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Image Denoising with 2-D Scale-Mixing Complex
Wavelet Transforms

Norbert Remenyi, Orietta Nicolis, Guy Nason, and Brani Vidakovic

Abstract—This article introduces an image denoising proce-
dure based on a two-dimensional scale-mixing complex-valued
wavelet transform. Both the minimal (unitary) and redundant
(maximum overlap) versions of the transform are used. The
covariance structure of white noise in wavelet domain is estab-
lished. Estimation is performed via empirical Bayesian techniques
including versions that preserve the phase of the complex-valued
wavelet coefficients and those that do not. The new procedure
exhibits excellent quantitative and visual performance, which is
demonstrated by simulation on standard test images.

Index Terms—Image denoising, complex-valued wavelets,
scale-mixing wavelet transform, empirical Bayes estimation, bi-
variate normal distribution, posterior mean.

I. INTRODUCTION

WAVELET shrinkage methods that use complex-valued
wavelets show excellent performance compared to

real-valued wavelets. Typically, the observed wavelet coef-
ficients are modeled by a statistical model where the true
signal/image part corresponds to a location parameter. Un-
der such an approach wavelet shrinkage becomes equivalent
to a location estimation in the wavelet domain. Bayesian
models are popular for wavelet coefficients due to the good
behaviour of Bayes shrinkage rules, adaptivity via data-driven
hyperparameter selection and signal sparsity being a strong
driver for prior determination. A recent overview of Bayesian
wavelet shrinkage can be found in [1], see also [2], [3] for
general overviews of wavelets in statistics. Several papers con-
sidering Bayesian wavelet shrinkage with complex wavelets
are available. For example, [4], [5], [6] and [7] focus on
image denoising, in which the phase of the observed wavelet
coefficients is preserved, but the modulus of the coefficients
is thresholded or shrunk by a Bayes rule. The procedure
introduced in [8] modifies both the phase and modulus of
wavelet coefficients by a bivariate shrinkage rule.

We propose a Bayesian model in the domain of a complex
scale-mixing discrete unitary compactly-supported wavelets
that generalizes the method in [8] to 2-D signals. In estimating
the signal the model is allowed to modify both phase and
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modulus. The choice of wavelet transform is motivated by
the symmetry/antisymmetry of decomposing wavelets, which
is possible only in the complex domain under condition of
orthogonality (unitarity) and compact support. Symmetry is
considered a desirable property of wavelets, especially when
dealing with images, see, e.g., [9].

The 2-D discrete scale mixing wavelet transform can be
computed by left- and right-multiplying the image by a wavelet
matrix W and its Hermitian transpose W †, respectively. Mal-
lat’s algorithm is not used to perform this task, but it is implicit
in the construction of matrix W .

We derive the covariance structure of white noise in the
wavelet domain, induced by the 2-D discrete scale mixing
complex wavelet transform, and show how the method of [8]
can be extended to this transform. Since in some applications
it might be important to preserve the estimated coefficients’
phase we demonstrate how to use the proposed empirical
Bayes method in a phase-preserving mode. We also show
how to use the scale-mixing complex transform in a non-
decimated manner, and defined the complex maximal overlap
scale mixing 2-D complex wavelet transform (cMOSM-DWT).
The MATLAB c© implementation of the maximum overlap
wavelet transform from [10] was modified to allow complex
wavelet filters.

The rest of the paper is organized as follows. Section II
defines the complex scale-mixing 2-D complex wavelet trans-
form, and provides information on their basic properties and
implementation. Section III introduces the Bayesian regression
model, describes the noise covariance structure, and discusses
the shrinkage rule. Section III also discusses a phase preserv-
ing version of the shrinkage as well how the model adapts to
the maximal overlap transform. Section IV compares the pro-
posed rule and its redundant modification with several recent
and comparable proposals from the literature. Conclusions are
presented in Section V followed by an Appendix that contains
all technical derivations.

II. THE 2-D SCALE-MIXING COMPLEX WAVELET
TRANSFORM

The discrete complex wavelet transform (DCWT) can be
considered a complex-valued extension to the standard discrete
wavelet transform (DWT). The DCWT uses complex-valued
filtering (analytic filter) for decomposing the real/complex
signals into real and imaginary parts in the transform domain.
Complex wavelet coefficients can be expressed via convolu-
tions

cj−1,l =
∑
k

hk−2lcj,k, and dj−1,l =
∑
k

gk−2lcj,k, (1)
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where h and g are complex conjugates of filters h and g.
Conversely, the reconstruction is calculated as

cj,k =
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l. (2)

There are several versions of the 2-D wavelet transforms which
correspond to different tessellations (or tilings), see [11]. For
example, the complex wavelet atoms can be defined as,

φj,k(x) = 2(j1+j2)/2 φ(2j1x− k1, 2j2y − k2) (3)

ψu
j,k(x) = 2(j1+j2)/2 ψu(2j1x− k1, 2j2y − k2), (4)

where u is one of traditional wavelet directions h, v, and d,
standing for horizontal [φ(x1)ψ(x2)], vertical [ψ(x1)φ(x2)]
and diagonal [ψ(x1)ψ(x2)], and j = (j1, j2) ∈ Z2 and k =
(k1, k2) ∈ Z2.

The real-valued scale mixing transform was used exten-
sively, some references are [11]–[15]. It is also known as
“hyperbolic” [12], [15] and “rectangular” [14].

In the multiresolution context, any function f ∈ L2(R2)
can be represented as

f(x) =
∑
k

c(J0,J0),k φ(J0,J0),k(x)

+
∑
j≥J0

∑
k

dh(J0,j),k
ψh
(J0,j),k

(x)

+
∑
j≥J0

∑
k

dv(j,J0),k
ψv
(j,J0),k

(x)

+
∑

j1,j2≥J0

∑
k

dd(j1,j2),k ψ
d
(j1,j2),k

(x), (5)

which defines a scale-mixing wavelet transform. Notice that
(j1, j2) in (3) and (4) can be indexed as (j1, j1 + s) as well,
where s ∈ Z. Precise limits on the indices are given in (13)
and (14).

The scale-mixing coefficients are defined as,

c(J0,J0),k = 2J0 ·∫
f(x) φ(2J0x1 − k1, 2J0x2 − k2) dx, (6)

dh(J0,j),k
= 2(J0+j)/2 ·∫

f(x) ψh(2J0x1 − k1, 2jx2 − k2) dx, (7)

dv(j,J0),k
= 2(j+J0)/2 ·∫

f(x) ψv(2jx1 − k1, 2J0x2 − k2) dx, (8)

dd(j1,j2),k = 2(j1+j2)/2 ·∫
f(x) ψd(2j1x1 − k1, 2j2x2 − k2) dx, (9)

where φ and ψu are complex conjugates of φ and ψu. The
complex scale-mixing detail coefficients are linked to the
original image (2-D signal) through a matrix equation, as in the
traditional 1- and 2-D cases. Let n be a power of two. Define
W to be an n× n wavelet matrix composed by the complex
scaling and wavelet filter coefficients hk and gk as on p.116 of
[2], where the wavelet filter is given by gk = (−1)kh1+N−k
and N is a shift parameter which affects the location of the
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Fig. 1. Tessellations for some 2-D wavelet transforms. (a) Traditional 2-
D transform of depth 4; (b) Scale-mixing wavelet transform of depth 4; (c)
General iterated scale-mixing transform of depth 2 per iteration.

wavelet. Suppose that an n × n image (matrix) F is to be
transformed into the wavelet domain.

The real-valued scale-mixing transform is given by G =
WFW ′ which was defined and utilized in [11]. Here we
generalize this transform to the complex-valued case as

G = WFW †, (10)

where W is a unitary matrix and W † denotes its Hermitian
transpose. Matrix G will be called the complex scale-mixing
wavelet transform of matrix F . It represents a 2D implemen-
tation of (5) for signal f(x) sampled in a form of matrix F .

The tessellation induced by transform in (10) is shown
in Figure 1(b). A more general transform can be obtained
as an iterative application of the transform in (10) with
depth k, applied only on the “smooth part” of the previous
iterative step. Figure 1(c) shows tessellation for an iterated
transformation of depth two with three iterations. For more
information, please refer to [11].

For transform (10) the balance of the total energy E =
trace(FF †) in the image F is preserved, since the unitary
nature of W implies E = trace(FF †) = trace(GG†), for
G = WFW †. Our transform is versatile in that rectangular
images (with dyadic dimensions) can be processed by properly
choosing sizes of W and W †. Also, the complex wavelet
generating the left-hand side matrix may be different from
the wavelet generating the right-hand side matrix, as in G =
W1FW

†
2 . The inverse transforms of these two modifications

are obvious.
The scale-mixing 2-D wavelet transform is typically more

compressive compared to the traditional 2-D wavelet trans-
form, which is a desirable property when dimension reduction
applications such as denoising or compression. Informally, in
a depth k scale-mixing transform of an image

(
1− 2−k

)2 ×
100% of coefficients correspond to the atoms which are
products of wavelet functions (possibly with different scales),
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Fig. 2. Section of the Lorenz curve for scale-mixing and traditional 2-D
wavelet transforms.

while for the traditional transform of the same depth k
this proportion is

(
1− 2−2k

)
/3 × 100%. The rest of the

coefficients correspond to the atoms containing at least one
scaling function in the product. The first proportion is always
larger (or equal when k = 1) than the second. Informally, the
squared wavelet coefficients that correspond to “differencing”
atoms tend to be smaller compared to those of “averaging” and
the Lorenz curve for squared wavelet coefficients in a scale-
mixing transform falls typically below the Lorenz curve for
the traditional transform of the same depth.

To illustrate this, we calculated the Lorenz curve for a
noiseless test image “Lenna” of size 512 × 512 using the
2-D scale-mixing real wavelet transform and compared it to
the 2-D periodic orthogonal wavelet transform available in
WaveLab (http://www-stat.stanford.edu/∼wavelab/). In partic-
ular, Daubechies 4 tap filter was used.

Figure 2 shows a section of the Lorenz curve plotting the
cumulative sum of the ordered squared wavelet coefficients.
We can see that the Lorentz curve of the scale-mixing wavelet
transform is below the curve for the traditional wavelet trans-
form, which translates to more efficient energy compression.
This better energy compression results in superior denoising
performance, which can be simply demonstrated by hard
thresholding a noisy “Lenna” in the wavelet domain. In case
of i.i.d normal noise with σ = 50, the resulting average
mean squared error of a denoised image is approximately
10% better for the scale-mixing transform. This agrees with
the results of [14], who shows that the scale-mixing wavelet
transform allows to improve the compression rate (measured in
the number of non-zero coefficient) compared to the traditional
wavelet transform by factor of 2. Papers [13], [15] also refer
to this transform’s superiority due to the possibly anisotropic
nature of the underlying images.

III. COMPLEX EMPIRICAL BAYES SHRINKAGE

A. Statistical Model

As we indicated in the Introduction, wavelet shrinkage
methods are formalized by a statistical model in the wavelet
domain. Shrinkage is achieved by optimal location estimation
under the proposed model.

For the application of 2-D image denoising, we start with
the model

Y = F + e, (11)

where Y is an n×n matrix of real-valued noisy measurements
of an unknown image F observed with noise matrix e, where
e ∼ MNn,n(0, σ2I, I), MN denoting the matrix normal
distribution. This noise model assumes that the components of
e are independently distributed with Cov(Vec(e)) = σ2I⊗I =
σ2In2×n2 for noise variance parameter σ2. The parameter
σ2 is assumed known, and in applications a robust plug-in
estimator is used, as it is standard practice.

After applying the scale-mixing wavelet transform, the
model in (11) becomes

D = θ + ε, (12)

where D = WYW †, θ = WFW † and ε = WeW †, and
where W is the n×n unitary matrix from (10). The elements
of matrix D are complex numbers Dj,k, where

j = (j1, j2), j1, j2 = J0, . . . , log2(n)− 1, (13)

denotes the tessellation subband of the scale-mixing wavelet
transform, and

k = (k1, k2), (k1, k2) ∈ Kj1,j2 , (14)

where Kj1,j2 = {0, . . . , 2j1 − 1} × {0, . . . , 2j2 − 1}, is the
location of complex wavelet coefficients within the subband.
Due to the whitening property of wavelet transforms [16]
many existing methods assume independence of the wavelet
coefficients and model the wavelet coefficients one-by-one.

Here we consider term-by-term shrinkage, which is some-
times referred to as diagonal shrinkage. The model for an
individual wavelet coefficient is

Dj,k = θj,k + εj,k,

where θj,k needs to be estimated. We approach this problem
from a Bayesian standpoint.

B. Wavelet Coefficients’ Error Structure
Several papers considering Bayesian wavelet shrinkage with

complex wavelets are available. Among those [4], [5], and
[17] focus on image denoising by preserving the phase of the
observed wavelet coefficients but thresholding or shrinking the
modulus by the Bayes rule. We will build on the complex
empirical Bayes (CEB) procedure proposed by [8], which
modifies both the phase and modulus of wavelet coefficients
by a bivariate shrinkage rule. The method in [8] was imple-
mented in the context of nonparametric regression (1-D signal
denoising), here we make extension to the 2-D case.

In model (11) an i.i.d. normal noise model e ∼
MNn,n(0, σ2I, I) is assumed, however, in the scale-mixing
complex wavelet domain the real and imaginary parts of the
transformed noise ε = WeW † become correlated. We show
that

Cov {Re(vec(ε)),Re(vec(ε))} =

σ2

2

[
In2×n2 + Re

{
WW ′ ⊗WW ′

}]
,
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Cov {Re(vec(ε)), Im(vec(ε))} =

−σ
2

2

[
Im
{
WW ′ ⊗WW ′

}]
,

Cov {Im(vec(ε)), Im(vec(ε))} =

σ2

2

[
In2×n2 − Re

{
WW ′ ⊗WW ′

}]
. (15)

In the above expressions W ′ and W denote the transpose
and the conjugate of W , respectively. Note that W † = W ′.
For the detailed derivations, see Appendix. Note that
calculating the Kronecker products in the above expressions
can be prohibitive for large matrices. However, for term-
by-term shrinkage only the diagonal elements of the above
covariance matrices are needed. We consider elements
Cov {Re(Dj,k),Re(Dm,n)}, Cov {Re(Dj,k), Im(Dm,n)},
Cov {Im(Dj,k), Im(Dm,n)}, only for j = m and k = n and
neglect the other elements of the covariance matrices because
the relationships among neighboring coefficients are not
accounted for. Computation of the above diagonal elements
is feasible by using the identity

diag(A⊗B) = vec(diag(B) · diag(A)′),

where A and B are square matrices and diag(·) are the
diagonal elements of a square matrix.

Figure 3 shows the covariance structure of the complex
wavelet coefficients for σ = 10, J0 = 3 and n = 512.
The matrices shown are Cov {Re(Dj,k),Re(Dj,k)},
Cov {Im(Dj,k), Im(Dj,k)}, and Cov {Re(Dj,k), Im(Dj,k)}.
We can see that Cov {Re(Dj,k),Re(Dj,k)} and
Cov {Im(Dj,k), Im(Dj,k)} have a symmetric structure,
while Cov {Re(Dj,k), Im(Dj,k)} is antisymmetric.
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Fig. 3. Covariance structure of the noise for σ = 10, J0 = 3 and n = 512.

C. Wavelet Coefficient Prior and Posterior

By representing the complex-valued wavelet coefficients as
bivariate real-valued random variables, the likelihood model
for the observed wavelet coefficients becomes Dj,k|θj,k ∼
N2(θj,k,Σj), where Σj is determined by (15) for each
subband or dyadic level j = (j1, j2) in the 2-D wavelet
decomposition. Following [8], a natural choice for the prior
on θj,k is a bivariate mixture of the form

θj,k ∼ (1− γj)δ0 + γjN2(0, Vj),

γj ∼ Ber(pj),

where δ0 is the point mass at (0, 0)T commonly considered
in the wavelet shrinkage literature. This prior is the bivariate
extension of the prior considered by [18], related to [19]
and [20]. Conjugacy of the normal distribution results in the
posterior distribution

θj,k|Dj,k ∼ (1− p̃j,k)δ0 + p̃j,kN2(µj,k, Ṽj),

where

p̃j,k =

pjf(Dj,k|γj = 1)

pjf(Dj,k|γj = 1) + (1− pj)f(Dj,k|γj = 0)
,

f(Dj,k|γj = 1) =

(2π|Vj + Σj |)−1/2 exp
{
−D′j,k(Vj + Σj)−1Dj,k/2

}
,

f(Dj,k|γj = 0) =

(π|Σj |)−1/2 exp
{
−D′j,kΣ−1j Dj,k/2

}
,

Ṽj =
(
V −1j + Σ−1j

)−1
and µj,k = ṼjΣ−1j Dj,k.

The posterior mean of θj,k becomes

E(θj,k) = p̃j,kµj,k. (16)

Similarly to [8], we estimate the prior parameters pj and
Vj by the data-driven empirical Bayes approach maximizing
the logarithm of the marginal likelihood. The marginal log-
likelihood is∑
j

∑
k

log {pjf(Dj,k|γj = 1) + (1− pj)f(Dj,k|γj = 0)} ,

which can be maximized separately for each dyadic rectangle
j to select the hyperparameters pj and Vj .

After obtaining the hyperparameters, we estimate each θj,k
by the posterior mean θ̂j,k = p̃j,kµj,k and return to the time
domain by Ŷ = W †θ̂W , which provides a denoised estimate
of the original image. The denoising procedure described
above will be called Complex Scale-Mixing Empirical Bayes
(cSM-EB) shrinkage.

D. Phase-preserving Shrinkage

The bivariate shrinkage procedure cSM-EB proposed above
changes the phase of the observed wavelet coefficients. Some
authors, for example [5] and [17], argue that keeping the phase
information unchanged is important for image denoising appli-
cations. It is possible to estimate Vj by a constrained empirical
Bayes procedure so that the phase of the estimated coefficients
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remains unchanged. The estimator of θj,k for this case is

θ̂j,k = p̃j,kAjDj,k, where Aj =
(
V −1j + Σ−1j

)−1
Σ−1j .

If Aj = λjI2, then we preserve the phase of Dj,k in the
shrinkage procedure and the shrinkage still remains nonlinear
through p̃j,k. Note that Σj is known and Vj is estimated by
the empirical Bayes procedure. It can be shown that if Vj is
of the form

Vj = vj

(
1 Σj

12/Σ
j
11

Σj
12/Σ

j
11 Σj

22/Σ
j
11

)
,

then Aj becomes a diagonal matrix of the form Aj =

vj(Σj
11 + vj)−1I2. In fact, it is straightforward to show that

only Vj that are scalar multiples of Σj , or, equivalently, Aj

that are scalar multiples of identity lead to phase preservation.
This means that we restrict the structure of Vj as a function of
a single unknown hyperparameter vj , which is subsequently
estimated by the empirical Bayes procedure. Hyperparameter
vj can be thought to be a function of the known elements of
Σj , which can give different interpretations to the shrinkage
rule. For example setting vj = wjΣj

11(Σj
11 + Σj

22)−1 results
in Aj = wj(Σj

11 + Σj
22 + wj)−1I2. Although the above

modification keeps the wavelet phase information unchanged,
in practice it does not provide superior results to the cSM-
EB procedure: the average mean squared error and visual
appearance are very similar. Thus, we conclude that keeping
the phase information of the image does not provide measur-
able benefits over the original procedure. An alternative way
of preserving the phase is to consider simple multiwavelet-
style hard thresholding of the complex wavelet coefficients,
but simulations showed poor quantitative and visual results.

E. Complex maximum overlap wavelet transform

The complex scale mixing discrete wavelet transform can be
operated in a non-decimated, or translation invariant manner,
see, for example, [21] or [22].

Unlike the minimal (unitary) transform discussed above, the
transforms defined under these names are highly redundant
containing the convolutions of all shifts of the original signal
due to omitting the decimation step in the algorithm. The
redundancy is beneficial providing superior denoising perfor-
mance and the transform can also be defined for arbitrary
length input signals.

This wavelet transform was called maximal overlap DWT
(MODWT) by [10], and we will follow their terminology
here. The transform produces detail/wavelet coefficient vectors
WJ−1,WJ−2, . . . ,WJ0

and scaling coefficient vector VJ0
all

of length n, the length of the original signal. Note that
J = log2(n). Therefore the total length of the transformed
signal is (J − J0 + 1)n compared to n for the traditional
orthogonal wavelet transform.

In [10] authors defined the transform of signal X such that
‖X‖2 =

∑J−1
j=J0

‖Wj‖2 + ‖VJ0
‖2 thus preserving the energy

of the input signal. If we represent the wavelet transform
with a rectangular matrix W(J−J0+1)n×n, W ′W = In holds,
however WW ′ 6= I(J−J0+1)n. Using a complex wavelet filter
we define the complex maximal overlap DWT (cMODWT).

Property W †W = In allows us to define the complex max-
imal overlap scale mixing 2-D wavelet transform (cMOSM-
DWT) by G(J−J0+1)n×(J−J0+1)n = WFn×nW

†, for input
image Fn×n. Similarly as before, the inverse transform is
defined as Fn×n = W †G(J−J0+1)n×(J−J0+1)nW , and the
total energy E = trace(FF †) in the image F is preserved.
Note that W is not unitary, but since W †W = In we have
E = trace(FF †) = trace(GG†). Similarly to (15) we can
show that in case of the cMOSM-DWT

Cov {Re(vec(ε)),Re(vec(ε))} =

σ2

2

[
Re{(WW ′)⊗ (WW ′)}+

Re{(WW ′)⊗ (WW ′)}
]
,

Cov {Re(vec(ε)), Im(vec(ε))} =

−σ
2

2

[
Im{(WW ′)⊗ (WW ′)}+

Im{(WW ′)⊗ (WW ′)}
]
,

Cov {Im(vec(ε)), Im(vec(ε))} =

σ2

2

[
Re{(WW ′)⊗ (WW ′)}−

Re{(WW ′)⊗ (WW ′)}
]
. (17)

For the detailed derivations, see Appendix. Note that the
expressions of (15) are the special case of (17), because for
the standard unitary W , WW ′ = WW ′ = In×n.

Denoising via empirical Bayes shrinkage is defined in the
same fashion for the cMOSM-DWT as in case of the unitary
transform, but it is computationally more expensive because of
the added redundancy. The proposed denoising method based
on the maximal overlap transform will be called (cMOSM-EB)
method.

IV. SIMULATIONS AND COMPARISON

In this section we discuss the performance of the proposed
estimators (cSM-EB) and (cMOSM-EB) and compare it to
some other established image denoising methods. In our
simulations three standard test images (Lenna, Peppers,
and Barbara) of size 512× 512 were considered. We added
i.i.d. normal noise with standard deviation σ to the test images.
In the simulation study we assumed σ to be known. In practical
applications, however, the noise variance can be estimated
using a robust median estimator from the finest scale wavelet
coefficients, which is commonly performed in signal [23]
and image denoising [24]. Three different noise levels were
considered, σ = 10, σ = 25 and σ = 50. These noise levels
correspond to peak signal-to-noise ratio (PSNR) of 28.13,
20.17, and 14.15, where the PSNR is defined as

PSNR = 10 log10

(
MAX2

I

MSE

)
, (18)

where MAXI is the maximum pixel value of the image (255
in our case), and MSE is the mean squared error, which is
equal to σ2 if no image denoising is applied.
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The coarsest decomposition level was set at J0 = 3.
Reconstruction of the image was evaluated by the average
PNSR and the average Structural SIMilarity (SSIM) index,
averaging over M = 50 simulation runs. The MSE in (18) for
each simulation run k was calculated calculated as

MSEk =
‖Ŷk − Y ‖2F

n2
,

where Y is the n × n true (noiseless) image, and Ŷk is the
estimated image from the kth simulation run. The SSIM index
for each simulation run was calculated using an available
MATLAB package by [25].

The performance of our methods is compared to the Hidden
Markov Model (HMM) of [26], to the Complex Hidden
Markov Tree (cHMT) model of [27], to the Block-Matching
and 3D filtering (BM3D) algorithm of [28], and to the method
by [24]. The method by [24], denoted as Seles, uses a
redundant 2-D wavelet transform on a symmetric extension
of the image. In order to compare the performance with
methods using the orthogonal wavelet transform, we modified
the implementation of [24] to use traditional 2-D periodic
orthogonal wavelets transform and denote it as SelesPO.

For methods HMM and cHMT the pixel values were nor-
malized to [0,1] as suggested by the authors. Note that method
cHMT was based on the 2-D dual-tree complex wavelet trans-
form, which provides superior performance over the regular
complex wavelet transforms.

The results are summarized in Table I. The proposed meth-
ods exhibit excellent performance comparable to most of the
state-of-the-art methods. The BM3D method provides superior
denoising results, but it is based on a fairly complicated
multistep procedure consisting of block grouping, 3D trans-
form, collaborative hard-thresholding, and Wiener filtering.
We emphasize that the proposed method achieves comparable
results by using a simpler and more straightforward transform
taking advantage of a powerful statistical shrinkage model.

Visual results are presented in Figure 4 for Lenna and
in Figure 5 for Peppers with noise level σ = 25 using
methods cSM-EB, HMM, cMOSM-EB, cHMT, and BM3D. We
also presented the right eye of the denoised Lenna to illu-
minate the visual performance of the methods. It can be seen
that the proposed methods provide good visual performance,
comparable to some of the state-of-the-art methods.

V. CONCLUSION AND FURTHER WORK

This paper introduced a discrete complex scale mixing 2-D
wavelet transform, and maximal overlap version, and applied
it in the context of image denoising. For both transforms we
derived the covariance structure of wavelet-transformed white
noise. Our shrinkage procedures, cSM-EB and cMOSM-EB,
are based on empirical Bayes and utilize non-zero covariances
between real and imaginary parts of the wavelet coefficients.
We discussed the possibility of phase-preserving shrinkage
in this framework. Overall, the methods we propose are
conceptually simple, practically efficient, and exhibit often
superior denoising performance when contrasted with com-
parable wavelet-based techniques.

TABLE I
AVERAGE PNSR AND SSIM (IN BRACKETS) OF THE PROPOSED

cSM-EB AND cMOSM-EB PROCEDURES COMPARED TO
ESTABLISHED METHODS

Picture Method σ = 10 σ = 25 σ = 50

Lenna cSM-EB 34.06 29.91 27.02
(0.9523) (0.8751) (0.7788)

SelesPO 33.91 29.55 26.47
(0.9526) (0.8795) (0.7846)

HMM 33.80 29.23 26.09
(0.9518) (0.8661) (0.7410)

cMOSM-EB 35.07 30.80 27.67
(0.9638) (0.9040) (0.8182)

Seles 34.31 30.15 27.12
(0.9547) (0.8880) (0.8024)

cHMT 35.05 30.47 26.36
(0.9619) (0.9046) (0.7940)

BM3D 35.89 32.04 28.98
(0.9688) (0.9255) (0.8646)

Peppers cSM-EB 33.60 29.82 26.97
(0.9491) (0.8787) (0.7887)

SelesPO 33.44 29.39 26.15
(0.9495) (0.8827) (0.7968)

HMM 33.58 28.69 25.62
(0.9531) (0.8795) (0.7567)

cMOSM-EB 34.46 30.67 27.68
(0.9614) (0.9077) (0.8295)

Seles 33.65 29.82 26.76
(0.9493) (0.8849) (0.8045)

cHMT 34.51 30.40 26.10
(0.9605) (0.9112) (0.8028)

BM3D 35.07 31.92 29.03
(0.9768) (0.9399) (0.8712)

Barbara cSM-EB 32.09 27.00 23.90
(0.9491) (0.8787) (0.7887)

SelesPO 31.95 26.61 23.45
(0.9584) (0.8689) (0.7426)

HMM 31.67 26.42 22.96
(0.9515) (0.8518) (0.7076)

cMOSM-EB 33.31 27.95 24.38
(0.9681) (0.8945) (0.7781)

Seles 32.37 27.13 23.89
(0.9601) (0.8805) (0.7621)

cHMT 32.98 27.78 24.04
(0.9642) (0.8904) (0.7794)

BM3D 34.95 30.66 27.21
(0.9768) (0.9399) (0.8712)

Our methods currently involve diagonal shrinkage and better
performance still could undoubtedly be achieved by using
more general shrinkage methods that exploit structure across
and between scales, such as block-shrinkage or tree-based
shrinkage methods. Another generalization would be to go
beyond Gaussianity and explore different sparse models and
priors, as well as to assess comparative performance and
compressibility of various multiscale transforms involving real

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2362058

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 7

(a) cSM-EB (b) HMM

(c) cMOSM-EB (d) cHMT
;

(e) BM3D

Fig. 4. Denoised Lenna (σ = 25) and right eye using various methods.

and complex wavelets.
In the spirit of reproducible research a suite of MAT-

LAB demo files for implementing cSM-EB and cMOSM-
EB shrinkage can be found at http://gtwavelet.bme.gatech.edu/
cSM-EB2.zip

APPENDIX
COVARIANCE STRUCTURE OF IID NOISE IN WAVELET

DOMAIN (15), (17)

Let Y ∼MNn,n(M,C,D) denote an n×n normal random
matrix Y with E(Y ) = M and Cov {vec(Y )} = D⊗C, where
C and D represents the column and row covariance structures,
respectively. Let A and B be n×n complex-valued matrices.
We will use the fact that Z = BY A′ has (complex) covariance
structure

Cov {vec(Z)} = Cov {vec(BY A′)}
= Cov {(A⊗B)vec(Y )}
= (A⊗B)Cov {vec(Y )} (A⊗B)†

= (A⊗B)(D ⊗ C)(A† ⊗B†)

= (ADA†)⊗ (BCB†).

Here we use identities vec(BY A′) = (A⊗B)vec(Y ), AB =
AB, (A⊗B)′ = A′⊗B′ and (A⊗B)(C⊗D) = (AC)⊗(BD).
Note that for a complex matrix A we denote A as the conjugate
of A, A′ as the transpose of A and A′ = A† as the Hermitian
transpose of A. Also vec(Y ) stands for vectorization, which
stacks the columns of matrix Y into one column-vector.

Following the model in (11), e is an n × n ran-
dom matrix with i.i.d. N(0, σ2) elements, therefore e ∼
MNn,n(0, σ2I, I). After applying the 2-D scale-mixing
wavelet transform, the noise in the wavelet domain becomes
ε = WeW †. Let Re(ε) = (ε+ ε)/2 and Im(ε) = (ε− ε)/2i.
The covariance structure of ε becomes

Cov [Re{vec(ε)},Re{vec(ε)}] =

Cov [{vec(ε) + vec(ε)}/2, {vec(ε) + vec(ε)}/2] =

[Cov {vec(ε), vec(ε)}+ Cov {vec(ε), vec(ε)}+

+Cov {vec(ε), vec(ε)}+ Cov {vec(ε), vec(ε)}] /4,

Cov [Re{vec(ε)}, Im{vec(ε)}] =
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(a) cSM-EB (b) HMM

(c) cMOSM-EB (d) cHMT

(e) BM3D

Fig. 5. Denoised Peppers (σ = 25) using various methods.
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Cov [{vec(ε) + vec(ε)}/2, {vec(ε)− vec(ε)}/2i] =

[Cov {vec(ε), vec(ε)}+ Cov {vec(ε), vec(ε)}−
−Cov {vec(ε), vec(ε)} − Cov {vec(ε), vec(ε)}] /4i,

Cov [Im{vec(ε)}, Im{vec(ε)}] =

Cov [{vec(ε)− vec(ε)}/2i, {vec(ε)− vec(ε)}/2i} =

[Cov {vec(ε), vec(ε)} − Cov {vec(ε), vec(ε)}−
−Cov {vec(ε), vec(ε)}+ Cov {vec(ε), vec(ε)}] /4ii.

Further we have that

Cov {vec(ε), vec(ε)} =

Cov
{

vec(WeW †), vec(WeW †)
}

=

Cov
{

(W ⊗W )vec(e), (W ⊗W )vec(e)
}

=

(W ⊗W )Cov {vec(e)} (W ⊗W )† =

(W ⊗W )(σ2I ⊗ I)(W ′ ⊗W ′) =

σ2(WW ′)⊗ (WW ′).

Similarly

Cov {vec(ε), vec(ε)} =

Cov
{

vec(WeW ′), vec(WeW †)
}

=

Cov
{

(W ⊗W )vec(e), (W ⊗W )vec(e)
}

=

(W ⊗W )Cov {vec(e)} (W ⊗W )† =

(W ⊗W )(σ2I ⊗ I)(W ′ ⊗W ′) =

σ2(WW ′)⊗ (WW ′),

and

Cov {vec(ε), vec(ε)} =

Cov
{

vec(WeW †), vec(WeW ′)
}

=

Cov
{

(W ⊗W )vec(e), (W ⊗W )vec(e)
}

=

(W ⊗W )Cov {vec(e)} (W ⊗W )† =

(W ⊗W )(σ2I ⊗ I)(W ′ ⊗W ′) =

σ2(WW ′)⊗ (WW ′).

And finally we have that

Cov {vec(ε), vec(ε)} =

Cov
{

vec(WeW ′), vec(WeW ′)
}

=

Cov
{

(W ⊗W )vec(e), (W ⊗W )vec(e)
}

=

(W ⊗W )Cov {vec(e)} (W ⊗W )† =

(W ⊗W )(σ2I ⊗ I)(W ′ ⊗W ′) =

σ2(WW ′)⊗ (WW ′).

Therefore

Cov {Re(vec(ε)),Re(vec(ε))} =

σ2

4

[
(WW ′)⊗ (WW ′) + (WW ′)⊗ (WW ′)+

+(WW ′)⊗ (WW ′) + (WW ′)⊗ (WW ′)
]

=

σ2

2

[
Re{(WW ′)⊗ (WW ′)}+

+Re{(WW ′)⊗ (WW ′)}
]
,

Cov {Re(vec(ε)), Im(vec(ε))} =

σ2

4i

[
(WW ′)⊗ (WW ′) + (WW ′)⊗ (WW ′)−

−(WW ′)⊗ (WW ′)− (WW ′)⊗ (WW ′)
]

=

−σ
2

4i

[
2iIm{(WW ′)⊗ (WW ′)}+

+2iIm{(WW ′)⊗ (WW ′)}
]

=

−σ
2

2

[
Im{(WW ′)⊗ (WW ′)}+

+Im{(WW ′)⊗ (WW ′)}
]
,

Cov {Im(vec(ε)), Im(vec(ε))} =

σ2

4ii

[
(WW ′)⊗ (WW ′)− (WW ′)⊗ (WW ′)−

−(WW ′)⊗ (WW ′) + (WW ′)⊗ (WW ′)
]

=

σ2

2

[
Re{(WW ′)⊗ (WW ′)}−

−Re{(WW ′)⊗ (WW ′)}
]
.

These general expressions describe the covariance structure for
the maximum overlap version of the wavelet transform. Note,
however, that for the orthogonal wavelet transform WW ′ =
WW ′ = In×n, therefore the above expressions simplify to

Cov {Re(vec(ε)),Re(vec(ε))} =

σ2

2

[
In2×n2 + Re

{
WW ′ ⊗WW ′

}]
,

Cov {Re(vec(ε)), Im(vec(ε))} =

−σ
2

2

[
Im
{
WW ′ ⊗WW ′

}]
,

Cov {Im(vec(ε)), Im(vec(ε))} =

σ2

2

[
In2×n2 − Re

{
WW ′ ⊗WW ′

}]
.

Also note that using the expressions above, the wavelet domain
covariance structure of a more complicated, general (not
white) noise structure e ∼ Nn,n(0, C,D) can also be derived.
Above we only considered the white noise case, therefore
D ⊗ C = σ2I ⊗ I .
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