divided into (typically) twelwdird@tion sectors
based on the direction of the wind at Aberporth. Then 12 separate linear regression models are computed one for each
direction sector. Predictions of the wind speed are easily obtained by using the current wind direction at Aberporth
to select one of the twelve regression models and then predict the windspeed at Valley Byft wherea andB
are the fitted regression parameters for that particular sector. If the number of time series obsdnvattonall then
sometimes fewer direction sectors are chosen.

Wind speeds are usually non-normal, serially correlated and also subject to measurement error so typically a robust
regression method that takes account of the measurement error is used. However, the results from using the simple
methodology described here are typically good probably because of the large number of data points used to build the

regression models.

2.2 Our wavelet packet method.

This section explains what we do with wavelet packets although we are conscious that we have not yet formally
defined what wavelet packets are. To gain an overview of our methodology it is enough to know that wavelet packets
are oscillatory basis functions from some large library. However, for specific details about the particular transform
refer forward to Section 3.2.

Rather than build a model directly betwe&nand X; we build a model betweel; and a NWPT version of
X;. The NWPT transformation generatés = 27 — 2 derived time series which we stack together to make a
K-dimensional multivariate time seri&s.. Each variable oX; quantifies how similaX; is to that particular wavelet
packet at time. In other words each componentXf tells us “how much” of each wavelet packet there iskipat
any particular time. The decomposition ak; into K different wavelet packet components is extremely useful since
we can subsequently modg! in terms of the components using standard statistical methodology. To summ¥$yize:
is the “explanatory” time series arX; is the “collection of NWPT coefficients” oK.

The wavelet packet transformation analysgsusing a diverse collection of wavelet packets at different scales,
frequencies and locations. Their diversity is the reason why our methods can handle piecewise or local stationarity
as the wavelet packets will activate and deactivate as particular behaviours appear and disappear in different regions.
Wavelets and wavelet packets come in families. Given a particntgher wavelebne can derive all its wavelet



packets however the choice of a mother wavelet has to be made. There are no hard rules about the choice of a mother
wavelet even in areas as well developed as, say, wavelet shrinkage for curve estimation. For the examples below we
shall use the Haar mother wavelet which works well and produces interesting scientific results (although in Nason,
Sapatinas and Sawczenko 1999 we use a smoother Daubechies mother wavelet). How the choice of wavelet affects
the final model and its interpretation is an area for future research.

To exhibit our methodology on the wind energy time series we applied the NWPT to a segmenifiaiiength
T = 512. This transform resulted iR = 1022 transformed time series which we stacked to make22-dimensional
multivariate time serieX; of lengthT = 512. We then modelled; in terms ofX;.

In general the statistical modelling step is completely straightforward becauseutecimateavavelet packet
transform allows us to use many of the widely available statistical methods for modelling a responseYyeator,
terms of a multivariate descriptoX;. Use of the standard (decimated) wavelet packet transform would not permit
us to modelY; directly in terms of the wavelet packet coefficients)of because the coefficients exist on different
time scales td;. Ramsey and Lampart (1998) demonstrate the utility of relating decimeeeletcoefficients of
{Y: = consumptioh and{X; = incomg at the same scale. However, they do not directly provide a model for the
seriesY; itself, nor predicty; from future X; (both of which are possible to do with non-decimated transforms), nor
do they use the increased flexibility of wavelet packets.

Returning to our wind energy example note that the number of variakles (022) in the K -dimensional time
series, X, is always larger than the sample siZe= 512. In this article we use a crude initial dimension reduction
technique to reduce the extremely large dimensional problem into a more manageable but still large size. We then use
more incisive statistical modelling techniques to reduce the dimensionality further to identify our “best” model. We
stress that it is not the aim of this article to discuss and develop a comprehensive variable selection methodology and
we intend to investigate alternatives.

Initially, we used various familiar statistical procedures to mddein terms of X;. However, residual plots
showed that our models were systematically in error with the error magnitude strongly related to the wind direction at
Aberporth. To improve our model we inserted an extra wind direction sector factor variable: DIR. (The DIR factor
has twelve levels corresponding to winds in the diffei#itdirection sectors. See Table 2 for a list.) We applied the
following crude variable selection approach to select a subset df the1022 variables: we selected an arbitrary 5%
of variables which correlated best with and labelled the resultaif; = 51 variables which we label S1 to S51. (We
admit that this procedure is somewhat rough and ready but it is an adequate initial dimension reduction step which
produces interesting practical results.) Then we used generalized linear/additive modelling and CART to find a good
model for the Valley wind speeds in terms of the dimension reduc&j. The final selected model was a generalized
linear model (GLM) obtained using backwards variable selection that assumed Gamma distribuddaes (wind
speeds are positive and skewed to the right) wilbgdink function. Instructions on how to perform the NWPT and
select the “best” 5% of the variables\idaveThresh are presented in Appendix 1.



Table 1: Significant wavelet packets included in the final GLM. The table shows the value of the coefficient in the
linear model along with the resolution level that the term corresponds to and its frequency index within that resolution
level.

Term Packet Level FrequencyIndex Term Coefficient@00)

Intercept 8300
S2 7 0 -13

S20 2 15 38
S35 1 6 -10
S39 0 33 -47

Table 2: GLM coefficients for the factor DIR in the final GLM along with the associated direction sectors.
Term  Direction Sector (degrees) Term Coefficienf000)

DIR1 0—29 -31
DIR2 30—59 -18
DIR3 60—89 22
DIR4 90—119 21
DIR5 120—149 5
DIR6 150—179 -2
DIR7 180—209 12000
DIRS8 210—239 -1300
DIR9 240—269 -1100
DIR10 270—299 -870
DIR11 300—329 -720
DIR12 330—359 aliased

2.3 Our wavelet packet model and interpretation.

Tables 1 and 2 show the coefficients of the final GLM model
log(Y:) ~ u+ S2+ S20+ S35+ S39+ DIR. Q)

The final model is highly interpretable. The DIR factor can be interpreted as a multiplier reflecting the strength of
association between the wind speeds at the two sites. Since the two sites are in a NNE/SSW line there is a large
multiplier of 12 when the wind direction is in sector DIR7 (when the wind is at right angles to this in DIR10 the
effect of all the other variables is shrunk by the multiplier -0.87). This effect is enhanced when the wind comes from

a southerly or westerlyl@0 — 330°) direction rather than a northerly or eastedg{ — 180°) direction which is

natural given the prevailing wind directions in the UK from the west and south.

However, the DIR factor only multiplies the linear predictor in the final model by a fixed amount depending on
the wind direction. The four wavelet packets actually model the variations in wind speed over time and they too are
interpretable. Figure 2 shows pictures of the wavelet packets in the model obtained usirayihe.default()
function fromWaveThresh which requires knowledge of the underlying wavelet, the resolution level and packet
index of the particular wavelet (which can be obtained fromfiber |, level andpktix components of the
wpstRO object described in Appendix 1). Each plot in Figure 2 contains a vertical dashed tire @tvhich serves
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Figure 2: The Haar wavelet packets used in the final model. The vertical dashed line in each plot corresponds to time
t. Each wavelet packet is indexed by a pair: (resolution level, frequency index within a level). They are (clockwise,
from top left): a. S2: The wavelet packet (7,0) (father wavelet); b. S20: The wavelet packet (2,15); c. S35: The wavelet
packet (1,6); d. S39: The wavelet packet (0,33). The wavelet packets S20, S35 and S39 are plotted on the same vertical
scale which isl0x that of the scale for S2. For the physical interpretation of these wavelet packets in the model see

text.



as an origin for obtaining wavelet packet coefficients of a series. Given this, the interpretation of each of the plots in
Figure 2 is as follows:

a. S2 is a wavelet packet (actually father wavelet) which averagesver the previous four hours. Inclusion of this
wavelet packet indicates that the serdés+ X; 1 + X o + X3 is important for prediction.

b. S20 is a wavelet packet with average oscillation frequency of just over 23 hours. We assume that this wavelet
packet captures daily variation in wind speed. Note however, that the oscillation only occurs over the previous
five days. So daily variation is important for prediction, but only the past five days is relevant.

c. S35 is a wavelet packet with average oscillation frequency of 4.7 days. It is well-known that wind speeds oscillate
at or near this frequency. Indeed, this frequency falls into the middle of the “macrometeorological peak” and is
associated with the large-scale pressure systems passing overhead (e.g. Cook 1985, van der Hoven 1957).

d. S39 is a wavelet packet which mostly oscillates over the whole series at a frequency of 16 hours except for the
period around = 0 where it averages over the immediate eight hours into the past and future. It is difficult
to attach a direct meteorological interpretation to this wavelet packet, although wind takes approximately eight
hours to travel between Aberporth and Valley assuming a mean wind speed®h4 tb.

The S39 wavelet packet takes values equally from the future as well as from the past which is perfectly legitimate
mathematically but would be a problem for real-time prediction. It would be possible to restrict our methodology
to only include wavelet packets that do not overlap with future data.

Note that the modelling above indicates that wavelet packets were useful and interpretable, indeed in this practical
example none of the selected basis functions are actually wavelets (this shows the need for the more complicated
waveletpackettransform).

2.4 Model predictions.

For this example the differences in prediction between the established industrial method and our new methodology
are not large. In fact, both methodologies often make the same mistakes. Generally speaking residual plots show
that our new methodology is slightly better (but remember that we also obtain a wealth of extra interpretable and
scientific information as outlined above.) For wind energy prediction an estimate of the distribution of wind speeds
at the proposed site is required. Our methodology provides a better estimate of the wind speed distribution because it
provides a better model of the transfer between reference and proposed sites.

Formally our model is also better in terms of mean residual sums of squares (MRSS) for predicting wind speeds
another 21 days ahead (ours is 0.088, the established industrial method is 0.094). The other interesting feature is that
our model is better over the early parts of the prediction interval: over 10 days our MRSS is 0.12, the established
MRSS is 0.14; over five days our MRSS is 0.19, the established MRSS is 0.23. Roughly speaking our model is 10%
better than the established industrial method. Although 10% does not sound very much in absolute terms it can make
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Figure 3: Two tilings of the time-frequency plane. Left: Dirac; Right: Fourier.

a lot of difference to the wind power output statistics for a proposed wind farm (wind power output is related to the
cube of the speed) and hence to the economics and viability of the proposed farm.

Instructions on how to usé&/aveThresh to generate predictions using our models appear in Appendix 1. The
next section explains how to compute the NWPT and what the coefficients of the transform mean.

3 Representations using non-decimated wavelet packets

Our goal is to model the relationship between the response time s€¥igsez, in terms of the local scale and
frequency properties of the explanatory time ser{és, }:cz, which we obtain using a non-decimated wavelet packet
transform. Hess-Nielsen and Wickerhauser (1996) give an excellent description of wavelet packets and explain how
they reveal information about the variation of signals in time and frequency. In particular, they make a nice analogy
between musical score notation which indicates the pitch, duration and position of individual notes and a wavelet
packet analysis which gives information about the frequency, scale and position of energy in a time series. The
analogy cannot be pushed too far as musical notation has many more subtleties.

3.1 The time-frequency plane and wavelets.

The properties of wavelet packets can be conveniently explained by introducingniadérequencyplane. This
two-dimensional plane represents time along the horizontal axis and frequency along the vertical axis. Waveforms
(segments of time series) can be schematically represented by areas in the time-frequency plane with their width
indicating duration and height indicating frequency bandwidth.

As an example consider a simple time seriésfor ¢t = t; = 1,...,T = 16. Figure 3 shows two familiar
tilings of the time-frequency plane. The left diagram in Figure 3 corresponds to a representation of a time series



concentrated purely in time with each vertical line representing a particular (Dirac) time basis element. The right
diagram corresponds to a representation concentrated purely in frequency with each horizontal line representing a
particular frequency basis element at Fourier frequensip§—iw,,) for w,, = 27n/16 andn = 0,...,15. Each line

in either of these plots could be given a separate grey-shade intensity to indicate the “contribution to variance” at each
location in time (for Dirac) or frequency (for Fourier). For exampleXif; was a large value then the 13th line would

be a dark shade of grey, K5 was a small value then the fifth line would be light and so on.

Wavelets offer an alternative, but fixed, tiling of the time-frequency plane. See Daubechies (1992) or Burrus,
Gopinath and Guo (1998) for introductions to wavelets in this context or see Nason and Silverman (1994),
Antoniadis (1997), Ogden (1997), Vidakovic (1999) or Abramovich, Bailey and Sapatinas (2000) for statistical
introductions. Given a suitable mother wavelef;), a set of wavelets

{$jk(1)}; pez Where ;i (t) = 207227t — k), )

can form a basis for function spaces suchLagR) (or indeed more complicated function spaces, see Abramovich,
Sapatinas and Silverman 1998). Since wavelets form bases we can represent fyifttiaasinear combinations of
wavelets by

F@) =" disthe(t). ®)

JEZ kET
If the wavelet basis is orthonormal, as it will be throughout this article, then we can write the wavelet coefficients,
{djk}jkez, Of f(t) as
di= [ fOO
R

In this article we advocate the popular Daubechies’ (1992) compactly supported wavelets. The Daubechies’ family
is useful for several reasons: the degree of smoothness of the mother wavelet can be preselected, the associated
discrete transforms are fast and efficient and smooth structure is sparsely represented. The Haar wavelet used in
the wind example earlier is the least smooth Daubechies’ wavelet but seemed to work best in that practical situation.
Formula (3) demonstrates th&t) can be represented by basis functiang,(t) at different scales proportional 2o/
for integersj i.e. a multiresolution analysis. The mother wavelet is usually chosen to be a short-duration oscillation
and therefore localized both in time (short-duration) and in frequency (because it oscillates). The derived wavelets are
scaled and translated (By’k) versions of the mother wavelet: the scaling and translation operations permit analysis
of time series at different times and frequencies (time-frequency analysis). Figure 4 shows how wavelets tile the
time-frequency plane: asgets larger the wavelets become finer and finer scale objects, oscillate more quickly, are
packed closer together (top of figure) and the corresponding tiles get taller (they cover a wider frequency range) and
thinner (their duration is less). Asgets smaller the opposite happens. The amplitude of any wavelet coefficient in
a representatiord;, |, can be indicated on Figure 4 by grey-scale intensity shading of the rectangle corresponding to
the wavelet basis function in question.

Mallat's (1989) pyramid algorithm permits fast ord8(7") computation of the discrete wavelet transform (DWT)

10



Scale

-

—
0
l father wavelet

12345678910 12 14 16
Time

Frequency

Figure 4: Left: wavelet tiling of the time-frequency plane. The top row of the tiling corresponds to fine scale, high
frequency wavelets (top right) that “exist” over a short time scale, the bottom but one row corresponds to the largest
scale, lowest frequency wavelet which “exists” over the whole time domain (for this example). The very bottom tile
corresponds to the father wavelet (not shown) which again “exists” over the whole time domain at the very lowest
frequency. Right: shows the wavelets (both derived from the same mother wavelet) at scales 1 and 3. At scale 3 there
are eight fine scale wavelets roughly centred on locatddns 0.5 for £ = 1,...,8, at scale 1 there are two large

scale wavelets centred roughly on locations 4.5 and 12.5. Note that the lighter shading in the box at scale 3 causes
the wavelet to the right to have small amplitude. If the boxes had the same shade then the finer scale wavelet would
actually be taller than the coarser scale one becif$és larger thar2!/2 in formula (2).

of a discrete time serie¥ = {X,;}, whereT = 27 for some positive integef. The DWT provides information
about variation in a time series at different scales and locations (likgtlebove). To fix notation let! andG denote

the filter operators corresponding to the low- and high-pass quadrature mirror filters of some Daubechies’(1992)
compactly supported wavelet with filter coefficiedts,} and {g.}, both of lengthL. Thus the computational
effort for applying?{ or G once is of ordeilO(L). Let Dy, denote the even dyadic decimation operator defined

by (Do X)r = Xa, i.€. it selects every evenly indexed observation (see Nason and Silverman 1995 for a more
comprehensive discussion). Then the DWT coefficientsXoft level j = 0,...,J — 1 may be obtained by

dj = Dy G (Do H )(J*J'*UX. We call the concatenated operat@s H and D, G packet operators We can

again use Figure 4 to schematically visualise the DWT ¢f 16 = 2* data points. At levej = 3 the vectords will

contain 8 DWT coefficients corresponding to the eight tiles at the highest frequency in Figure 4. Atjleveélsl

ando the vectorsl,, d; andd, contain 4, 2, and 1 coefficients corresponding to the tiles (wavelets) at those levels.

3.2 Wavelet packets

Wavelets are a subset of a larger class of oscillatory functions cakeelet packets A wavelet packet library is

a collection of bases where the basis elements are no longer restricted to just scaling and dilation of one mother
wavelet. As an illustration Figure 5 shows four such wavelet packets from different scales with varying locations and
frequencies. For applications one does not need to have a detailed knowledge of what all the wavelet packets look like
or indeed need to have detailed formulae for them. The reason for this is that the statistical methodology in Section 4

11
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Figure 5: Four wavelet packets derived from Daubechies’ (1992) least-asymmetric mother wavelet with 10 vanishing
moments. These four wavelet packets are actually orthogonal and drawn dsatinep.default() function in
WaveThresh . The vertical scale is exaggeratedtiyx.

picks out important basis functions and then effort can be put into interpretation of the selected functions as was
done earlier in Section 2.3 using Figure 2. A comprehensive description of wavelet packets is beyond the scope (and
length) of the present article. See Wickerhauser (1994) or Hess-Nielsen and Wickerhauser (1996) for useful technical
introductions. Wavelet packets permit function representation using a basis selected from the library of wavelet packet
bases where each basis element is indexed by scale, location and frequency (number of oscillations). For a discrete
time series the wavelet packet transform (WPT) computes the representation of the series with redpéetste

functions in the library efficiently iO (7T log T'). The WPT is computed by a full binary recursion of the { and

Do G operators operating on the time seriégi.e. bothDy, # andD, G are first applied toX producing a low-and
high-passed set of coefficients, then both operators are applied to each set producing four sets of coefficients, then both
are applied again to each set producing eight sets and so on). Figure 7 depicts the algorithm for an initial set of eight
data points. The total number of different wavelet packets (e.g. total number of rectangles in Figure 7 not counting the
original data) can be computed by realizing that ther&grvackets at scale levdl — 1, 4 packets at levef — 2, ...,

27 packets at level 0. The total @f+ 4 + --- + 27 = 27+1 — 2 = 2T — 2 = K as mentioned earlier. More details

about wavelet packets and how they fit into a non-decimated scheme (next section) appear in Appendix 2.
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Wavelet packets have been used in signal representation and compression. For example, Coifman and
Wickerhauser (1992) use the WPT to represent a given signal in terms of all wavelet packets and then select a “best-
basis” for representing that signal. Their “best-basis” is one in which the representation is sparse and an entropy criteria
is used in an efficient “branch-and-bound” algorithm to select the sparsest basis. Sparse function representations are
obviously useful for compression. We use wavelet packets because they can efficiently represent a wide range of time
series behaviour: e.g. transients, local and prolonged oscillations.

Each wavelet packet basis provides a particular tiling of the time-frequency plane: there are a large number of
possible distinct tilings/bases (I&; denote the number of bases in a WPT tree witlevels. ThenB; = 1 and
B; = B]?_l + 1 which increaseseryfast). We do not claim that collections of wavelet packets optimally represent
every type of time-frequency behaviour, but as Hess-Nielsen and Wickerhauser (1996) point out “it is more reasonable
to correct the deficiencies in fast transforms [like wavelet packets] rather than to wait for slow mathematically perfect
transforms to catch up”.

3.3 Non-decimated wavelet packets

Our goal is to spot any relationship between variation in the response time series and the time-scale behaviour of the
explanatory time series expressed though its wavelet packet coefficients. For the modelling that we have in mind, it
is not possible to use the WPT algorithm directly because of the dyadic decimation — the consequence of which is
to reduce the number of wavelet packet coefficients by a factor of two for each coarser scale level computed (in the
continuous representation this just means that “large scale” basis functions are kept further apart than “small scale”
basis functions because functions are translated by shifts’df which is larger for coarse scale wavelet packets).
The NWPT uses exactly the same basis functions as the WPT but arranges for the wavelet packets on every scale to
be present all time locations. In other words for every time point in the explanatory series there is a corresponding
wavelet packet coefficient for each of the wavelet packets at all scales. The resulting NWPT representation is heavily
overdetermined and non-orthogonal but the structure is advantageous for the modelling described in Section 4. Next
we briefly summarise the key components of the NWPT.

First, letD; denote the “odd” dyadic decimation operator which selects every odd indexed observation from a
sequence. The NWPT simply applies the four packet oper&p#s , Dy G , D1 H andD; G recursively to the time
series to form a tree where each node has 4 children corresponding to the each of the packet operators. The NWPT was
proposed by Pesquet, Krim and Carfantan (1996) and developed for curve estimation (wavelet shrinkage) by Cohen,
Raz and Malah (1997). The NWPT is illustrated schematically in Figure 8 fer 8 data points input at the root of
the tree. Each packet of coefficients in the NWPT tree can be addressed by an index written in base 4. The number of
digits in the index indicate the level of the packet: packets at lgtiave.J — j digits forj = 0,...,J — 1. The actual
entries in the index describe how that packet was reached from the root: applicafleriof Dy G, D1 H ,0rD, G
augments a 0, 1, 2 or 3 respectively to the index. For example, the indices 0, 1, 2 and 3 at level 2 and 01, 03, 21 and 23
at level 1 are indicated in Figure 6; the 23 packet is so labelled because it is obtained by the @petatéollowed
by D; G . The computational cost of the NWPT can be found by noting that ther&’adepackets each of lengi
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Figure 6: Schematic of NWPT f&F = 8 points (J = 3).

for levelsj = 0,...,J — 1. Thus the total number of coefficients is
J—1 J
S = 23y
j=0 j=1
2]—‘1-1 (2] _ 1)

= 2T(T —1) = O(T?).

Therefore since each coefficient computed cd3té) the total effort for the NWPT isD(T2L). It is possible to
compute non-decimated transforms with an arbitrary number of pdintsit our software restricts us to data sets of
length a power of 2. In practice, this is not a draconian restriction and may be overcome by padding with zeroes,
for example (due to the time localization of the wavelet transform the extra zeroes do not affect the majority of the
coefficients except at very coarse scales where they get included in their calculation. This is unlike standard spectral
estimation where zero padding causes a different spectral interpolation, see Priestley, 1981, Section 7.6).

Translation-equivariance of the NWPT. The NWPT has another important property callgenslation
equivariancavhich means that it is the cyclic shift operator then

NWPT[SX,] = S(NWPT[X,]).

In other words a shift in the time series is reflected by an identical shift in the transform coefficients and the relevance
of this property for our modelling is explained in Section 4. Note that both the DWT and WPT are neither translation-
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equivariant nor translation-invariant and cannot be used for our particular purpose.

3.4 Time-ordered non-decimated wavelet packets

Although the NWPT produces as many wavelet packet coefficients as there are data points at each scale, the coefficients
produced by the recursive algorithm are not delivered in time order. For example, packets 0 and 2 in Figure 6 both
correspond to the first stage of low-pass filtering but the coefficients in each of the NWPT packets would have to be
interleaved to produce a sequence of time-ordered coefficients (i.e. both sets are father wavelet coefficients obtained
by filtering with 7 but then one set has every even element selectefi;byand the other has every odd element
selected byD; ). Interweaving these two sets produces a set of eight coeffigietitee orderwhere each coefficient

is associated with a corresponding father wavelet. Other interweavings are necessary to obtain time-ordered NWPT
coefficients for other wavelet packets and details on how to achieve them are presented in Appendix 2.

Finally we note that the NWPT coefficients need to be phase-corrected to bring them into perfect time-alignment
before use. Walden and Contreras Cristan (1998) specify a phase-correction technique but we use phase-shifts
determined empirically here (by observing how delta functions are shifted) which work very well in practice. Note
that the computational scheme in Walden and Contreras Cristan (1998) produces time-ordered sequences by default.

4 Modelling using NWPT

For every wavelet packet basis function the NWPTXgfcomputes the coefficient of that basis functiomatrytime
locationt = 1,...,T — alarge coefficient atindicates that th&(; is behaving coherently with the particular wavelet
packet function at that point. With the standard (decimated) WPT it is not possible to obtain coefficahtema
points.

The translation-equivariance of the NWPT is also critical in the following sense. If a certain behaviour occurs in
which is reflected in coefficients in the NWPTtahen if that behaviour again happens at, sy, - it turns up again
in exactly the same way in the NWPTtat 7. For a standard (decimated) DWT this again does not happen as the same
behaviour inX att andt + 7 might we be reflected in completely different coefficients at these two locations. Earlier
we described modelling; in terms of the transformed version &% and clearly the lack of translation-equivariance
would have caused problems (as certain behaviolkr at different times would not be represented consistently).

The final major advantage of using the NWPT as opposed to the (decimated) WPT is that for each wavelet packet
basis function we obtaifi coefficients — the same as the number of observations in the response tim¢ sgrfes.
This means that we can represent the NWPT coefficientsXoft !, as aK-dimensional multivariate time series
{X;}}_, where each variable corresponds to the coefficients of a particular wavelet basis function. It is this property
which enables us to make good use of the huge variety of statistical techniques (e.g. CART, multiple regression, logistic
regression, GLMs, GAMs, Bayesian variable selection techniques) for modeling a responsd ¥ectar, Yr) in
terms of multivariate explanatory variableX,, ..., Xy) where eactX; is K-dimensional.

In Section 2 we noted that the number of variablEs=£ 27 — 2) was greater than the number of observations
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(T). Many standard statistical techniques requirec 7. Again, the aim of the current article is to show the utility of

the NWPT and not dwell on the problem of “more variables than observations”. However, we mention two techniques
we have used. The first, very simple, approach is just to select a suitable number of those wavelet packet variables in
X, that correlate best with; and then use standard techniques as described in more detail above. Although naive this
approach is fast and has worked well in practice. As a further development, since the varidjeséncorrelated,

it might be worth subjecting; to a principal components analysis and then use the new PCA projected variables

to modelY;. Secondly, Nason, Sapatinas and Sawczenko (1999) used the antedependence models of Krzanowski,
Jonathan, McCarthy and Thomas (1995) to perform discrimination in the case of singular covariance matrices (when
the number of variables is larger than the number of observations).

It is possible to use a non-decimated wavelet transform instead of a NWPT. Indeed, Nason, Sapatinas and
Sawczenko (1999) demonstrated how non-decimated wavelets could be used to model infant sleep-state from ECG
(electro-cardiogram) signals. In this case only wavelet functions are identified and the full generality of wavelet
packets is not needed. However, we did not know ¢éhatiori only wavelets would be needed so generally speaking
we use the full flexibility of the NWPT.

5 Conclusions and further work

This article has introduced a computational method for building a transfer function model using non-decimated wavelet
packets for non-stationary time series. The transfer function model may well be interesting in itself or be useful for
predicting future values of a response time series from future values of an explanatory time series.

Our methods could be easily extended to the case where there is more than one explanatory time series by using
multivariate statistical procedures. Our methods could, in principle, also be extended to build non-decimated wavelet
packet models between multidimensional objects although in practice algorithms for computing non-decimated
wavelet packet transforms are probably only practical for low numbers of dimensions (1, 2 or 3). However, a two-
dimensional non-decimated wavelet packet model may well be useful for relating images in many applied areas such
as industrial inspection and control.

We intend to extend our work to both the multivariate and multidimensional settings. Although the main aim of
this article is to introduce the (time-ordered) non-decimated wavelet packet transform as tool for building transfer
function models we recognise that the naive variable pre-selection in this article could be improved upon. Further,
although the main goal of this article was to describe a computational technique we intend to supply a mathematical
framework for the modelling described above: our intention is to represent both response and explanatory time series
as locally stationary Fourier or wavelet processes and see how slowly varying models can be constructed according to
the principles described above.
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Appendix 1  S-Plus functions

We now describe the S-Plus functions used to implement the modelling methodology described in this article. These
functions may be computed using Version 3 of the fYéaveThresh package for S-Plus and R (see Nason and
Silverman 1994 for details on Version 2www.stats.bris.ac.uk/"wavethresh for Version 3).

1. The NWPT can be carried out using thipst() function:
wpst(data, filter.number, family, FinishLevel)

which computes the NWPT on the data set (time sedat) using any of the Daubechies’ compactly supported
wavelets withfilter.number vanishing moments from thfiamily  series up to a coarse resolution level
specified byFinishLevel

2. The NWPT and selection of the “best” 5% wavelet packet variables (described in section 2.2) can be carried out
using themakewpstRO() function:

makewpstRO(timeseries, response, filter.number, family, trans, percentage)

which applies the NWPT timeseries  (a vector containing the explanatory time setlgg then finds the
bestK-sized subset of wavelet packet variables by correlating with the response time series contained in the
vectorresponse . The wavelet witffilter.number vanishing moments from tiflamily  series is used

for the NWPT. The argumemtitans permits a mathematical transform to be applied to the NWPT coefficients
before correlation with the response time series (much in the same wayltizgg) a orsqrt()  transformis

used to stabilize variance in regression). Peecentage argument specifies the proportion of the wavelet
packet variables that are returned in this initial crude dimension reduction stemalesvpstRO() function

returns avpstRO class object which is an S-Pllist  with the following components:

e df : a data frame containing the “bedt”; wavelet packet variables;

e ixvec : an indexing vector which for each of the selected wavelet packett ireferences the position
of that packet in the matrix version of the NWPTtoheseries

e level andpktix : the resolution level and packet index of each selected packet in the NWPT of
timeseries
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e nlevels : the total number of resolution levels in the NWPTtiofieseries ;

e CV: a vector containing<; correlation coefficients betweersponse and each of the selectdd,
variables;

o filter andtrans : details of the wavelet filter and transform specified in the cathtdkewpstRO() .

Of these components tigelf component can be supplied directly to commands suaim§ or gam() to
e.g. modetesponse on theK; selected NWPT coefficients timeseries  as described in Section 2.3.

3. Prediction of future values d&f; from future values ofX; as described in Section 2.4 can be carried out using
thewpstREGR() function:

WpPStREGR(newTS, wpstRO)

which takes a new segment df; (possibly detrended to remove its mean) caltevTS and uses the
information stored in the existingipstRO object to construct a new data frame containing the s&me
variables as in thevpstRO but computed with the new time series datanewTS. The statistical model that
was constructed (e.g. like (1)) can then be applied to the new data frame to obtain predicted values for

Appendix 2 Weaving wavelet packets

There is no closed-form formula for the continuous wavelet packets derived from Daubechies’ compactly supported
wavelets. However their Fourier transform foe= 0, ...,.J — 1 can be written (see, for example, Daubechies 1992,
p. 333) as

J—j
1)[}.]‘2617---76‘1—]‘ (w) = [H Mme, (2pw)] 1&(27‘]7].‘*’), 4)
p=1

wheremg(w) = % i hee”“F andm, (w) = % >, gre**, ands) is the Fourier transform of the particular
Daubechies’ compactly supported wavelet determined by the quadrature mirror filters. The seguefiar 1 forces
selection of theny orm; at each level (in the WPT this is equivalent to followina? or Dy G convolution branch

in the binary tree respectively). The wavelet packets shown in Figure 5 correspgrekiguences of (clockwise from
top left) 0010, 0101, 000010 and1000001. Formula 4 also shows that the number of distinct wavelet packets at level
j=0,...,J —1is given by2’/—J,

A distinction must be made between an “ordinary” NWPT packet (such as the ones in Figure 6) and a “time-
ordered” NWPT packet. Time-ordered NWPT packets follow the WPT indexing scheme and are obtained by weaving
together coefficients from ordinary NWPT packets. Time-ordered NWPT packets are as long as the original data. For
example, in the ordinary WPT at levél- 1 there are two packets: packet 0 and 1 each of leRth (see Figure 7).

With the ordinary NWPT at level — 1 there appears to be four packets (see Figure 6). However, one can also visualise
the ordinary NWPT packets at levél— 1 as two time-orderedon-decimategackets corresponding to the WPT by
interweaving the four packets in the following way:
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Figure 7: Schematic of the WPT operating &n= 8 points, i.e.J = 3. At level j there are2’~7 packets each
containing2’ points. The numbers 0,1,2,3 next to the packets at level 1 are the indices of packets within that level
from left to right. The DWT coefficients are contained in the WPT and are shown in the dashed boxes andcmarked
andd. All other coefficients are with respect to other wavelet packets such as those illustrated in Figure 5. The total
number of wavelet packets (excluding the original dat&)lis— 2 = 14. An arrow corresponds to convolution with

the appropriate labelled operator.
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e weaving together the packets producedy), andH D, . This produces the time-orderedn-decimated
packetH and corresponds to the time-ordered non-decimated version of the ordinary WPT packet of index 0.

e weaving together the packets producedd$, andG D, . This produces the time-orderedn-decimated
packetG and corresponds to the time-ordered non-decimated version of the ordinary WPT packet of index 1.

Therefore the weaving process is a two-stage procedure: choose which time-ordered NWPT packet you require (using
the WPT indexing scheme) and then identify the associated ordinary NWPT packets; weave the associated packets
into time-order.

In general, to obtain the correct time ordering, the ordinary NWPT packets are not taken sequentially but with
reference to the root node. For example, let us refer to level 1 in Figures 6 and 7. Suppose that we wished to obtain
time-ordered NWPT packet of index 1 (or in operator notation the packet produced fmllowed by G ). This
corresponds to ordinary NWPT packet indices 01, 03, 21 and 23 using the base 4 notation from Section 3.3 (each of
the cases where@ operator follows &{ operator regardless of decimation). To produce correct time-ordering we
take coefficients successively from the ordinary NWPT packets in the order 01, 21, 03 and then 23. This ordering
occurs because the shift of wavelet packets is finer nearer the root node. The transition from level 3 to 2 encodes a
shift of one position, the transition from level 2 to 1 encodes a shift of two positions. So the “distance” of 21 to 01 is
only 1, from 03 to 01 is 2 and from 23 to 01 is 3. So, relative to 01, 21 has undergone a unit shift, 03 a two unit shift
and 23 both a unit and two unit (= 3 unit) shift.

To obtain the ordinary NWPT indices associated with a time-ordered NWPT packet of indéXgvel j, say
(r=0,...,2779-1,5=0,...,J —1, see Figure 7 for details of the WPT indexing scheme) the following recursive
procedure can be used:

1. convertthe (decimal) time-ordered non-decimated wavelet packet frequency intiekinary strings. Convert
s into decimal but this time assumingis in base 4. Call the resujt(three example conversions‘g—> means
convert from base into base.

1% 1512 % 10 5 4,3 225 11 55 5).
2 10 2 10 2 10
2. Fori=j,...,J —1doe <- 27°(2*3-2*-1); p <- c(p, pte)

This example contains partial S code (see Becker, Chambers and Wilks 1988). The first line=sets”’—2i-1)

the second line uses the S concatenation opecathat pastes together two vectors, icg{z;}7,,{y;}7,) =
{z1,...,Zn,y1,-.-,Ym}- AS an example suppose that again the time-ordered NWPT indices for the non-decimated
wavelet packet at level 1 of index 1 for the 8 point data set are required. After the binary to base 4 conpession:

In the loop: setting = 1 we obtaine = 8 andp = (1,9). Then setting = 2 we obtaine = 2 andp = (1,9, 3,11)

which are the required indices (in base 4: 01, 21, 03, 23). Time-ordered coefficients are obtained from these four
ordinary packets by taking the first coefficient from each in order, then the second coefficient from each in order and
so on.
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Finally we mention that the functiorgetpacket.wpst() andaccessD.wpst() could be used to extract
ordinary non-decimated wavelet packets and time-ordered non-decimated wavelet packets respectively (see the help
on theWaveThresh package from the Web site mentioned in Appendix 1).
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