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Abstract

This article derives the probability density function (pdf) of the sum of a normal
random variable and a (sphered) Student’s-t distribution on odd degrees of freedom
greater than or equal to three. Apart from its intrinsic interest applications of this result
include Bayesian wavelet shrinkage, Bayesian posterior density derivations, calculations
in the theoretical analysis of projection indices and computation of certain moments.

Some key words: sum of Gaussian and Student’s t, characteristic function, wavelet
shrinkage, error function.

1 Introduction

Let X be a Gaussian random variable with mean µ, variance σ2 and density φµ,σ(x). Let

Tν be a random variable distributed according to Student’s t-distribution on ν degrees of

freedom. Both Gaussian and Student’s t-distributions are amongst the most important

distributions in statistics. In many situations it would be very useful to know the density

function of their sum Y = X +Tν which can be represented as the convolution of the density

functions of X and Tν as follows:

fY (y) =

∫ ∞

−∞

φµ,σ(y − x) tν(x) dx =

∫ ∞

−∞

φµ+y,σ(x)tν(x) dx =< φµ+y,σ, tν >, (1)

where <, > is the usual inner product < f, g >=
∫ ∞

−∞
f(x)g(x)dx. When ν = 1 the density

of Y is known from the result of Kendall (1938):

< φµ,σ(x), t1(x) >=
√

2 Re
{

ez2

erfc(z)
}

/(πσ), (2)

where z = d − ip/2, d = 1/(
√

2σ) and p =
√

2µ/σ. Here erfc is the complementary error

function (see Lebedev, 1965; Abramowitz and Stegun, 1972) and Re means ‘take the real

part’.
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Like Kendall (1938) we make use of Parseval’s relation to initiate our derivation of the

density of X + Tν for ν = 3 in Theorem 1 and for general odd ν in Theorem 2. In all that

follows Tν is (slightly) redefined to be the following sphered Student’s t distribution: this is

just the usual Student’s t but scaled to have unit variance.

Definition 1 (Sphered Student’s t) The sphered Student’s t-density on ν ≥ 3 degrees

of freedom is defined by tν : R → (0,∞) such that

tν(x) = π−1/2(ν − 2)−1/2 Γ
{

1
2 (ν + 1)

}

Γ
{

1
2ν

}

(

1 +
x2

ν − 2

)−(ν+1)/2

. (3)

A multivariate version of this sphered distribution appears in Nason (2001).

Before presenting our Theorems the following list sets out some reasons why the inner

product (1) is important.

1. It provides an explicit formula for the density function of the sum of two of the most

important random variables in statistics!

2. In Bayesian wavelet shrinkage Johnstone and Silverman (2004, 2005) show that

excellent performance is obtained by using heavy-tailed distributions as part of a

wavelet coefficient mixture prior instead of the standard normal. A quantity of interest

is the convolution of the heavy-tailed distribution with the standard normal. It has

been mooted that Student’s t-distribution might also be an interesting distribution to

use in this context and again the convolution in (1) is useful for deriving the posterior

mean based on a Student’s t mixture prior.

3. O’Hagan and Forster (2004, 11.2) describe the Bayesian linear model

y = Xβ + ǫ,

where ǫ ∼ N(0, σ2I) and hence the likelihood is f(y|β, σ2) ∼ N(βX, σ2I). In

Section (11.67–8) they describe Student’s t distribution as a useful family of heavy-

tailed prior distributions for the β parameter. For example, β ∼ tν(m,W) =

t(β) and with an independent prior, f , for σ2 their joint prior for (β, σ2) is

f(β, σ2) ∝ t(β)f(σ2). O’Hagan and Forster (2004) describe the posterior distribution

f(β, σ2|y) as intractable since β cannot be integrated out analytically. However,

our work shows that the posterior distribution can now be computed exactly (in

one dimension, for odd degrees of freedom) since the marginal likelihood is given by

f(y) =
∫ ∞

−∞ φy,σ2(β)t3(β)dβ, which is just the convolution in (1). It should be pointed
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out that σ2 is generally unknown in practice and further calculations and consideration

would be required, especially for the more realistic multivariate case.

4. In exploratory projection pursuit the L2 distance is sometimes used as a projection

index. For example, Hall (1989), defined a projection index that measured the

dissimilarity between a (projected) density f(x) and a reference standard normal

density φ(x) by L(f, φ) =
∫ ∞

−∞
{f(x) − φ(x)}2

dx. One of the design goals for

projection indices is to ensure that they are not unduly influenced by “pseudo-outliers”

and produce projection solutions which reflect true clustering in a data set rather

than one large cluster and an outlier. Some suggestions have been made about how

to robustify indices, e.g. Friedman (1987) and Cook et al. (1993). An alternative

suggestion in Nason (2001) was to replace the reference normal distribution in L(f, φ)

by Student’s t or the Laplace distribution. The experimental setup in Nason (2001)

required analytical evaluation of L(φµ,σ , t3) which itself requires evaluation of our

desired convolution (1).

5. The inner product of Student’s t on ν d.f. and the φµ,σ density can been viewed

as E(1 + X2)−(ν+1)/2 where X ∼ N(µ, σ2). (Likewise E exp(−X2/2) for X ∼ t3).

Although maybe not of major current interest these expectations are similar to the

negative moments of a distribution, see Cressie et al. (1981).

6. There is a great deal of current interest in convolutions of random variables, especially

those convolutions between variables from different families. For example, see

Nadarajah and Kotz (2005) and references therein. For a more comprehensive

treatment of the Student’s t-distribution in general see Kotz and Nadarajah (2004).

Note: A small R software package, called NORMT3 has been written to compute the

convolution density for ν = 3. See the R CRAN archive for this package and associated

documentation.

The next section establishes the distribution of X + T3 and the more general result for

X + Tν for odd ν. Section 3 concludes.

2 Inner Product of Student’s t and Gaussian densities

We first derive our inner product formula for tν(x) with φµ,σ for ν = 3. The t3(x) is the

most heavy tailed Student’s t that possesses a mean and variance and is thus of most use

for designing robust projection indices out of all the tν(x) for ν ≥ 3, see Nason (2001). We
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later discuss the situation for more general ν which is more complicated and relies on the

characteristic function (c.f.) of tν for odd ν > 3.

Theorem 1 The inner product of t3(x) and φµ,σ(x) is given by

< φµ,σ(x), t3(x) > =
b

π
exp(a/2)

[{

(1 − a) cos(µa) +
pb

2
sin(µa)

}

IC1(p, d)

+

{

(1 − a) sin(µa) − pb

2
cos(µa)

}

IS1(p, d)

+ be−d2

/2
]

, (4)

where a = σ−2, b =
√

2/σ, d = a/b, p = µb,

IC1(p, d) =

∫ ∞

d

cos(px)e−x2

dx =

√
π

2
e−p2/4 [1 − Re {erf(c) − erf(c − d)}] , (5)

and

IS1(p, d) =

∫ ∞

d

sin(px)e−x2

dx =

√
π

2
e−p2/4 Im {erf(c − d)} , (6)

where c = ip/2, i =
√
−1, Re and Im extract the real and imaginary parts and erf(z) =

∫ z

0 exp(−t2) dt is the error function which coincides with
√

2π{Φ(x) − 1/2} for real x > 0.

The proof of this theorem appears in the appendix.

Theorem 1 only deals with the case ν = 3. The proof relies on the characteristic function

(c.f.) of the Student’s t distribution shown by Stuart and Ord (1994, Ex. 3.13) for odd d.f.,

ν = 2m − 1, to be given by

χTν
(t) =

kmπ

22m−2(m − 1)!
e−|t|

m−1
∑

j=0

(2|t|)m−1−j(m − 1 + j)[2j]/j! (7)

where km = Γ(m)/{Γ(1
2 )Γ(m − 1

2 )} and x[r] = x!/(x − r)! The c.f. of the regular Student’s

t-distribution can be obtained from (7) and is equal to χTν

(

{(ν − 2)/ν}1/2 t
)

. Note that

χTν
can be written as KνPm(|t|)e−|t| where Kν is a constant and Pm(z) is a polynomial of

order m.

For more general odd d.f. ν, Theorem 2 makes use of the c.f. in (7). The higher order

terms of Pm(z) in (7) require the evaluation of quantities such as

ICr(p, d) =

∫ ∞

d

cos(pz)zr−1 exp(−z2) dz, (8)
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Figure 1: Central part of p.d.f. of Y = X + T3 (solid line); standard normal density for X
(dashed line); sphered Student’s t distribution on 3 degrees of freedom for T3 (dotted line).

for p, d ∈ R, integer r ≥ 1 and similarly ISr(p, d) for sin. These integrals can be evaluated

recursively although the combination of the recursion and their linear combination specified

by the c.f. formula (14) does not result in a particularly neat formula.

Theorem 2 The inner product of tν(x) and φµ,σ(x) is given by

< φµ,σ(x), tν(x) >=
bKν

π
exp(a/2)

m
∑

r=0

qr

{

cos(µa)ICr+1
(p, d) + sin(µa)ISr+1

(p, d)
}

, (9)

where m = (ν + 1)/2, a, b, p, d are as defined in Theorem 1. The coefficients {qr}m
r=0 are

coefficients of the polynomial Qm(z) = Pm(bz − a).

The proof of this theorem appears in the appendix.

Figures 1 and 2 show the central and tail parts of the density functions respectively and

compares them to the standard normal distribution and t3(x). Note in the tail that fY has

heavier tails than φ but lighter tails than t3 as one would expect.

3 Conclusions

This article provides an explicit analytical formula for the pdf of the sum, Y , of a standard

normal random variable and a (sphered) Student’s t variable on three degrees of freedom.

We also provide a general formula for higher degrees of freedom. The result also has
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Figure 2: Tail part of p.d.f. of Y = X + T3 (solid line); standard normal density for X
(dashed line); sphered Student’s t distribution on 3 degrees of freedom for T3 (dotted line)

direct bearing on computations in theoretical studies of exploratory projection indices,

calculations involving convolutions of φ with t3 in Bayesian wavelet shrinkage, posterior

density computations in Bayesian statistics and possibly certain moment calculations.
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A Proofs

Lemma 1 Define ICr(p, d) and ISr(p, d) as in (8) for p, d ∈ R.

Then

ICr+1
= −pISr

(p, d)/2 + (r − 1)ICr−1
(p, d)/2 + dr−1e−d2

cos(pd)/2, (10)

and

ISr+1
= pICr

(p, d)/2 − (r − 1)ISr−1
(p, d)/2 − dr−1e−d2

sin(pd)/2, (11)

6



for r ≥ 1. In particular,

IS2(p, d) =
p

2

{

IC1(p, d) + sin(pd)e−d2

/p
}

and IC2(p, d) =
p

2

{

cos(pd)e−d2

/p− IS1(p, d)
}

.

(12)

Proof of Lemma 1 We prove the formula for ICr+1
, that for ISr+1

is similar. The proof is

a simple integration by parts: for p 6= 0

ISr
(p, d) =

∫ ∞

d

sin(pz)zr−1e−z2

dz

=
[

zr−1e−z2

cos(pz)/p
]d

∞
+

∫ ∞

d

{

(r − 1)zr−2e−z2 − 2zre−z2
}

cos(pz)/p dz

= p−1dr−1e−d2

cos(pd) + p−1(r − 1)ICr−1
− 2p−1ICr+1

Rearrangement gives the formula in (10). It is easy to check that formulae (10)–(12) are

valid for p = 0.

�

Proof of Theorem 1 First we use the definition of the Fourier transform of a function

f(x) that reads f̂(ω) =
∫ ∞

−∞ f(x)e−iωx dx. Then the inner product of t3(x) with φµ,σ(x) can

be expressed in the Fourier domain by

< φµ,σ, t3 > = (2π)−1

∫ ∞

−∞

e−iωµφ̂(σω)t̂3(−ω) dω

= π−1

∫ ∞

0

e−ω2σ2/2−ω(1 + ω) cos(µω) dω, (13)

by Parseval’s relation and using that the Fourier transform of t3(x) can be obtained from

the formula for the c.f. of Student’s t for odd d.f. in Example 3.13 from Stuart and Ord

(1994):

t̂3(ω) = (1 + |ω|)e−|ω| (14)

for ω ∈ R. Now complete the square in the exponential in (13) by letting a = σ−2 and

b =
√

2/σ to obtain

< φµ,σ , t3 >= π−1

∫ ∞

0

exp

{

−
(

ω + a

b

)2

+ a/2

}

(1 + ω) cos(µω) dω.
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Now substitute z = (w + a)/b and let d = a/b to obtain

< φµ,σ , t3 > = bπ−1 exp(a/2)

∫ ∞

d

cos{µ(bz − a)}e−z2

(1 − a + bz) dz

= K

[

(1 − a)

∫ ∞

d

cos{µ(bz − a)}e−z2

dz

+ b

∫ ∞

d

cos{µ(bz − a)}ze−z2

dz

]

, (15)

where K = bπ−1 exp(a/2). Now letting p = µb, (15) becomes

< φµ,σ, t3 > = K [(1 − a) {cos(µa)IC1(p, d) + sin(µa)IS1(p, d)}

+ b {cos(µa)IC2(p, d) + sin(µa)IS2(p, d)}] , (16)

where IC2 is defined as in (8) and similarly for IS2. Substituting (12) from Lemma 1 into (16)

yields the main formula given in (4).

For the integral formulae in (5) and (6) note first that formulae (7.4.6) and (7.4.7) in

Abramowitz and Stegun (1972) show that

∫ ∞

0

cos(pz)e−z2

dz =

√
π

2
e−p2/4, and

∫ ∞

0

sin(pz)e−z2

dz = e−p2/4

∫ p/2

0

et2 dt. (17)

The formulae we need in (5) and (6) are
∫ ∞

d whereas those in (17) are
∫ ∞

0 so we need to

find

IC(p, d) =

∫ d

0

cos(pz)e−z2

dz and IS(p, d) =

∫ d

0

sin(pz)e−z2

dz.

To determine IC and IS define

I(p, d) =

∫ d

0

eipze−z2

dz = IC(p, d) + iIS(p, d). (18)

Let c = ip/2, completing the square in (18) and substituting z → −z we obtain

I(p, d) = e−p2/4

∫ 0

−d

e−(z+c)2 dz = e−p2/4

∫

γ1

e−w2

dw, (19)

where γ1 is the line in the complex plane γ1 : [0,−d] → C defined by γ1(t) = c + t

for t ∈ [0,−d]. Let γ2 and γ3 be the lines defined by the vectors (0, 0) → (−d, c) and

(0, 0) → (0, c) respectively. Then since e−w2

is holomorphic on C we can use Cauchy’s
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theorem to show

I(p, d) = e−p2/4

(

−
∫

γ2

e−w2

dw +

∫

γ3

e−w2

dw

)

.

By definition of erf this means that

I(p, d) =

√
π

2
e−p2/4 {erf(c) − erf(c − d)} .

Taking real and imaginary parts yields IC and IS and hence the formulae in (5) and (6).

�

Proof of Theorem 2 This proof follows closely the proof of Theorem 1. Inserting the

KνPm(|ω|)e−|w| formula for the c.f. of tν yields the following general form of equation (13):

< φµ,σ, tν >= π−1Kν

∫ ∞

0

e−ω2σ2/2−ω cos(µω)Pm(ω) dω. (20)

Then making the same change of variable ω = bz−a as in Theorem 1 yields the generalization

of (15)

< φµ,σ, tν >= bπ−1Kν exp(a/2)

∫ ∞

d

cos {µ(bz − a)} e−z2

Pm(bz − a) dz. (21)

Then using the trig formula for cos(A−B) on cos {µ(bz − a)}, writing Qm(z) =
∑m

r=0 qrz
r =

Pm(bz − a) and using the definition of ISr
and ICr

yields the result (9).

�
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