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Abstract

This article shows how a non-decimated wavelet packet transform (NWPT) can be used to model a response

time series,Yt, in terms of an explanatory time series,Xt. The proposed computational technique transforms the

explanatory time series into a NWPT representation and then uses standard statistical modelling methods to identify

which wavelet packets are useful for modelling the response time series. We exhibit S-Plus functions from the

freewareWaveThresh package that implement our methodology.

The proposed modelling methodology is applied to an important problem from the wind energy industry: how to

model wind speed at a target location using wind speed and direction from a reference location. Our method improves

on existing target site wind speed predictions produced by widely used industry standard techniques. However,

of more importance, our NWPT representation produces models to which we can attach physical and scientific

interpretations and in the wind example enable us to understand more about the transfer of wind energy from site

to site.

Key Words: nonstationary transfer function; nondecimated wavelet packets; wind time series;WaveThresh .

1 Introduction

This article models the relationship between aresponsetime series,fYtgt2Z, and anexplanatorytime series,fXtgt2Z.

We hope that any model we choose might be interesting in its own right but we shall also be interested in using it to

predict future values ofYt from future values ofXt. When both time series fall into the class of ARMA type models

then it is appropriate to use “transfer function” models (see, e.g. Priestley 1981, chap. 9). However, our modelling

methodology can be used when either or both time series are not stationary although it is intended for series that exhibit

patches of stationarity or are locally stationary (e.g. fall into the class of oscillatory processes, see Priestley 1981,

Chapter 11, locally stationary (Fourier) processes, see Dahlhaus 1997 or locally stationary wavelet processes, see
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Nason, von Sachs and Kroisandt 2000). Although established “transfer function” models are usually exclusively

frequency domain quantities we widen the scope of the term to include the time-frequency quantities described in this

article.

The models that we build first expressXt in terms of (non-decimated) wavelet packets which analyseXt at

different scales, frequencies and locations. Then standard statistical modelling techniques can be used to relateYt to

the non-decimated wavelet packet transform (NWPT) ofXt. The selected model often reveals valuable information

about which types of oscillatory behaviour inXt influenceYt and also supplies a method to predict future values of

Yt from futurevalues ofXt. Appendix 1 provides instructions on how to compute the NWPT and use all the methods

described in this article in the freewareWaveThresh package for S-Plus.

We do not (yet) have a theoretical formulation of our modelling procedure. Our aim is to introduce the

computational method and show that it can produce interesting and verifiable results on real time series. Recently,

Walden and Contreras Cristan (1998) used the NWPT in the analysis of asingle non-stationary series of hourly

averaged Southern Hemisphere solar magnetic field magnitude observations. Our work differs in that we relate a time

series,Yt, to the NWPT ofanothertime seriesXt. Ramsey and Lamport (1998) carried out similar analyses to ours

but they only used standarddecimatedwavelets and decomposedboth time series:Xt andYt which in their example

were economic series of income and consumption. They extract decimated wavelet coefficients at the same dyadic

scale for each time series and then statistically model one set in terms of the other using linear regression (one for

each scale). With decimated wavelets it is tricky to relate coefficients from different scales or relate coefficients from

a scale to the original time series (because the number of coefficients and their location varies with scale). This article

usesnon-decimatedtransforms which have the same number of coefficients at each scale and coefficients within each

scale are located according to the same time grid. Moreover, we use waveletpacketsthat can elicit a greater variety of

behaviours than can wavelets alone.

Wavelet packets form an organized but extremely flexible class of functions of which wavelets are a subset.

Section 3 gives a more detailed overview of non-decimated wavelet packets. Section 4 explains how we modelYt

in terms of the NWPT ofXt and describes the modelling advantages of using non-decimated wavelet packets. First

though, in Section 2 we introduce our methodology in the context of modelling and predicting wind speeds at a

proposed wind farm site from data taken at a reference wind speed site. This example contains all the essential

features of our methodology: representation of the wind speeds at the reference site in terms of a NWPT transform;

relating the wind speed at the proposed site to the NWPT and selecting the best NWPT variables for predicting the

proposed site speeds and then interpreting those NWPT variables and evaluating their predictive performance.

2 Wind speed modelling and prediction

Before construction of a wind farm an analysis is undertaken to establish whether a particulartarget siteis suitable.

One aspect of this analysis involves the prediction of the long-term mean wind speed at the target site. Typically, wind

speeds are measured by a pilot anemometer at a height of 10m at the target site for several months. These target speeds
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Figure 1: Hourly wind speeds from 00:00 on 6th April 1995 at Valley (solid line) and Aberporth (dashed line). (Data
provided by M&N Wind Power.)

are related to contemporaneous wind speeds measured at a nearby reference site (a Meteorological Office station in

the UK) and a model predicting target from reference speeds is constructed. The long-term mean wind speed at the

target site can the be estimated using the model and the long-term mean at the reference site. Modelling of this kind

is described, for example, by Cook (1985) and Haslett and Raftery (1989). For reasons of cost, only one explanatory

seriesfXtg
T
t=1, for some integerT > 0, is usually available although our methodology could be easily extended if

data from other Meteorological Office stations became available.

Figure 1 shows hourly wind speeds recorded at two Welsh Meteorological Office stations: Valley and Aberporth.

Valley is located approximately 120km north of Aberporth and they are mostly separated by Cardigan Bay. In the

following example our aim is to model Valley’s wind speeds (fYtg
T
t=1) in terms of those at Aberporth (fXtg

T
t=1).

We show how our modelling methodology can be used to predict the wind regime at Valley from future Aberporth

values and improves on existing methodology. More importantly, our model is highly physically interpretable (unlike

existing methodology) and explains what types of wind activity at Aberporth are important for predicting Valley wind

speeds.

We should emphasize that bothXt andYt arenot stationary and so classical methods should not be used blindly
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(indeed, the wind speed relationship depends on the wind direction). It is possible that the speed relationship is

piecewise stationary (linked to wind direction) so a modified form of classical “transfer function model” methodology

might possibly be made to work. The obvious technical problem is how does one “join-up” the different segments

of the series that exhibit similar stationarity? Piecewise stationarity, or more generally local stationarity does not

cause problems for our wavelet packet methodology since the wavelet packets naturally adapt to the dominant local

oscillatory behaviour.

2.1 An established wind industry method.

Linear regression is extremely simple, effective and is widely used in practice (e.g. the measure-correlate-predict

Hannah, Palutikof, Rainbird, and Shein 1996). First, the data is divided into (typically) twelve 30Æ direction sectors

based on the direction of the wind at Aberporth. Then 12 separate linear regression models are computed one for each

direction sector. Predictions of the wind speed are easily obtained by using the current wind direction at Aberporth

to select one of the twelve regression models and then predict the windspeed at Valley by�̂ + �̂Xt where�̂ and�̂

are the fitted regression parameters for that particular sector. If the number of time series observationsT is small then

sometimes fewer direction sectors are chosen.

Wind speeds are usually non-normal, serially correlated and also subject to measurement error so typically a robust

regression method that takes account of the measurement error is used. However, the results from using the simple

methodology described here are typically good probably because of the large number of data points used to build the

regression models.

2.2 Our wavelet packet method.

This section explains what we do with wavelet packets although we are conscious that we have not yet formally

defined what wavelet packets are. To gain an overview of our methodology it is enough to know that wavelet packets

are oscillatory basis functions from some large library. However, for specific details about the particular transform

refer forward to Section 3.2.

Rather than build a model directly betweenYt andXt we build a model betweenYt and a NWPT version of

Xt. The NWPT transformation generatesK = 2T � 2 derived time series which we stack together to make a

K-dimensional multivariate time seriesXt. Each variable ofXt quantifies how similarXt is to that particular wavelet

packet at timet. In other words each component ofXt tells us “how much” of each wavelet packet there is inXt at

any particular timet. The decomposition ofXt intoK different wavelet packet components is extremely useful since

we can subsequently modelYt in terms of the components using standard statistical methodology. To summarize:Xt

is the “explanatory” time series andXt is the “collection of NWPT coefficients” ofXt.

The wavelet packet transformation analysesXt using a diverse collection of wavelet packets at different scales,

frequencies and locations. Their diversity is the reason why our methods can handle piecewise or local stationarity

as the wavelet packets will activate and deactivate as particular behaviours appear and disappear in different regions.

Wavelets and wavelet packets come in families. Given a particularmother waveletone can derive all its wavelet
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packets however the choice of a mother wavelet has to be made. There are no hard rules about the choice of a mother

wavelet even in areas as well developed as, say, wavelet shrinkage for curve estimation. For the examples below we

shall use the Haar mother wavelet which works well and produces interesting scientific results (although in Nason,

Sapatinas and Sawczenko 1999 we use a smoother Daubechies mother wavelet). How the choice of wavelet affects

the final model and its interpretation is an area for future research.

To exhibit our methodology on the wind energy time series we applied the NWPT to a segment fromXt of length

T = 512. This transform resulted inK = 1022 transformed time series which we stacked to make a1022-dimensional

multivariate time seriesXt of lengthT = 512. We then modelledYt in terms ofXt.

In general the statistical modelling step is completely straightforward because ournon-decimatedwavelet packet

transform allows us to use many of the widely available statistical methods for modelling a response vector,Yt, in

terms of a multivariate descriptor,Xt. Use of the standard (decimated) wavelet packet transform would not permit

us to modelYt directly in terms of the wavelet packet coefficients ofXt because the coefficients exist on different

time scales toYt. Ramsey and Lampart (1998) demonstrate the utility of relating decimatedwaveletcoefficients of

fYt = consumptiong andfXt = incomeg at the same scale. However, they do not directly provide a model for the

seriesYt itself, nor predictYt from futureXt (both of which are possible to do with non-decimated transforms), nor

do they use the increased flexibility of wavelet packets.

Returning to our wind energy example note that the number of variables (K = 1022) in theK-dimensional time

series,Xt, is always larger than the sample sizeT = 512. In this article we use a crude initial dimension reduction

technique to reduce the extremely large dimensional problem into a more manageable but still large size. We then use

more incisive statistical modelling techniques to reduce the dimensionality further to identify our “best” model. We

stress that it is not the aim of this article to discuss and develop a comprehensive variable selection methodology and

we intend to investigate alternatives.

Initially, we used various familiar statistical procedures to modelYt in terms ofXt. However, residual plots

showed that our models were systematically in error with the error magnitude strongly related to the wind direction at

Aberporth. To improve our model we inserted an extra wind direction sector factor variable: DIR. (The DIR factor

has twelve levels corresponding to winds in the different30Æ direction sectors. See Table 2 for a list.) We applied the

following crude variable selection approach to select a subset of theK = 1022 variables: we selected an arbitrary 5%

of variables which correlated best withYt and labelled the resultantK1 = 51 variables which we label S1 to S51. (We

admit that this procedure is somewhat rough and ready but it is an adequate initial dimension reduction step which

produces interesting practical results.) Then we used generalized linear/additive modelling and CART to find a good

model for the Valley wind speedsYt in terms of the dimension reducedXt. The final selected model was a generalized

linear model (GLM) obtained using backwards variable selection that assumed Gamma distributedYt values (wind

speeds are positive and skewed to the right) with alog link function. Instructions on how to perform the NWPT and

select the “best” 5% of the variables inWaveThresh are presented in Appendix 1.
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Table 1: Significant wavelet packets included in the final GLM. The table shows the value of the coefficient in the
linear model along with the resolution level that the term corresponds to and its frequency index within that resolution
level.

Term Packet Level Frequency Index Term Coefficient (�1000)
Intercept 8300

S2 7 0 -13
S20 2 15 38
S35 1 6 -10
S39 0 33 -47

Table 2: GLM coefficients for the factor DIR in the final GLM along with the associated direction sectors.

Term Direction Sector (degrees) Term Coefficient (�1000)
DIR1 0—29 -31
DIR2 30—59 -18
DIR3 60—89 22
DIR4 90—119 21
DIR5 120—149 5
DIR6 150—179 -2
DIR7 180—209 12000
DIR8 210—239 -1300
DIR9 240—269 -1100
DIR10 270—299 -870
DIR11 300—329 -720
DIR12 330—359 aliased

2.3 Our wavelet packet model and interpretation.

Tables 1 and 2 show the coefficients of the final GLM model

log(Yt) � �+ S2+ S20+ S35+ S39+ DIR: (1)

The final model is highly interpretable. The DIR factor can be interpreted as a multiplier reflecting the strength of

association between the wind speeds at the two sites. Since the two sites are in a NNE/SSW line there is a large

multiplier of 12 when the wind direction is in sector DIR7 (when the wind is at right angles to this in DIR10 the

effect of all the other variables is shrunk by the multiplier -0.87). This effect is enhanced when the wind comes from

a southerly or westerly (180 ! 330Æ) direction rather than a northerly or easterly (330 ! 180Æ) direction which is

natural given the prevailing wind directions in the UK from the west and south.

However, the DIR factor only multiplies the linear predictor in the final model by a fixed amount depending on

the wind direction. The four wavelet packets actually model the variations in wind speed over time and they too are

interpretable. Figure 2 shows pictures of the wavelet packets in the model obtained using thedrawwp.default()

function fromWaveThresh which requires knowledge of the underlying wavelet, the resolution level and packet

index of the particular wavelet (which can be obtained from thefilter , level andpktix components of the

wpstRO object described in Appendix 1). Each plot in Figure 2 contains a vertical dashed line att = 0 which serves
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Figure 2: The Haar wavelet packets used in the final model. The vertical dashed line in each plot corresponds to time
t. Each wavelet packet is indexed by a pair: (resolution level, frequency index within a level). They are (clockwise,
from top left): a. S2: The wavelet packet (7,0) (father wavelet); b. S20: The wavelet packet (2,15); c. S35: The wavelet
packet (1,6); d. S39: The wavelet packet (0,33). The wavelet packets S20, S35 and S39 are plotted on the same vertical
scale which is10� that of the scale for S2. For the physical interpretation of these wavelet packets in the model see
text.
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as an origin for obtaining wavelet packet coefficients of a series. Given this, the interpretation of each of the plots in

Figure 2 is as follows:

a. S2 is a wavelet packet (actually father wavelet) which averagesXt over the previous four hours. Inclusion of this

wavelet packet indicates that the seriesXt +Xt�1 +Xt�2 +Xt�3 is important for prediction.

b. S20 is a wavelet packet with average oscillation frequency of just over 23 hours. We assume that this wavelet

packet captures daily variation in wind speed. Note however, that the oscillation only occurs over the previous

five days. So daily variation is important for prediction, but only the past five days is relevant.

c. S35 is a wavelet packet with average oscillation frequency of 4.7 days. It is well-known that wind speeds oscillate

at or near this frequency. Indeed, this frequency falls into the middle of the “macrometeorological peak” and is

associated with the large-scale pressure systems passing overhead (e.g. Cook 1985, van der Hoven 1957).

d. S39 is a wavelet packet which mostly oscillates over the whole series at a frequency of 16 hours except for the

period aroundt = 0 where it averages over the immediate eight hours into the past and future. It is difficult

to attach a direct meteorological interpretation to this wavelet packet, although wind takes approximately eight

hours to travel between Aberporth and Valley assuming a mean wind speed of 4 to5ms�1.

The S39 wavelet packet takes values equally from the future as well as from the past which is perfectly legitimate

mathematically but would be a problem for real-time prediction. It would be possible to restrict our methodology

to only include wavelet packets that do not overlap with future data.

Note that the modelling above indicates that wavelet packets were useful and interpretable, indeed in this practical

example none of the selected basis functions are actually wavelets (this shows the need for the more complicated

waveletpackettransform).

2.4 Model predictions.

For this example the differences in prediction between the established industrial method and our new methodology

are not large. In fact, both methodologies often make the same mistakes. Generally speaking residual plots show

that our new methodology is slightly better (but remember that we also obtain a wealth of extra interpretable and

scientific information as outlined above.) For wind energy prediction an estimate of the distribution of wind speeds

at the proposed site is required. Our methodology provides a better estimate of the wind speed distribution because it

provides a better model of the transfer between reference and proposed sites.

Formally our model is also better in terms of mean residual sums of squares (MRSS) for predicting wind speeds

another 21 days ahead (ours is 0.088, the established industrial method is 0.094). The other interesting feature is that

our model is better over the early parts of the prediction interval: over 10 days our MRSS is 0.12, the established

MRSS is 0.14; over five days our MRSS is 0.19, the established MRSS is 0.23. Roughly speaking our model is 10%

better than the established industrial method. Although 10% does not sound very much in absolute terms it can make
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Figure 3: Two tilings of the time-frequency plane. Left: Dirac; Right: Fourier.

a lot of difference to the wind power output statistics for a proposed wind farm (wind power output is related to the

cube of the speed) and hence to the economics and viability of the proposed farm.

Instructions on how to useWaveThresh to generate predictions using our models appear in Appendix 1. The

next section explains how to compute the NWPT and what the coefficients of the transform mean.

3 Representations using non-decimated wavelet packets

Our goal is to model the relationship between the response time series,fYtgt2Z, in terms of the local scale and

frequency properties of the explanatory time series,fXtgt2Z, which we obtain using a non-decimated wavelet packet

transform. Hess-Nielsen and Wickerhauser (1996) give an excellent description of wavelet packets and explain how

they reveal information about the variation of signals in time and frequency. In particular, they make a nice analogy

between musical score notation which indicates the pitch, duration and position of individual notes and a wavelet

packet analysis which gives information about the frequency, scale and position of energy in a time series. The

analogy cannot be pushed too far as musical notation has many more subtleties.

3.1 The time-frequency plane and wavelets.

The properties of wavelet packets can be conveniently explained by introducing thetime-frequencyplane. This

two-dimensional plane represents time along the horizontal axis and frequency along the vertical axis. Waveforms

(segments of time series) can be schematically represented by areas in the time-frequency plane with their width

indicating duration and height indicating frequency bandwidth.

As an example consider a simple time seriesXt for t = ti = 1; : : : ; T = 16. Figure 3 shows two familiar

tilings of the time-frequency plane. The left diagram in Figure 3 corresponds to a representation of a time series
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concentrated purely in time with each vertical line representing a particular (Dirac) time basis element. The right

diagram corresponds to a representation concentrated purely in frequency with each horizontal line representing a

particular frequency basis element at Fourier frequenciesexp (�i!n) for !n = 2�n=16 andn = 0; : : : ; 15. Each line

in either of these plots could be given a separate grey-shade intensity to indicate the “contribution to variance” at each

location in time (for Dirac) or frequency (for Fourier). For example, ifX13 was a large value then the 13th line would

be a dark shade of grey, ifX5 was a small value then the fifth line would be light and so on.

Wavelets offer an alternative, but fixed, tiling of the time-frequency plane. See Daubechies (1992) or Burrus,

Gopinath and Guo (1998) for introductions to wavelets in this context or see Nason and Silverman (1994),

Antoniadis (1997), Ogden (1997), Vidakovic (1999) or Abramovich, Bailey and Sapatinas (2000) for statistical

introductions. Given a suitable mother wavelet, (t), a set of wavelets

f j;k(t)gj;k2Z where  j;k(t) = 2j=2 (2jt� k); (2)

can form a basis for function spaces such asL2(R) (or indeed more complicated function spaces, see Abramovich,

Sapatinas and Silverman 1998). Since wavelets form bases we can represent functionsf(t) as linear combinations of

wavelets by

f(t) =
X
j2Z

X
k2Z

djk jk(t): (3)

If the wavelet basis is orthonormal, as it will be throughout this article, then we can write the wavelet coefficients,

fdjkgj;k2Z, of f(t) as

djk =

Z
R

f(t) jk(t) dt:

In this article we advocate the popular Daubechies’ (1992) compactly supported wavelets. The Daubechies’ family

is useful for several reasons: the degree of smoothness of the mother wavelet can be preselected, the associated

discrete transforms are fast and efficient and smooth structure is sparsely represented. The Haar wavelet used in

the wind example earlier is the least smooth Daubechies’ wavelet but seemed to work best in that practical situation.

Formula (3) demonstrates thatf(t) can be represented by basis functions, jk(t) at different scales proportional to2�j

for integersj i.e. a multiresolution analysis. The mother wavelet is usually chosen to be a short-duration oscillation

and therefore localized both in time (short-duration) and in frequency (because it oscillates). The derived wavelets are

scaled and translated (by2�jk) versions of the mother wavelet: the scaling and translation operations permit analysis

of time series at different times and frequencies (time-frequency analysis). Figure 4 shows how wavelets tile the

time-frequency plane: asj gets larger the wavelets become finer and finer scale objects, oscillate more quickly, are

packed closer together (top of figure) and the corresponding tiles get taller (they cover a wider frequency range) and

thinner (their duration is less). Asj gets smaller the opposite happens. The amplitude of any wavelet coefficient in

a representation,jdjk j, can be indicated on Figure 4 by grey-scale intensity shading of the rectangle corresponding to

the wavelet basis function in question.

Mallat’s (1989) pyramid algorithm permits fast orderO(T ) computation of the discrete wavelet transform (DWT)
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Figure 4: Left: wavelet tiling of the time-frequency plane. The top row of the tiling corresponds to fine scale, high
frequency wavelets (top right) that “exist” over a short time scale, the bottom but one row corresponds to the largest
scale, lowest frequency wavelet which “exists” over the whole time domain (for this example). The very bottom tile
corresponds to the father wavelet (not shown) which again “exists” over the whole time domain at the very lowest
frequency. Right: shows the wavelets (both derived from the same mother wavelet) at scales 1 and 3. At scale 3 there
are eight fine scale wavelets roughly centred on locations2k � 0:5 for k = 1; : : : ; 8, at scale 1 there are two large
scale wavelets centred roughly on locations 4.5 and 12.5. Note that the lighter shading in the box at scale 3 causes
the wavelet to the right to have small amplitude. If the boxes had the same shade then the finer scale wavelet would
actually be taller than the coarser scale one because23=2 is larger than21=2 in formula (2).

of a discrete time seriesX = fXtg
T
t=1 whereT = 2J for some positive integerJ . The DWT provides information

about variation in a time series at different scales and locations (like thedjk above). To fix notation letH andG denote

the filter operators corresponding to the low- and high-pass quadrature mirror filters of some Daubechies’(1992)

compactly supported wavelet with filter coefficientsfhkg and fgkg, both of lengthL. Thus the computational

effort for applyingH or G once is of orderO(L). Let D0 denote the even dyadic decimation operator defined

by (D0 X)k = X2k, i.e. it selects every evenly indexed observation (see Nason and Silverman 1995 for a more

comprehensive discussion). Then the DWT coefficients ofX at level j = 0; : : : ; J � 1 may be obtained by

dj = D0 G (D0 H )(J�j�1)X . We call the concatenated operatorsD0 H andD0 G packet operators. We can

again use Figure 4 to schematically visualise the DWT ofT = 16 = 24 data points. At levelj = 3 the vectord3 will

contain 8 DWT coefficients corresponding to the eight tiles at the highest frequency in Figure 4. At levelsj = 2; 1

and0 the vectorsd2;d1 andd0 contain 4, 2, and 1 coefficients corresponding to the tiles (wavelets) at those levels.

3.2 Wavelet packets

Wavelets are a subset of a larger class of oscillatory functions calledwavelet packets. A wavelet packet library is

a collection of bases where the basis elements are no longer restricted to just scaling and dilation of one mother

wavelet. As an illustration Figure 5 shows four such wavelet packets from different scales with varying locations and

frequencies. For applications one does not need to have a detailed knowledge of what all the wavelet packets look like

or indeed need to have detailed formulae for them. The reason for this is that the statistical methodology in Section 4
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Figure 5: Four wavelet packets derived from Daubechies’ (1992) least-asymmetric mother wavelet with 10 vanishing
moments. These four wavelet packets are actually orthogonal and drawn by thedrawwp.default() function in
WaveThresh . The vertical scale is exaggerated by10�.

picks out important basis functions and then effort can be put into interpretation of the selected functions as was

done earlier in Section 2.3 using Figure 2. A comprehensive description of wavelet packets is beyond the scope (and

length) of the present article. See Wickerhauser (1994) or Hess-Nielsen and Wickerhauser (1996) for useful technical

introductions. Wavelet packets permit function representation using a basis selected from the library of wavelet packet

bases where each basis element is indexed by scale, location and frequency (number of oscillations). For a discrete

time series the wavelet packet transform (WPT) computes the representation of the series with respect toall basis

functions in the library efficiently inO(T logT ). The WPT is computed by a full binary recursion of theD0 H and

D0 G operators operating on the time seriesX (i.e. bothD0 H andD0 G are first applied toX producing a low-and

high-passed set of coefficients, then both operators are applied to each set producing four sets of coefficients, then both

are applied again to each set producing eight sets and so on). Figure 7 depicts the algorithm for an initial set of eight

data points. The total number of different wavelet packets (e.g. total number of rectangles in Figure 7 not counting the

original data) can be computed by realizing that there are2 packets at scale levelJ � 1, 4 packets at levelJ � 2, . . . ,

2J packets at level 0. The total of2 + 4 + � � � + 2J = 2J+1 � 2 = 2T � 2 = K as mentioned earlier. More details

about wavelet packets and how they fit into a non-decimated scheme (next section) appear in Appendix 2.
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Wavelet packets have been used in signal representation and compression. For example, Coifman and

Wickerhauser (1992) use the WPT to represent a given signal in terms of all wavelet packets and then select a “best-

basis” for representing that signal. Their “best-basis” is one in which the representation is sparse and an entropy criteria

is used in an efficient “branch-and-bound” algorithm to select the sparsest basis. Sparse function representations are

obviously useful for compression. We use wavelet packets because they can efficiently represent a wide range of time

series behaviour: e.g. transients, local and prolonged oscillations.

Each wavelet packet basis provides a particular tiling of the time-frequency plane: there are a large number of

possible distinct tilings/bases (letBJ denote the number of bases in a WPT tree withJ levels. ThenB1 = 1 and

Bj = B2
j�1 + 1 which increasesvery fast). We do not claim that collections of wavelet packets optimally represent

every type of time-frequency behaviour, but as Hess-Nielsen and Wickerhauser (1996) point out “it is more reasonable

to correct the deficiencies in fast transforms [like wavelet packets] rather than to wait for slow mathematically perfect

transforms to catch up”.

3.3 Non-decimated wavelet packets

Our goal is to spot any relationship between variation in the response time series and the time-scale behaviour of the

explanatory time series expressed though its wavelet packet coefficients. For the modelling that we have in mind, it

is not possible to use the WPT algorithm directly because of the dyadic decimation — the consequence of which is

to reduce the number of wavelet packet coefficients by a factor of two for each coarser scale level computed (in the

continuous representation this just means that “large scale” basis functions are kept further apart than “small scale”

basis functions because functions are translated by shifts of2�jk which is larger for coarse scale wavelet packets).

The NWPT uses exactly the same basis functions as the WPT but arranges for the wavelet packets on every scale to

be present atall time locations. In other words for every time point in the explanatory series there is a corresponding

wavelet packet coefficient for each of the wavelet packets at all scales. The resulting NWPT representation is heavily

overdetermined and non-orthogonal but the structure is advantageous for the modelling described in Section 4. Next

we briefly summarise the key components of the NWPT.

First, letD1 denote the “odd” dyadic decimation operator which selects every odd indexed observation from a

sequence. The NWPT simply applies the four packet operatorsD0 H ,D0 G ,D1 H andD1 G recursively to the time

series to form a tree where each node has 4 children corresponding to the each of the packet operators. The NWPT was

proposed by Pesquet, Krim and Carfantan (1996) and developed for curve estimation (wavelet shrinkage) by Cohen,

Raz and Malah (1997). The NWPT is illustrated schematically in Figure 6 forT = 8 data points input at the root of

the tree. Each packet of coefficients in the NWPT tree can be addressed by an index written in base 4. The number of

digits in the index indicate the level of the packet: packets at levelj haveJ � j digits forj = 0; : : : ; J � 1. The actual

entries in the index describe how that packet was reached from the root: application ofD0 H ,D0 G ,D1 H , orD1 G

augments a 0, 1, 2 or 3 respectively to the index. For example, the indices 0, 1, 2 and 3 at level 2 and 01, 03, 21 and 23

at level 1 are indicated in Figure 6; the 23 packet is so labelled because it is obtained by the operatorD1 H followed

byD1 G . The computational cost of the NWPT can be found by noting that there are4J�j packets each of length2j
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Figure 6: Schematic of NWPT forT = 8 points (J = 3).

for levelsj = 0; : : : ; J � 1. Thus the total number of coefficients is

J�1X
j=0

4J�j2j = 2J
JX

j=1

2j

= 2J+1(2J � 1)

= 2T (T � 1) = O(T 2):

Therefore since each coefficient computed costsO(L) the total effort for the NWPT isO(T 2L). It is possible to

compute non-decimated transforms with an arbitrary number of pointsT , but our software restricts us to data sets of

length a power of 2. In practice, this is not a draconian restriction and may be overcome by padding with zeroes,

for example (due to the time localization of the wavelet transform the extra zeroes do not affect the majority of the

coefficients except at very coarse scales where they get included in their calculation. This is unlike standard spectral

estimation where zero padding causes a different spectral interpolation, see Priestley, 1981, Section 7.6).

Translation-equivariance of the NWPT. The NWPT has another important property calledtranslation

equivariancewhich means that ifS is the cyclic shift operator then

NWPT[SXt] = S(NWPT[Xt]):

In other words a shift in the time series is reflected by an identical shift in the transform coefficients and the relevance

of this property for our modelling is explained in Section 4. Note that both the DWT and WPT are neither translation-
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equivariant nor translation-invariant and cannot be used for our particular purpose.

3.4 Time-ordered non-decimated wavelet packets

Although the NWPT produces as many wavelet packet coefficients as there are data points at each scale, the coefficients

produced by the recursive algorithm are not delivered in time order. For example, packets 0 and 2 in Figure 6 both

correspond to the first stage of low-pass filtering but the coefficients in each of the NWPT packets would have to be

interleaved to produce a sequence of time-ordered coefficients (i.e. both sets are father wavelet coefficients obtained

by filtering with H but then one set has every even element selected byD0 and the other has every odd element

selected byD1 ). Interweaving these two sets produces a set of eight coefficientsin time orderwhere each coefficient

is associated with a corresponding father wavelet. Other interweavings are necessary to obtain time-ordered NWPT

coefficients for other wavelet packets and details on how to achieve them are presented in Appendix 2.

Finally we note that the NWPT coefficients need to be phase-corrected to bring them into perfect time-alignment

before use. Walden and Contreras Cristan (1998) specify a phase-correction technique but we use phase-shifts

determined empirically here (by observing how delta functions are shifted) which work very well in practice. Note

that the computational scheme in Walden and Contreras Cristan (1998) produces time-ordered sequences by default.

4 Modelling using NWPT

For every wavelet packet basis function the NWPT ofXt computes the coefficient of that basis function ateverytime

locationt = 1; : : : ; T — a large coefficient att indicates that theXt is behaving coherently with the particular wavelet

packet function at that point. With the standard (decimated) WPT it is not possible to obtain coefficients atall time

points.

The translation-equivariance of the NWPT is also critical in the following sense. If a certain behaviour occurs inXt

which is reflected in coefficients in the NWPT att then if that behaviour again happens at, say,Xt+� it turns up again

in exactly the same way in the NWPT att+� . For a standard (decimated) DWT this again does not happen as the same

behaviour inX at t andt+ � might we be reflected in completely different coefficients at these two locations. Earlier

we described modellingYt in terms of the transformed version ofXt and clearly the lack of translation-equivariance

would have caused problems (as certain behaviour inX at different times would not be represented consistently).

The final major advantage of using the NWPT as opposed to the (decimated) WPT is that for each wavelet packet

basis function we obtainT coefficients — the same as the number of observations in the response time seriesfYtg
T
t=1.

This means that we can represent the NWPT coefficients offXtg
T
t=1 as aK-dimensional multivariate time series

fXtg
T
t=1 where each variable corresponds to the coefficients of a particular wavelet basis function. It is this property

which enables us to make good use of the huge variety of statistical techniques (e.g. CART, multiple regression, logistic

regression, GLMs, GAMs, Bayesian variable selection techniques) for modeling a response vector(Y1; : : : ; YT ) in

terms of multivariate explanatory variables(X1; : : : ;XT ) where eachXi isK-dimensional.

In Section 2 we noted that the number of variables (K = 2T � 2) was greater than the number of observations
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(T ). Many standard statistical techniques requireK < T . Again, the aim of the current article is to show the utility of

the NWPT and not dwell on the problem of “more variables than observations”. However, we mention two techniques

we have used. The first, very simple, approach is just to select a suitable number of those wavelet packet variables in

Xt that correlate best withYt and then use standard techniques as described in more detail above. Although naive this

approach is fast and has worked well in practice. As a further development, since the variables inXt are correlated,

it might be worth subjectingXt to a principal components analysis and then use the new PCA projected variables

to modelYt. Secondly, Nason, Sapatinas and Sawczenko (1999) used the antedependence models of Krzanowski,

Jonathan, McCarthy and Thomas (1995) to perform discrimination in the case of singular covariance matrices (when

the number of variables is larger than the number of observations).

It is possible to use a non-decimated wavelet transform instead of a NWPT. Indeed, Nason, Sapatinas and

Sawczenko (1999) demonstrated how non-decimated wavelets could be used to model infant sleep-state from ECG

(electro-cardiogram) signals. In this case only wavelet functions are identified and the full generality of wavelet

packets is not needed. However, we did not know thata priori only wavelets would be needed so generally speaking

we use the full flexibility of the NWPT.

5 Conclusions and further work

This article has introduced a computational method for building a transfer function model using non-decimated wavelet

packets for non-stationary time series. The transfer function model may well be interesting in itself or be useful for

predicting future values of a response time series from future values of an explanatory time series.

Our methods could be easily extended to the case where there is more than one explanatory time series by using

multivariate statistical procedures. Our methods could, in principle, also be extended to build non-decimated wavelet

packet models between multidimensional objects although in practice algorithms for computing non-decimated

wavelet packet transforms are probably only practical for low numbers of dimensions (1, 2 or 3). However, a two-

dimensional non-decimated wavelet packet model may well be useful for relating images in many applied areas such

as industrial inspection and control.

We intend to extend our work to both the multivariate and multidimensional settings. Although the main aim of

this article is to introduce the (time-ordered) non-decimated wavelet packet transform as tool for building transfer

function models we recognise that the naive variable pre-selection in this article could be improved upon. Further,

although the main goal of this article was to describe a computational technique we intend to supply a mathematical

framework for the modelling described above: our intention is to represent both response and explanatory time series

as locally stationary Fourier or wavelet processes and see how slowly varying models can be constructed according to

the principles described above.
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Appendix 1 S-Plus functions

We now describe the S-Plus functions used to implement the modelling methodology described in this article. These

functions may be computed using Version 3 of the freeWaveThresh package for S-Plus and R (see Nason and

Silverman 1994 for details on Version 2 orwww.stats.bris.ac.uk/˜wavethresh for Version 3).

1. The NWPT can be carried out using thewpst() function:

wpst(data, filter.number, family, FinishLevel)

which computes the NWPT on the data set (time series)data using any of the Daubechies’ compactly supported

wavelets withfilter.number vanishing moments from thefamily series up to a coarse resolution level

specified byFinishLevel .

2. The NWPT and selection of the “best” 5% wavelet packet variables (described in section 2.2) can be carried out

using themakewpstRO() function:

makewpstRO(timeseries, response, filter.number, family, trans, percentage)

which applies the NWPT totimeseries (a vector containing the explanatory time seriesXt) then finds the

bestK1-sized subset of wavelet packet variables by correlating with the response time series contained in the

vectorresponse . The wavelet withfilter.number vanishing moments from thefamily series is used

for the NWPT. The argumenttrans permits a mathematical transform to be applied to the NWPT coefficients

before correlation with the response time series (much in the same way that alog() or sqrt() transform is

used to stabilize variance in regression). Thepercentage argument specifies the proportion of the wavelet

packet variables that are returned in this initial crude dimension reduction step. ThemakewpstRO() function

returns awpstRO class object which is an S-Pluslist with the following components:

� df : a data frame containing the “best”K1 wavelet packet variables;

� ixvec : an indexing vector which for each of the selected wavelet packets indf references the position

of that packet in the matrix version of the NWPT oftimeseries ;

� level and pktix : the resolution level and packet index of each selected packet in the NWPT of

timeseries ;
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� nlevels : the total number of resolution levels in the NWPT oftimeseries ;

� cv : a vector containingK1 correlation coefficients betweenresponse and each of the selectedK1

variables;

� filter andtrans : details of the wavelet filter and transform specified in the call tomakewpstRO() .

Of these components the$df component can be supplied directly to commands such asglm() or gam() to

e.g. modelresponse on theK1 selected NWPT coefficients oftimeseries as described in Section 2.3.

3. Prediction of future values ofYt from future values ofXt as described in Section 2.4 can be carried out using

thewpstREGR() function:

wpstREGR(newTS, wpstRO)

which takes a new segment ofXt (possibly detrended to remove its mean) callednewTS and uses the

information stored in the existingwpstRO object to construct a new data frame containing the sameK1

variables as in thewpstRO but computed with the new time series data innewTS. The statistical model that

was constructed (e.g. like (1)) can then be applied to the new data frame to obtain predicted values forYt.

Appendix 2 Weaving wavelet packets

There is no closed-form formula for the continuous wavelet packets derived from Daubechies’ compactly supported

wavelets. However their Fourier transform forj = 0; : : : ; J � 1 can be written (see, for example, Daubechies 1992,

p. 333) as

 ̂j;�1;:::;�J�j (!) =

"
J�jY
p=1

m�p(2
�p!)

#
 ̂(2�J�j!); (4)

wherem0(!) = 1p
2

P
k hke

�i!k andm1(!) = 1p
2

P
k gke

�i!k, and ̂ is the Fourier transform of the particular

Daubechies’ compactly supported wavelet determined by the quadrature mirror filters. The sequence�p = 0 or1 forces

selection of them0 orm1 at each level (in the WPT this is equivalent to following aD0 H orD0 G convolution branch

in the binary tree respectively). The wavelet packets shown in Figure 5 correspond to�p sequences of (clockwise from

top left)0010, 0101, 000010 and1000001. Formula 4 also shows that the number of distinct wavelet packets at level

j = 0; : : : ; J � 1 is given by2J�j .

A distinction must be made between an “ordinary” NWPT packet (such as the ones in Figure 6) and a “time-

ordered” NWPT packet. Time-ordered NWPT packets follow the WPT indexing scheme and are obtained by weaving

together coefficients from ordinary NWPT packets. Time-ordered NWPT packets are as long as the original data. For

example, in the ordinary WPT at levelJ � 1 there are two packets: packet 0 and 1 each of length2J�1 (see Figure 7).

With the ordinary NWPT at levelJ�1 there appears to be four packets (see Figure 6). However, one can also visualise

the ordinary NWPT packets at levelJ � 1 as two time-orderednon-decimatedpackets corresponding to the WPT by

interweaving the four packets in the following way:
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Figure 7: Schematic of the WPT operating onT = 8 points, i.e.J = 3. At level j there are2J�j packets each
containing2j points. The numbers 0,1,2,3 next to the packets at level 1 are the indices of packets within that level
from left to right. The DWT coefficients are contained in the WPT and are shown in the dashed boxes and markedc
andd. All other coefficients are with respect to other wavelet packets such as those illustrated in Figure 5. The total
number of wavelet packets (excluding the original data) is2T � 2 = 14. An arrow corresponds to convolution with
the appropriate labelled operator.
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� weaving together the packets produced byH D0 andH D1 . This produces the time-orderednon-decimated

packetH and corresponds to the time-ordered non-decimated version of the ordinary WPT packet of index 0.

� weaving together the packets produced byG D0 andG D1 . This produces the time-orderednon-decimated

packetG and corresponds to the time-ordered non-decimated version of the ordinary WPT packet of index 1.

Therefore the weaving process is a two-stage procedure: choose which time-ordered NWPT packet you require (using

the WPT indexing scheme) and then identify the associated ordinary NWPT packets; weave the associated packets

into time-order.

In general, to obtain the correct time ordering, the ordinary NWPT packets are not taken sequentially but with

reference to the root node. For example, let us refer to level 1 in Figures 6 and 7. Suppose that we wished to obtain

time-ordered NWPT packet of index 1 (or in operator notation the packet produced byH followed by G ). This

corresponds to ordinary NWPT packet indices 01, 03, 21 and 23 using the base 4 notation from Section 3.3 (each of

the cases where aG operator follows aH operator regardless of decimation). To produce correct time-ordering we

take coefficients successively from the ordinary NWPT packets in the order 01, 21, 03 and then 23. This ordering

occurs because the shift of wavelet packets is finer nearer the root node. The transition from level 3 to 2 encodes a

shift of one position, the transition from level 2 to 1 encodes a shift of two positions. So the “distance” of 21 to 01 is

only 1, from 03 to 01 is 2 and from 23 to 01 is 3. So, relative to 01, 21 has undergone a unit shift, 03 a two unit shift

and 23 both a unit and two unit (= 3 unit) shift.

To obtain the ordinary NWPT indices associated with a time-ordered NWPT packet of index,r at levelj, say

(r = 0; : : : ; 2J�j � 1, j = 0; : : : ; J � 1, see Figure 7 for details of the WPT indexing scheme) the following recursive

procedure can be used:

1. convert the (decimal) time-ordered non-decimated wavelet packet frequency indexr into binary strings. Convert

s into decimal but this time assumings is in base 4. Call the resultp (three example conversions:
a
��!
b

means

convert from basea into baseb.

1
10
��!
2

1
4
�!
10

1; 2
10
��!
2

10
4
�!
10

4; 3
10
��!
2

11
4
�!
10

5):

2. Fori = j; : : : ; J � 1 doe <- 2ˆ(2*J-2*i-1); p <- c(p, p+e)

This example contains partial S code (see Becker, Chambers and Wilks 1988). The first line setse = 2(2J�2i�1)

the second line uses the S concatenation operatorc that pastes together two vectors, i.e.c(fxig
n
i=1; fyjg

m
j=1) =

fx1; : : : ; xn; y1; : : : ; ymg. As an example suppose that again the time-ordered NWPT indices for the non-decimated

wavelet packet at level 1 of index 1 for the 8 point data set are required. After the binary to base 4 conversion:p = 1.

In the loop: settingi = 1 we obtaine = 8 andp = (1; 9). Then settingi = 2 we obtaine = 2 andp = (1; 9; 3; 11)

which are the required indices (in base 4: 01, 21, 03, 23). Time-ordered coefficients are obtained from these four

ordinary packets by taking the first coefficient from each in order, then the second coefficient from each in order and

so on.
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Finally we mention that the functionsgetpacket.wpst() andaccessD.wpst() could be used to extract

ordinary non-decimated wavelet packets and time-ordered non-decimated wavelet packets respectively (see the help

on theWaveThresh package from the Web site mentioned in Appendix 1).
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