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ABSTRACT. In curve estimation using wavelet methods it is common to select
the resolution level to be an integer, so as to exploit the computational advantages
of the pyramid or cascade algorithm. This choice, however, can produce a noticeable
amount of either oversmoothing or undersmoothing. Its analogue for estimation by
kernel methods is to restrict the bandwidth to be an integer power of 1

2 , which
would seldom be acceptable. In this note we quantify the advantages of non-integer
resolution levels.
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1. INTRODUCTION

Wavelet methods o�er excellent adaptivity and computational e�ciency in a

variety of applications to nonparametric curve estimation. For example, traditional

techniques for estimating piecewise-smooth functions with jump discontinuities typ-

ically require �rst an algorithm for identifying the location, and perhaps also the

sizes, of jumps; and then a smoother for estimating the function between jumps.

Nonlinear wavelet methods, on the other hand, accomplish the entire operation in

a single step, and with greater computational ease (see e.g. Donoho, Johnstone,

Kerkyacharian and Picard 1995). In this note we argue that the degree of adap-

tivity that is often forced on the wavelet smoothing parameter by the method of

computation does not allow as much adaptivity to variation in a smooth target

function as is permitted by kernel methods. It may be likened to demanding that

the bandwidth of a kernel estimator be taken equal to 2�j for an integer j.

We quantify the penalty that is paid for restricting smoothing to a dyadic grid.

It is convenient to focus attention on the case of density estimation, as it involves few

structural assumptions, but our conclusions in the case of nonparametric regression

are identical. Let X1; : : : ; Xn denote a random sample from the distribution with

density f , and suppose f admits the wavelet expansion (Meyer, 1992)

f =
X

�1<j<1

bj �j +
1X
i=0

X
�1<j<1

bij  ij ;

where �j(x) = p1=2 �(px+j),  ij(x) = p
1=2
i  (pix+j), � and  are the \father" and

\mother" wavelet functions (assumed orthonormal), log2 p = log2 p(n) is the most

coarse resolution level of the �tted wavelet, pi = 2i p, bj =
R
f �j and bij =

R
f  ij .

(The logarithm function to base 2 is denoted by log2.) Unbiased estimators of bj

and bij are given by

b̂j = n�1
nX

m=1

�j(Xm) and b̂ij = n�1
nX

m=1

 ij(Xm) :

Substituting them into the theoretical expansion of f , truncating the sum over i so

as to ensure convergence, and applying a threshold to the coe�cients b̂ij so as to
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exclude those that are principally noise, we obtain an empirical wavelet expansion,

f̂ =
X

�1<j<1

b̂j �j +

q�1X
i=0

X
�1<j<1

b̂ij I(jb̂ijj � �) ij : (1:1)

Here, � = const: (n�1 logn)1=2 denotes the threshold, and q is an integer that is

typically chosen so that p 2q is close to n.

Critically, p plays the role of the inverse of bandwidth in determining the

performance of f̂ . In particular, if f has r derivatives in a piecewise sense, if the

wavelet  is of order r (that is
R
xm (x) dx = 0 for m = 0; : : : r � 1), and if the

threshold � and truncation parameter q are chosen appropriately, then the estimator

de�ned at (1.1) enjoys the following expansion of mean integrated squared error:

Z
E(f̂ � f)2 = n�1 p+ C p�2r + o

�
n�1 p+ p�2r

�
(1:2)

as n; p ! 1. Here, the constant C depends on only f and  , and the �rst two

terms on the right-hand side represent the main contributions from variance and

squared bias, respectively. See for example Hall and Patil (1995), and Hall and

Patil (1996) for the counterpart in the case of nonparametric regression. One might

possibly expect something other than (1.2), because of the nonlinear nature of a

wavelet estimator. That this classical decomposition into variance and squared bias

is valid in the nonlinear case re
ects the fact that the choice of threshold is relatively

conservative in places where f is smooth, and so has negligible e�ect there. To �rst

order its in
uence is felt only in places where f has a discontinuity in a derivative

of lower order than that of the wavelet. There the in
uence is very local, acting

to adjust the bias contribution so that the estimate correctly tracks the true curve,

and preserving the classical variance{bias decomposition of mean integrated squared

error.

Result (1.2) is a direct analogue of the mean integrated squared error expansion

of an r'th order kernel estimator with bandwidth h, where

Z
E(f̂ � f)2 = C1 (nh)

�1 + C2 h
2r + o

�
(nh)�1 + h2r

	
(1:3)
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as n; h�1 !1, and C1; C2 depend only on f and the kernel. See for example Wand

and Jones (1995, p. 21). (On the occasion of (1.3) it is assumed that f is r times

di�erentiable, not just in a piecewise sense.)

It is common to take log2 p to be an integer, so as to make use of Mallat's pyra-

mid algorithm for calculating f̂ . A comparison of (1.2) and (1.3) reveals, however,

that this dyadic choice is tantamount to insisting that in kernel smoothing, h be

taken equal to 2�j . Such a restriction would seldom be acceptable; indeed, some

contemporary bandwidth selectors produce empirical choices of h that are root-n

consistent for the optimal bandwidth, in relative terms. We argue that, insofar as

one is interested in accurate estimation of the smooth part of f , dyadic choice of

p is often not acceptable for wavelet estimators either. The computational labour

of smoothing in the continuum, or at least on a �ne grid, is usually insigni�cant

for practical density estimation. It only becomes an issue when one is conducting

a simulation study with many replications.

2. PENALTY FOR DISCRETE CHOICE OF

SMOOTHING PARAMETER

2.1. Optimal choice of smoothing parameter. Consider a density estimation problem

where the asymptotic mean squared error, or mean integrated squared error, may

be written as

Mn(h) = c1(nh)
�1 + c2h

2r ;

in which n denotes sample size, c1 and c2 are positive constants, and r � 1 is a

�xed integer representing the \order" of the method. Since we are interested only in

proportionate changes to Mn then we may work with Mn=c2 instead of Mn. Thus,

de�ning c by c1 = 2rcc2, we may suppose without loss of generality that

Mn(h) = 2rc (nh)�1 + h2r : (2:1)

In this case the minimum value of Mn is achieved with h(n) = (c=n)1=(2r+1), and

equals M0 = (2r + 1) (c=n)2r=(2r+1).
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In the wavelet case, h does not always vary in the continuum. For reasons of

computational e�ciency, in particular to utilise the pyramid or cascade algorithm of

Mallat, h is often restricted to a geometric sequence, typically to f2j ;�1 < j <1g

although more generally to Sd = fdj ; �1 < j <1g, where d > 1; see for example

Auscher (1989, 1992). Let vd 2 (0; 1=2) denote the solution of

d(2r+1)vd
�
d2r � 1

�
= 2rd2r (d� 1) ;

let jd(n) be the integer nearest to � logd h(n) (the smaller of the two integers if

there is a tie), and put u = u(n) = jd(n) + logd h(n) 2 (�1=2; 1=2]. Here, logd

denotes the logarithm function to base d.

Proposition 2.1. For each d > 1, the value of h that minimizes Mn (de�ned at

(2.1)) when the argument is constrained to be in Sd, equals d
�kd(n) where

kd(n) =

�
jd(n) if u > �vd
jd(n) + 1 if u < �vd.

When u = �vd the choices kd(n) = jd(n) and kd(n) = jd(n) + 1 are equally

appropriate, since there, Mn(d
�jd(n)) = Mn(d

�jd(n)�1) < Mn(d
�j) for all j =2

fjd(n); jd(n) + 1g.

To derive the proposition, observe that Mn(d
�jd(n)) =M0 a(u), where a(u) =

(2r+1)�1(2rdu+d�2ru). The function a is strictly increasing on (0;1) and strictly

decreasing on (�1; 0). Furthermore, a(�t) > a(t) for all t > 0, and a(u) > a(u+1)

[respectively, a(u) = a(u + 1)] if and only if u < �vd [u = �vd]. The proposition

follows from these properties.

2.2. The penalty, as a function of n, for smoothing discretely. Let

�(n) =Mn(d
�kd(n))=M0

denote the penalty for smoothing on the grid Sd rather than in the continuum. To

appreciate the size of �(n) we examine the worst and average cases, respectively.
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Now,

�(n) � �max = a(1� vd)

= (2r + 1)�1
�
2rd

��
d2r � 1

���
2rd2r (d� 1)

	�1=(2r+1)
+ d�2r

�
2rd2r (d� 1)

��
d2r � 1

�	2r=(2r+1)�
; (2:2)

and �(n) can be rendered arbitrarily close to �max along a sequence of values of n

diverging to in�nity. To appreciate the average size of �(n), write

n = c h(n)�(2r+1) = cd(2r+1)jd(n)W ;

where W = d�(2r+1)u. Since integers n are equally spaced then we shall consider

W to be uniformly distributed on its range, i.e. on (d�(2r+1)=2; d(2r+1)=2). (Even in

the context of regression, wavelet methods may be used for arbitrary values of n;

interpolation techniques may be employed to overcome the traditional need for a

dyadic sample size.) Let V = �(logdW )=(2r + 1) and U = V I(V > �vd) + (V +

1) I(V � �vd), in which notation �(n) = a(U). Expressing �(n) in terms of W we

obtain:

�(n) = (2r + 1)�1
��
2rW�1=(2r+1) +W 2r=(2r+1)

�
I
�
W < dvd(2r+1)

�

+
�
2rdW�1=(2r+1) + d�2rW 2r=(2r+1)

�
I
�
W � dvd(2r+1)

�	
:

Direct calculation shows that the expected value of the right-hand side equals

�av =
�
d(2r+1)=2 � d�(2r+1)=2

�
�1�

d2rvd � d�r + d
�
dr � d2rvd

�

+ (4r + 1)�1
�
d(4r+1)vd � d�(4r+1)=2

+ d�2r
�
d(4r+1)=2 � d(4r+1)vd

�	�
; (2:3)

representing the average value of �(n).
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r �av �max v2

2 1.118 1.237 0.419

4 1.269 1.413 0.334

6 1.358 1.525 0.276

r !1 21=2 2 (log2 r)=(2r)

Table 1: Values of average (�av) and largest (�max) factors by which Mn(d
�jd(n))

exceeds M0, and values of v2, for r = 2; 4; 6 and in the case of a dyadic smoothing
parameter (d = 2). The last row provides asymptotic formulae as r!1.

Table 1 gives the values of �av, �max and vd in the cases r = 2; 4; 6, and for

d = 2. Note that for large r, v2 is close to zero, indicating that k2 is equal to j2+1

almost as often as it is to j2.

2.3. Alternative expressions for the penalty. The penalty, �, may be regarded as

a function of the error variance, in the context of nonparametric regression; or of

the scale of the true density, in the case of density estimation; or of other variable

parameters. Such views of the problem do not alter the value of �max, but they

may a�ect �av, depending on how \average" is de�ned.

For example, in the case of nonparametric regression when the error variance �2

is considered a variable parameter, the variance contribution to mean squared error

is proportional to (nh)�1 �2 rather than simply (nh)�1. See Hall and Patil (1996).

All the arguments given earlier remain valid if we replace n by n=�2 throughout. In

particular, the expression for �max at (2.2) is still correct. So also is that for �av at

(2.3), provided the average is taken uniformly over values of ��2 within an interval

(��20 ; d ��20 ) for some �0 > 0. Alternative de�nitions of �av, of which there are of

course a great many, will produce di�erent values of �av, all of them lying in the

interval (1; �max).
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In the case of nonparametric density estimation where the density f = f�

has variance �2, the bias contribution to mean squared error is proportional to

�2r+1h2r rather than h2r. See for example Hall and Patil (1995). The arguments

in Sections 2.1 and 2.2 continue to hold if we replace n by n�2r+1. Thus, �max

is again given by (2.2), and �av is given by (2.3) if the average is taken uniformly

over values of �2r+1 in an interval (�2r+10 ; d �2r+10 ) for some �0 > 0. This de�nition

of \average" is contrived, but versions of (2.3) using more natural de�nitions are

readily constructed.

To elucidate the case of density estimation we conducted a simulation study

where the sampling density f� was Normal with mean zero and variance �2. Sample

size was �xed at n = 256 throughout; we varied �. The threshold � in the wavelet es-

timator at (1.1) was taken to be (Cn�1 logn)1=2, where C = 2 supf� = (2=�)1=2��1.

The truncation point q was set equal to the integer part of the base 2 logarithm of

n=p. Mean integrated squared error, rather than pointwise mean squared error, was

taken as the measure of risk, and was evaluated by averaging 500 simulated density

estimators calculated at 1000 grid points spread evenly over their �nite support. All

wavelet computations were conducted using WaveThresh Version 3 (Nason, 1995).

In particular, this meant that the wavelets used enjoyed r = 6, and that d = 2.

The optimal smoothing parameter popt = h�1opt was calculated by minimising

this mean squared error approximation using the FMIN procedure from the netlib

GO package (Brent, 1973). The value of mean integrated squared error computed

at the optimal smoothing parameter was taken as the numerical approximation,

�M0, to M0. The minimum mean integrated squared error for a dyadic choice of

the smoothing parameter was calculated by inspecting the relatively small range

of possibilities. The ratio of this to �M0 was our numerical approximation to the

penalty, �, for the given values of n and �.

Table 2 lists values of � for di�erent �'s, indicating that in this rather di�erent

setting the range of values of the penalty is nevertheless similar to that suggested
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by Table 1. The values of � listed in Table 2 were each calculated as the mean of at

least 10 di�erent independent trials of the procedure described in the previous two

paragraphs.

� �

0.6 1.647
(0.043)

1.0 1.250
(0.077)

1.5 1.019
(0.059)

2.0 1.218
(0.048)

3.0 1.017
(0.025)

4.0 1.211
(0.042)

5.0 1.457
(0.034)

Table 2: Numerical approximations to � in the case n = 256, for various values of
�. Standard deviations are given in parentheses.

Figure 1: Graphs of true N(0; (32=3)2) density (thin unbroken line), optimally
smoothed wavelet estimator (thick unbroken line), and density estimators for the
nearest dyadic resolution levels below (broken curve with peak above true density)
and above (broken curve with peak below true density) the optimum. Sample size
is n = 256.

Next, again in the case of density estimation when the true density is Normal

N(0; �2), with sample size 256, we illustrate a typical sample. We took � = 32=3.

Figure 1 depicts the true density, indicated by the thin unbroken line, and the
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wavelet density estimator with optimal smoothing parameter popt = 0:094, indi-

cated by the thick unbroken line. The nearest dyadic values are 1=8 = 0:125 and

1=16 = 0:0625, and the corresponding density estimators are indicated in the �gure

by broken lines, that for p = 1=8 having the lower peak. Compared with the op-

timally smoothed estimator, these \dyadic estimators" show a marked inability to

correctly resolve the true peak. Thus, restriction to a dyadic smoothing parameter

signi�cantly a�ects visual as well as mathematical performance.

2.4. Empirical choice of primary resolution level. The close parallel between mean

integrated squared error formulae for wavelet and kernel methods (see (1.2) and

(1.3)) suggests that relatively classical techniques, such as those based on cross-

validation, the bootstrap or plug-in rules, may be employed to select an empirical

version of the appropriate smoothing parameter, p. Indeed, theoretical arguments

that are entirely similar to those in classical curve estimation problems may be used

to prove that this is the case for smooth targets. Plug-in rules are arguably less at-

tractive for relatively unsmooth (e.g. discontinuous) targets, since the constant C in

(1.2) depends on piecewise integrals of (f (r))2 over sets where it is well-de�ned; see

Hall and Patil (1995). However, cross-validation and bootstrap methods are rela-

tively attractive there, the latter having important similarities to their counterparts

in kernel-based nonparametric regression (e.g. Faraway and Jhun 1990).
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