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Abstract

This article proposes maximum likelihood approaches for multiscale vari-
ance stabilization (MVS) tranforms for independently and identically distributed
data. For two MVS transforms we present new unified theoretical results on their
Jacobians which are a key component of the likelihood. The new results pro-
vide (i) a deeper theoretical understanding of the transforms and (ii) the ability to
compute the likelihood in linear time compared to previous numerical methods
which required quadratic effort. The new MVS transforms are shown empirically
to compare favourably to the well-known Box-Cox transform and almost domi-
nate it. We show how the new transforms, like Box-Cox, can facilitate simpler
models by an example involving the famous wool data.

KEYWORDS: VARIANCE STABILIZATION, HAAR-FISZ, HAAR WAVELET,
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1 Introduction

Variance stabilization through transformation is a popular and commonly performed
technique in statistics. For example, analysts routinely apply log and/or square-root
transformations to draw data towards homoscedasticity and/or normality. Atkinson
(1985) provides an excellent and comprehensive exposition of stabilization methods.
For some contemporary problems variance stabilization is important and essential. For
example, in astrononomical image processing, where variance stabilization methods
are used in combination with other methods to “recover important structures of various
morphologies in (very) low-count images” and demonstrate that such techniques are
“competitive relative to many existing denoising methods”, Zhang et al. (2008).

Recently, Fryzlewicz (2003) introduced the Haar-Fisz transform for the variance
stabilization of a Poisson intensity sequence, see also Fryzlewicz and Nason (2004).
Informally, the Haar-Fisz transform works by first applying a Haar wavelet transform
to the data sequence, dividing the mother coefficients by the square root of the fa-
ther coefficients and then inverting the transform. The original Haar-Fisz transform
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took a Poisson intensity sequence and turned it into a near-Gaussian sequence with
near-constant variance with the intensity information encoded into the mean of the
transformed sequence. The Haar-Fisz transform was the first multiscale variance sta-
bilization transform and is an example of a non-diagonal transform. By comparison
applying standard log or square root transforms to a sequence X1, . . . , Xn to obtain a
transformed sequence Y1, . . . , Yn is diagonal because one, and only one, Xi is used to
form each Yi. Simulation studies in Fryzlewicz and Nason (2004) showed the power
of Haar-Fisz with a performance that “was nearly always better than that of the current
state-of-the-art in terms of accuracy and speed”.

The Haar-Fisz method has since been extended and applied to a number of different
situations, see Section 2.2.2 for more details. Also, new multiscale variance stabiliza-
tion techniques have appeared, notably Zhang et al. (2008): a version of which we call
the ‘multiscale Box-Cox’ here. The current article contributes the following:

1. until now multiscale variance stabilization has been concerned with function
estimation. For example, for Haar-Fisz for Poisson the models are essentially
Xt ∼ Poiss{λ(t)} where λ(t) is some function and the ordering of the Xt

matters. This article considers the case where the {Xt} are independent and
identically distributed (iid) according to some unknown distribution. This is the
setting, for the seminal Box and Cox (1964) paper and the setting for many
problems in applied statistics.

2. most previous work in this area focuses on variance stabilization and Gaussian-
ization is often a by-product, see Stuart and Ord (1994). Here, we use maximum
likelihood (ML) to explicitly ‘Gaussianize’ a sequence, again paralleling the
Box and Cox (1964) method.

3. Bailey (2008) and Nason and Bailey (2008) used ML but only with function-
sequence data and computed completely by numerical means. In particular, the
Jacobian computation used the fdjac algorithm from Press et al. (1992) which
costs O(n2) for each likelihood optimization step for a data set of size n. Our
main result below derives analytical formulae for the Jacobians which permits
a faster O(n) computation. Our new result is general applying to a version of
Haar-Fisz and the different, more recent, method of Zhang et al. (2008). As well
as producing practical benefits this new theory sheds considerable theoretical
light on the likelihood and how it should be interpreted.

The article is laid out as follows. Section 2 reviews the Box-Cox transform intro-
ducing our version of the Haar-Fisz and multiscale Box-Cox transforms in sections 2.2
and 2.3, respectively. Section 3 examines the likelihood for each transforms paying
careful attention to the Jacobians. The Box-Cox Jacobian is reviewed in section 3.1
and new theory that derives the analytical Jacobians for Haar-Fisz and multiscale Box-
Cox follows in sections 3.2–3.4. Section 4 compares the transforms via simulation and
we present an analysis of the famous wool data using Box-Cox and the new transforms.
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2 Transformations

2.1 Box-Cox Transform

Let X = {X1, . . . , Xn} be an independent and identically distributed data set of size
n, where Xi ≥ 0, EXi = µ < ∞ and varXi = σ2 < ∞ for i = 1, . . . , n. Box and
Cox (1964) introduced the following parametric transform of the data:

Y
(λ)

BC,i =

{
(Xλ

i − 1)/λ for λ 6= 0
logXi for λ = 0.

(1)

2.2 The Haar-Fisz Transform

The Haar-Fisz variance stabilizing transform bolts the Fisz transform, which pulls a
pair of random variables towards the Gaussian, onto the discrete Haar wavelet trans-
form. We review both of these components next.

2.2.1 The Discrete Haar Wavelet Transform

The multiscale variance stabilization techniques defined in the next two sections are
obtained by modifying the Haar wavelet transform. For further details on Haar wavelets
see Vidakovic (1999) or Nason (2008) or many of the general books on wavelets such
as Daubechies (1992), Burrus et al. (1997), or Mallat (1998).

Given data X1, . . . , Xn where n = 2J for some integer J > 1 we define the Haar
wavelet transform as follows. Set initial coefficients cJ,i−1 = Xi for i = 1, . . . , n.
Then perform the recursive operation:

cj−1,i = (cj,2i + cj,2i+1)/2, (2)

and
dj−1,i = (cj,2i − cj,2i+1)/2, (3)

for j = J, . . . , 1 and i = 0, . . . , 2j−1. One often writes the coefficients at a given scale
level, j, as a vector. Hence, dj = (dj,0, . . . , dj,2j−1) and cj = (cj,0, . . . , cj,2j−1). The
discrete Haar wavelet transform of X is the collection d = (c0,d0,d1,d2, . . . ,dJ−1).
It is convenient to use the notation H to denote the Haar wavelet transform, so d =
H(X) where X = (X1, . . . , Xn).

The {dj,i} are known as mother wavelet coefficients and the {cj,i} are known as
the father wavelet or scaling coefficients. We have chosen a particular normalization
for the Haar wavelet transform here. Formulae (2) and (3) use 2−1(1,−1) whereas
other expositions use 2−1/2(1,−1) or (1,−1) in other applications.

The transform can easily be inverted and the original data can be recovered from
d by reversing the recursive steps (2) and (3):

cj,2i = cj−1,i + dj−1,i, (4)

and
cj,2i+1 = cj−1,i − dj−1,i, (5)

again for j = 1, . . . , J and i = 0, . . . , 2j − 1.
Note, for the purposes of exposition we assume n = 2J but the Haar transform can

be applied for any n ∈ N by computing every possible Haar wavelet coefficient.
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2.2.2 Haar-Fisz Transform

The Haar-Fisz transform was introduced in Fryzlewicz (2003) as a method for vari-
ance stabilization of data P1, . . . , Pn distributed Pi ∼ Poiss(λi) for some sequence
of intensities λi, see also Fryzlewicz and Nason (2004). Here λi was taken to be a
sequence of samples from some function λ(x) with given smoothness properties. The
Haar-Fisz method was subsequently adapted to χ2-like data for local spectral estima-
tion in Fryzlewicz and Nason (2006) and for spectral estimation for stationary time
series in Fryzlewicz et al. (2008). The Haar-Fisz method was extended in a different
direction by Fryzlewicz and Delouille (2005) and Fryzlewicz et al. (2007) by creat-
ing the ‘data-driven Haar-Fisz’ transformation which addressed problems where the
mean-variance function, h(µ), is not known and has to be estimated from the data.
For example, for Poisson data h(µ) = µ and for χ2-like h(µ) ∝ µ2. In an example,
Fryzlewicz et al. (2007) estimated a two linear piece h for GOES satellite X-ray flux
data’s mean-variance function and postulated two mean-variance regimes linked to the
autoranging electronics within the sensor. Further empirical evidence concerning the
effectiveness of data-driven Haar-Fisz was demonstrated in Motakis et al. (2006) for
variance stabilization of microarray data which also handled replicates and Nason and
Bailey (2008) on estimation of conflict intensity. A detailed analysis of data-driven
Haar-Fisz appears in Fryzlewicz (2008), theoretical work demonstrating asymptotic
normality for the inhomogeneous Poisson case appears in Schmidt and Xu (2008), and
a generalization concerning wavelets/filters other than Haar was achieved by Jansen
(2006).

The original Haar-Fisz method, for Poisson data, uses the following result by Fisz
(1955):

Theorem 1 (Fisz) Let Pi ∼ Poiss(λi) for i = 1, 2 and X1, X2 independent. Define
the function ξ : R2 → R by

ξ(X1, X2) =

{
0 if X1 = X2 = 0,

(X1 −X2)/(X1 +X2)
1/2 else.

(6)

If (λ1, λ2)→ (∞,∞) and λ1/λ2 → 1 then ξ(X1, X2)− ξ(λ1, λ2)
D→ N(0, 1).

The theorem shows that, under the right conditions, the quantity ξ(X1, X2) is approx-
imately Gaussian with a constant variance. The reader will note that X1 − X2 and
X1 + X2 are the Haar mother and father wavelet coefficients of X1, X2. The innova-
tion of the Haar-Fisz transform was to realize that one could replace the Haar mother
coefficient in the Haar wavelet transform of section 2.2.1 by ξ(X1, X2) and to do this
recursively throughout the whole transform. Consequently, the wavelet tableaux now
has all mother coefficients approximately Gaussian. This new tableaux is just a Haar
wavelet transform containing these new coefficients which can be inverted. Since the
transform is orthogonal the inverted transform will be approximately Gaussian with
near-constant variance. This is the Haar-Fisz transform, for Poisson data, and is fully
invertible, just by reversing the steps.

To summarize, given data X, the steps in the Haar-Fisz transform for Poisson data
are:

1. Apply the Haar wavelet transform to the data: d = H(X).
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2. Replace the mother wavelet Haar coefficients, dj,k by the Fisz-transformed equiv-
alents fj,k = dj,k/c

1/2
j,k to form = (c0, f0, . . . , fJ−1).

3. Invert the new wavelet coefficients to obtain the final transformed sequence Y =
H−1(f).

In what follows the data X1, . . . , Xn are assumed iid, but with no particular un-
derlying parametric distribution in mind. The Haar-Fisz transform we introduce here
lies somewhere between the fixed parametric assumptions in Fryzlewicz and Nason
(2004, 2006) (Poisson and χ2) and the more general data-driven mean-variance rela-
tionships found in Fryzlewicz and Delouille (2005); Fryzlewicz et al. (2007); Motakis
et al. (2006) and Fryzlewicz (2008). Here, the assumption, as far as Haar-Fisz is con-
cerned is h(µ) ∝ µ2λ. The appropriate value of λ for Poisson, then, is λ = 1/2 and
for χ2 we would have λ = 1. Our version of Haar-Fisz is conceptually similar to the
single-parameter Box-Cox transform, but obviously Haar-Fisz is multiscale.

2.2.3 General form of our Haar-Fisz transform

We modify the general formula for the Haar-Fisz transform for Poisson data that ap-
pears in (Fryzlewicz, 2003, page 164) by adding a more general power transformation
parameter λ as follows.

Let X = (X1, . . . , Xn) for n = 2J be the vector of interest. Introduce the family
of Haar wavelet vectors {ψj,k}, where j = 0, 1, . . . , J−1 is the scale parameter (J−1
is fine scale, 0 is coarsest) and k = l2J−j , l = 0, 1, . . . , j is the location parameter.
The components of of ψj,k will be denoted by ψj,ki for i = 0, . . . , n− 1. We define:

ψj,ki = 2j−J


0 for i < k,
1 for k ≤ i < k + 2J−j−1,
−1 for k + 2J−j−1 ≤ i < k + 2J−j ,
0 for k + 2J−j ≤ i.

(7)

Similarly, we introduce the family of Haar scaling vectors {φj,k}, whose components
will be denoted by φj,ki (the range of j, k and i remains unchanged). We define

φj,ki = 2j−J


0 for i < k,
1 for k ≤ i < k + 2J−j ,
0 for k + 2J−j ≤ i.

(8)

This definition of discrete Haar wavelets is similar to that of Nason et al. (2000). The
difference is that we “pad” the wavelet vectors with zeroes on both sides so that they
all have length n, and do not normalize them.

Further, let 〈·, ·〉 denote the inner product of two vectors, and let the binary repre-
sentation of the integer i be bJ(i) = (bJ0 (i), bJ1 (i), . . . , bJJ−1(i)), where i < 2J .

The formula for the ith element of the Haar-Fisz transformed vector of X, with
parameter λ, is

Ui =
< φ0,0,X >

n
+

J−1∑
j=0

(−1)b
J
j (i)cj,J,i(X), (9)
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where

cj,J,i(X, λ) =

 〈ψj,bi/2J−jc2J−j ,X〉
〈φj,bi/2J−jc2J−j ,X〉λ

if 〈φj,bi/2J−jc2J−j ,X〉 > 0,

0 otherwise.
(10)

The only difference between (10) and Fryzlewicz (2003) is that we use a general λ
whereas a fixed λ = 1/2 was used in Fryzlewicz (2003) to be used for Poisson dis-
tributed data. This is akin to the difference between the Anscombe (1948) transform
and the Box-Cox transform with parameter λ.

We now adapt the general formula (10) into a slightly different form. Our adaption
is useful for two purposes: (i) the new form conveniently encapsulates the next vari-
ance stabilization technique, described in section 2.3, (ii) the new form facilitates the
establishment of an interesting new result concerning the Jacobians of both transforms.

Define the function FHF : [0,∞)3 → R by

FHF(a, b, λ) = a(a+ b)−λ. (11)

Then all of the terms in the sum in (9) can be represented by the difference of two FHF
terms computed on the first and second half of the partial sum involved in that term.
An example, for the case n = 4, should make this clear.

Suppose the data set is (X1, X2, X3, X4). Then let

Y
(λ)

HF,1 = 1
4

4∑
i=1

Xi +
X1 +X2 −X3 −X4

41−λ(X1 +X2 +X3 +X4)λ
+

X1 −X2

21−λ(X1 +X2)λ
(12)

= X̄ + 4λ−1FHF(X1 +X2, X3 +X4, λ)− 4λ−1FHF(X3 +X4, X1 +X2, λ)

+ 2λ−1FHF(X1, X2, λ)− 2λ−1FHF(X2, X1, λ). (13)

The other three components of the Haar-Fisz transform are

Y
(λ)

HF,2 = X̄ +
X1 +X2 −X3 −X4

41−λ(X1 +X2 +X3 +X4)λ
− X1 −X2

21−λ(X1 +X2)λ
(14)

Y
(λ)

HF,3 = X̄ − X1 +X2 −X3 −X4

41−λ(X1 +X2 +X3 +X4)λ
+

X3 −X4

21−λ(X3 +X4)λ
(15)

Y
(λ)

HF,4 = X̄ − X1 +X2 −X3 −X4

41−λ(X1 +X2 +X3 +X4)λ
− X3 −X4

21−λ(X3 +X4)λ
, (16)

all of which can be put into a form similar to (13).

2.3 The Multiscale Box-Cox Transform

More recently, Zhang et al. (2008) introduced a simple and elegant new variance sta-
bilization technique that involved combining the discrete Haar wavelet transform with
the well known Anscombe (1948) transform. Donoho (1993) first proposed denois-
ing Poisson-distributed signals using wavelets by first applying Anscombe’s trans-
form, which results in approximately variance stabilized Gaussian data, and then us-
ing regular wavelet shrinkage for Gaussian data. Anscombe’s transform, given by
A(Xi) =

√
Xi + 3/8, is essentially equivalent to preprocessing one’s data with the

Box-Cox transform with λ = 1/2
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Zhang et al. (2008) begin by forming the Haar father wavelet coefficients by re-
cursively applying formula (2) as normal. Then Anscombe’s transform is applied to
all of the father coefficients. Then, those Anscombe-transformed coefficients are used
to form Haar mother wavelet coefficients. In other words, formula (3) becomes

dj−1i = A(cj2i−1)−A(cj2i). (17)

The beauty of their idea is that if the Xi are iid Poisson distributed then clearly so are
all the cjk (as they are merely sums of independent Poissons). Hence, all the A(cjk)

are approximately Gaussian with the the same variance. Inversion of the new djk Haar
wavelet tableaux results in an approximately variance-stabilized Gaussian sequence.
Both the Haar-Fisz transform and the transform introduced by Zhang et al. (2008) are
similar in that they both produce stabilized Gaussian Haar wavelet coefficients which
can then be inverted to provide variance stabilized data.

We generalize Zhang et al. (2008) by replacing Anscombe in (17) by the Box-
Cox transform resulting in the multiscale Box-Cox transform. Define the function
FBC : [0,∞)× R→ R by

FBC(a, λ) =

{
(aλ − 1)/λ for λ 6= 0,
log a for λ = 0.

(18)

For example, again for the case n = 4, we obtain:

Y
(λ)

MB,1 = X̄ + FBC{(X1 +X2)/2, λ} − FBC{(X3 +X4)/2, λ}
+ FBC(X1, λ)− FBC(X2, λ), (19)

similar formulae apply for Y (λ)
MB,2, Y

(λ)
MB,3 and Y (λ)

MB,4. The full formula for n = 8 is pre-
sented as (31) in Appendix B. A general formula for the multiscale Box-Cox transform
can be obtained by replacing cj,J,n in (10) by

fj,J,i(X, λ) = F{(〈ψj,bi/2J−jc2J−j ,X〉+ 〈φJ,bi/2J−jc2J−j ,X〉)/2, λ}
− F{(〈ψj,bi/2J−jc2J−j ,X〉 − 〈φJ,bi/2J−jc2J−j ,X〉)/2, λ},
= F{(dj,J,i + cj,J,i)/2, λ} − F{(dj,J,i − cj,J,i)/2, λ}, (20)

where cj,J,i is as in (10), dj,J,i is the associated mother coefficient, i = 0, . . . , n − 1
and F = FBC.

3 Likelihood

Section 2 defined the three transformations that we are considering in this paper: the
Box-Cox, the Haar-Fisz and the multiscale Box-Cox. In practice, for any given set
of data all of the transforms require the parameter λ to be chosen in some way. The
seminal paper of Box and Cox (1964) introduced and studied a range of approaches to
parameter estimation, including maximum likelihood and Bayesian methods, and these
have become widely used across many fields. For brevity and focus we concentrate on
exploration of the maximum likelihood approach here. However, a Bayesian analysis
would be perfectly possible and desirable in many contexts.
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The likelihood approach is explained in Atkinson (1985) whose clear approach we
follow. The aim of the likelihood approach is to choose λ that maximizes the Gaussian
likelihood of the transformed observations but expressed as a function of the original
observations, i.e.

(2πσ2)−n/2 exp{−(Y (λ) −X)T (Y (λ) −X)/2σ2}J, (21)

where Y (λ), X are the vectorized versions of Y (λ)
i and Xi and where J is the Jacobian

of the transformation, i.e.

J =
n∏
i=1

∣∣∣∣∣∂Y (λ)
i

∂Xi

∣∣∣∣∣ . (22)

It is important to write the likelihood in terms of the original observations, which ne-
cessitates the use of the Jacobian, to enable likelihoods from the same transformation,
but with different λ, to be compared, and also to compare likelihoods from different
transformations.

When the observations, Xi, are considered to be part of some model, e.g. EX =
Wβ, then the transformation approach needs to estimate both the transformation pa-
rameter, λ, the parameters of interest in the model, β and maybe σ2, which has to be
estimated but might not be of direct interest. As described by Atkinson (1985) this can
be achieved by a two-stage approach where the parameters (σ2, β) are estimated in the
normal way conditioned on λ to obtain the profile log-likelihood:

Lmax(λ) = −(n/2) log σ̂2(λ) + log J, (23)

where σ̂2 = n−1Y (λ),T (I −H)Y (λ) is the usual maximum likelihood estimate of σ2

and H is the usual hat matrix. Conveniently, this single approach will work with all of
our transformations above. However, the exact likelihood and the form of Jacobian is
different in each case. We shall address these details next. However, before we do it is
worth nothing that, as usual, the maximum likelihood framework provides important,
useful and interesting information. For example, the asymptotic distribution of the
maximizing parameter, confidence intervals for the parameter and convergence results.

3.1 Box-Cox likelihood

The Jacobian for the Box-Cox transform has a simple form due to the simplicity of the
functional form of FBC and the important fact that the Box-Cox transform is diagonal.
In other words, the transformed value Y (λ)

i only depends on Xi and none of the other
Xj for j 6= i. So,

∂Y
(λ)
i /∂Xi = ∂FBC(Xi, λ)/∂Xi = Xλ−1

i . (24)

Hence, the (log) Jacobian is

log JBC = (λ− 1)

n∑
i=1

logXi. (25)

Observe that the log of the Jacobian is essentially the log of the geometric mean of the
data, X . Combining (23) with (25) one can see that the problem is one of penalized
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likelihood: the aim is to reduce the sample variance σ̂2 tensioned against an increasing
(or decreasing if λ < 1) geometric mean of the data.

It seems that the penalized likelihood interpretation for the basic problem has not
been emphasized in quite this way before, although it has appeared in more complex
situations: such as using Box-Cox transformed curves in the estimation of reference
centile curves in Cole and Green (1992). The penalized likelihood interpretation be-
comes increasingly useful and interesting when one considers the Jacobians of the
Haar-Fisz and Multiscale Box-Cox transforms below.

3.2 Likelihood and Jacobian for multiscale transforms

Analytical Jacobians for the Haar-Fisz and Multiscale Box-Cox transforms (=“the
multiscale transforms”) are considerably more difficult to establish because the trans-
forms are not diagonal. Below we establish a general result for the multiscale trans-
form Jacobians which makes use of the fact that both Haar-Fisz and Multiscale Box-
Cox arise from the same general form in (9).

Definition 1 Define the general multiscale variance stabilization transform Y (λ) ofX
by the general sum given in (9) with the new fj,J,n given in (20) with F = FHF for
Haar-Fisz and F = FBC for the Multiscale Box-Cox transform.

Theorem 2 Define T to be the set of all unique possible terms in the general sum
in (9) for all i = 0, . . . , n − 1. The Jacobian of the multiscale variance stabilization
transform given in Definition 1 is given by

J(F, λ) = 2n−1
∏
j∈T

F{(dj,J,n + cj,J,n)/2, λ}+ F{(dj,J,n − cj,J,n)/2, λ}. (26)

The proof of Theorem 2 appears in Appendix A. The proof is constructive and makes
heavy use of the dyadic structure in the Jacobian which arises because of the bi-
nary/dyadic construction of the general formula in (9). An example of the Jacobian
for the Multiscale Box-Cox transform is given in Appendix B.

The theoretical Jacobians below have been checked for correctness by comparing
to the result of a numerical Jacobian procedure adapted from the fdjac routine from
Press et al. (1992, Page 388).

3.3 Haar-Fisz Jacobian and the Haar-Fisz geometric mean

Let cj,k be the father Haar wavelet coefficients defined in (2). Then the general Jaco-
bian (26) for the Haar-Fisz transform on choosing F = FHF further simplifies to

JHF(λ) = J(FHF, λ) = 2n−1
J−1∏
j=0

2j−1∏
k=0

c−λj,k . (27)

Remarkably, the Jacobian of the rather complicated non-diagonal Haar-Fisz transform
is merely the the product of the father wavelet coefficients raised to the power of −λ.

Just as the Jacobian for the regular Box-Cox transform (for λ = 1) is propor-
tional to the geometric mean of the data, the quantity J(FHF, 1) is proportional to the
(reciprocal of the) geometric mean of the father wavelet coefficients of the data.
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Table 1: Number of times particular stabilization method achieves maximum likeli-
hood out of 100 trials.

Distribution Box-Cox Haar-Fisz Multiscale BC
Poisson 0 67 33
Log-Normal 1 6 93
Folded Normal 0 11 89
χ2 0 0 100
Geometric 0 6 94

3.4 Multiscale Box-Cox Jacobian and its geometric mean

The Multiscale Box-Cox transform’s Jacobian also simplifies on choosing F = FBC
in (26) to give

J(FBC, λ) = 2n−1
J∏
j=1

2j−1−1∏
k=0

(cλ−1j,2k + cλ−1j,2k+1). (28)

For example, if n = 4 then

J(FBC, λ) = 8{(X1 +X2)
λ−1 + (X3 +X4)

λ−1}(Xλ−1
1 +Xλ−1

2 )(Xλ−1
3 +Xλ−1

4 ).
(29)

As in the previous section, for the special value of λ = 2, since the cj,k are
arithmetic means of parts of the data set at different scales and locations, the sum
of cj,2k + cj,2k+1 in (28) is proportional to yet another arithmetic mean, and the Jaco-
bian J(FBC, 2) is related to a geometric mean of all of those. Indeed, setting λ = 2
and using (2) we obtain

J(FBC, 2) = 2n−1
J∏
j=1

2j−1−1∏
k=0

cj−1,k = 2n−1
J−1∏
j=0

2j−1∏
k=0

cj,k. (30)

Hence, the associated measure of location for the multiscale Box-Cox transform is the
same as for the Haar-Fisz transform.

4 Example and Simulation

4.1 Comparison of Stabilization Methods

Simulation is used to compare the transforms. Each run draws n = 64 iid observations
from the following distributions: (a) Xi ∼ Poisson(3) + 1; (b) Xi ∼ exp(Zi), where
Zi ∼ N(1, 1), lognormal; (c) Xi ∼ |Zi|, where Zi ∼ N(1, 1), folded normal; (d)
χ2
1; (e) Xi ∼ Geometric(0.2) + 1. Then the three transforms are applied to each set

of observations, their likelihood maximized and the ‘winner’ identified. The overall
competition consists of 100 runs: Table 1 counts the number of winners for each trans-
form for each distribution. The multiscale Box-Cox transform performs the best for
all distributions apart from the Poisson, where the Haar-Fisz transform works best.
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Table 2: Partial ANOVA table for first-order and complete second-order effects.
Columns y, log y, y−1 are ×10−2, column Haar-Fisz, MBC are ×105. SS=Sum of
squares, MS=Mean square.

Response, y
DF y log y y−1 Haar-Fisz MBC

1st Order SS 3 147 485 22 411 129 220 117.9 3126.8
2nd Order SS 6 42 243 154 32 010 14.7 296.8

2nd Order MS 7 040 26 5 335 2.5 49.5
Residual SS 17 12 567 639 7 540 36.7 321.3

Residual MS 739 38 443 2.2 18.9
F 9.52 0.68 12.0 1.14 2.62

4.2 Wool Data Example

We analyze the famous ‘wool’ data which was presented in A Textile Experiment us-
ing a Single Replicate of a 33 Design from Box and Cox (1964) and further analyzed
in Atkinson (1985) whose results we reproduce here in Table 2. The experiment in-
vestigated the behaviour of worsted yarn under cycles of repeated loading with the
following variables y: the number of cycles to failure, y, obtained in a single repli-
cate of a 33 experiment under the following factors x1 : length of test specimen (250,
300, 350)mm, x2 : amplitude of loading cycle (8, 9, 10)mm and x3 : load (40, 45,
50)g. Table 2 shows an ANOVA table adapted and extended from the one in Atkinson
(1985). The essential question raised by Atkinson (1985) is whether a second-order
or, simpler, first order model is required.

The F -statistics of various transformed models can be seen in the last row of Ta-
ble 2. In the untransformed model (the y column) F = 9.52 for the second-order
terms: this is significant compared to, e.g., F6,17(0.95) = 2.70. However, if one ana-
lyzes the transformed log y data adding the second-order terms gives F = 0.68 which
is not significant. Hence, considerable model simplicity is obtained by modelling the
log-transformed data. Table 2 also shows that the corresponding value for the recip-
rocal y−1 transform is F = 12.0 which indicates that second-order terms are still
required.

The statistics for the Haar-Fisz and Multiscale Box-Cox transforms are F = 1.14
and F = 2.62 both are not significant at the 5% level. So, we could use either of
these transforms to fit the simpler model that did not require second-order terms like
the log-transformed data. The multiscale transforms above are defined for dyadic data
where n = 2J and here n = 27. To use the multiscale transforms we extended the data
sequence to length n = 32 by repeating the first and last values three and two times
respectively. In principle, it would be possible to define the multiscale algorithms for
arbitrary n by computing all possible Haar wavelet coefficients.

Figure 1 shows the log-likelihood curves as a function of the parameter for each
of variance stabilization transforms. The maximizing parameter value for Box-Cox
is λ̂ = −0.06 and given the associated confidence interval we can agree with earlier
analyzes that probably λ = 0 is suitable which translates into the log transform. For
multiscale Box-Cox λ̂ = 0.26 and, given the confidence interval, the value of λ = 1

4

might well be suitable. For the Haar-Fisz transform it is less clear. Here λ̂ = 1.71,
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the confidence interval might permit λ = 2 in this case. In each case the likelihood is
nicely quadratic.

5 Conclusions

We introduced new variants of the Haar-Fisz and multiscale Box-Cox transforms for
variance stabilization and Gaussianization of data via maximum likelihood. We pre-
sented new theory that provides exact analytical formulae for the Jacobians of these
new transforms: this sheds light on the analytical nature of the transforms as well
as providing significant computational benefits (from quadratic to linear). Simulation
results showed that our new transforms performed better than Box-Cox giving larger
likelihoods although at the expense maybe of a more complex non-diagonal transform.
We applied our new methods to the famous wool data which showed the new trans-
forms shared the ability of the Box-Cox transform to enable simpler models to be
appropriately fitted.
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A Proof of Theorem 2

Our proof begins by considering the final terms of the general sum for the multi-
scale transforms, essentially (9) with the fj,J,n coefficient given by (13) and (20) for
Haar-Fisz and Multiscale Box-Cox respectively. Let us temporarily concentrate on
the Multiscale Box-Cox transform. The last terms in the sum, for each successive i
are a1 = +{fBC(X1) − fBC(X2)}, a2 = −{fBC(X1) − fBC(X2)} (for i = 1, 2),
then a3 = +{fBC(X3) − fBC(X4)}, a4 = −{fBC(X3) − fBC(X4)} (for i = 3, 4),
up to an−1 = +{fBC(Xn−1) − fBC(Xn)}, an = −{fBC(Xn−1) − fBC(Xn)} (for
i = n− 1, n). It is important to note that a1 = −a2, a3 = −a4, and so on.

To construct the Jacobian all of the above n terms are each to be differentiated by
∂Xj for j = 1, . . . , n. The differentiation of a1, a2 byXj is only non-zero for j = 1, 2,
resulting in a1,1 and a2,2, and similarly for all the other terms. Hence, in the Jacobian
the term involving the differential of a1, a2 only appears in two rows and as a1 = −a2
this term in that row is of opposite sign in the two rows. The same thing happens for
all of the other pairs a2i−1, a2i, but the terms only appear at the places where their
differential with respect to Xj is nonzero. Precisely the same pattern occurs with the
Haar-Fisz transform, although each differential term is a fraction with a denominator
containing the X1 +X2 sum.

A similar pattern emerges for the coarser scale coefficients, but with more repeated
rows. For example, for the next most ‘coarsest’ terms in the general sum we have, for
successive i: b1 = +{fBC(

∑2
1Xk) − fBC(

∑4
3Xk)}, b2 = b1, b3 = −b1, b4 = −b1

12
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Figure 1: Log-likelihood curves for each of the variance stabilization transforms for
the wool data. Solid vertical line indicates maximizing parameter value with 95%
confidence intervals depicted by dashed lines. Sub-title shows the maximum likelihood
estimator for transform parameters with 95% confidence interval and the maximizing
likelihood value.
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and then b5 = +{fBC(
∑6

5Xk)− fBC(
∑8

7Xk)}, b6 = b5, b7 = −b5, b8 = −b5 and so
on up to bn−3 = +{fBC(

∑n−2
n−3Xk)−fBC(

∑n
n−1Xk)}, bn−2 = bn−3, bn−1 = −bn−3,

bn = −bn−3.
These terms enter into the Jacobian and are each differentiated by ∂Xj for j =

1, . . . , n. The differentiation of b1, . . . , b4 by Xj are only non-zero for j = 1, . . . , 4,
and similarly for other terms. So, these terms, after differentiation occur in blocks of
four rows each. The first two of the four are the same, and the second two are the
negative of those).

Similar patterns emerge for the coefficients of coarser scales still (i.e. the next
would occur in blocks of 8, with four rows of terms the same, and the next four the
negative of those, and so on.). The first term in the general sum is the “sum of all the
coefficients” which when differentiated gives a constant which is added to every term
in the Jacobian.

Hence, we end up with a Jacobian with a great deal of structure. The highly-
organized structure suggests a pattern of row and column operations that can consid-
erably simplify the Jacobian. Given the dyadic block nature of the structure described
above, the pattern of operations follows a binary pattern. Let Rk denote the kth row,
and Ck denote the kth column. The notation x→ y means row (or column) x replaces
row (or column) y. The operations are:

1. PerformR2k+R2k−1 → R2k−1 for k = 1, . . . , 2J−1. This cancels out the finest
scale terms in every odd row, i.e. the a2 neutralizes the a1 in the first row. This
operation also doubles the values of all of the other terms in the odd rows (as the
even row contains the same information at the coarser scales, it is just the finest
scale information that differs on successive rows). Hence, a factor of 2 can be
extracted from all the odd rows. Taken for all the rows a scale factor of 2J−1

can be extracted.

2. Then perform R2k−R2k−1 → R2k for k = 1, . . . , 2J−1. All of the information
at scales coarser than the finest cancels out. Each of the even rows contains only
two non-zero columns which contain (−a1,1 a2,2), (−a3,3 a4,4) and so on up
until the last row which contains all zeroes followed by (−an−1 an).

3. Then perform R4k−1 +R4k−3 → R4k−3 for k = 1, . . . , 2J−2. This cancels out
the next coarser scale information at rows R4k−3 similar to step 1 for the finer
scales. Similarly, we can extract a factor of 2J−2 at this point, making the total
extracted factor 22J−3. Then perform R4k−1 − R4k−3 → R4k−1 as in step 2.
This results in 2J−2 rows at R4k−1 which are all zeroes apart from blocks of
four coefficients corresponding to (−b1,1 − b1,1 b2,2, b2,2) and so on (actually,
the second b1,1 is formally b1,2 but this is equal to b1,1, and so on).

4. Then perform R8k−1 + R8k−7 → R8k−7 for k = 1, . . . , 2J−3, this cancels out
the next coarser scale and enables another factor of 2J−3 to be extracted resulting
in a total extracted factor of 23J−6. Then perform R8k−1 +R8k−7 → R8k−1 as
in the previous steps. This results in 2J−3 rows at R8k−1 which are all zeroes
apart from blocks of eight coefficients.

5. These steps should be continued until row Rn−1 is reached and processed. The
extracted factor at this stage is 2J−12J−2 · · · 2 = 22

J−1 = 2n−1.
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6. Steps 1. to 5. are now applied to the columns of the Jacobian, but because of the
abundancy of zeroes no doubling of values of rows occur and now extra factors
of two are extracted. This results in a Jacobian where (i) the top row consists of
a single 1 followed by n − 1 zeros; (ii) the diagonal of the Jacobian consists of
the top-left 1 just mentioned and each of the terms in formula in (26): one for
each scale and location apart from the very coarsest (hence n of them); (iii) a
sparse arrangement of off-diagonal elements.

7. We now expand the determinant using Laplace’s method by successively pivot-
ing on the diagonal elements only (and that is why they end up in the product
in (26). The ordering is carried out from finer scale to coarser scale coefficients.
Expand the determinant in the following order (i) pivot on (1,1), which has the
single entry of 1 and a row of zeroes; (ii) then pivot successively on the ele-
ments which have the finest scale fj,J,k coefficients in the diagonal. These are
all in columns with all other entries zero and there are 2J−1 of them, half of the
columns. This will result in a Jacobian with all the fj,J,n coefficients at the next
coarsest scale, and these too will now be in columns consisting of entirely of ze-
roes apart from the diagonal entry; (iii) pivot on the next coarsest scale elements,
and so on.

B Example of Jacobian result

We follow the steps of the constructive proof presented in Appendix A for the case n =
2J = 8, J = 3 for the Multiscale Box-Cox transform where the data is X1, . . . , X8.
The Multiscale Box-Cox transform for i = 1, . . . , n and parameter λ is

Y1 = ΣXi + {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
+ {fBC(Σ2

1Xi, λ)− fBC(Σ4
3Xi, λ)}+ {fBC(X1, λ)− fBC(X2, λ)},

Y2 = ΣXi + {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
+ {fBC(Σ2

1Xi, λ)− fBC(Σ4
3Xi, λ)} − {fBC(X1, λ)− fBC(X2, λ)},

Y3 = ΣXi + {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
− {fBC(Σ2

1Xi, λ)− fBC(Σ4
3Xi, λ)}+ {fBC(X3, λ)− fBC(X4, λ)},

Y4 = ΣXi + {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
− {fBC(Σ2

1Xi, λ)− fBC(Σ4
3Xi, λ)} − {fBC(X3, λ)− fBC(X4, λ)},

Y5 = ΣXi − {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
+ {fBC(Σ6

5Xi, λ)− fBC(Σ8
7Xi, λ)}+ {fBC(X5, λ)− fBC(X6, λ)},

Y6 = ΣXi − {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
+ {fBC(Σ6

5Xi, λ)− fBC(Σ8
7Xi, λ)} − {fBC(X5, λ)− fBC(X6, λ)},

Y7 = ΣXi − {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
− {fBC(Σ6

5Xi, λ)− fBC(Σ8
7Xi, λ)}+ {fBC(X7, λ)− fBC(X8, λ)},

Y8 = ΣXi − {fBC(Σ4
1Xi, λ)− fBC(Σ8

5Xi, λ)}
− {fBC(Σ6

5Xi, λ)− fBC(Σ8
7Xi, λ)} − {fBC(X7, λ)− fBC(X8, λ)}, (31)

Note, the coefficients have a slightly different normalization as given in (19). We will
explain the difference this makes at the end of the proof.
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For the Jacobian we need to differentiate each Yi by Xj for both i, j = 1, . . . , n.
For example,

∂Y1
∂X1

= 1 +A+ C +G, (32)

whereA = (
∑4

1Xi)
λ−1,C = (

∑2
1Xi)

λ−1 andG = Xλ−1
1 . DefineB = (

∑8
4Xi)

λ−1,
D = (

∑4
3Xi)

λ−1, E = (
∑6

5Xi)
λ−1, F = (

∑8
7Xi)

λ−1, H = Xλ−1
2 , I = Xλ−1

3 ,
J = Xλ−1

4 , K = Xλ−1
5 , L = Xλ−1

6 , M = Xλ−1
7 and N = Xλ−1

8 . The Jaco-
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Then the next step (4/5), followed by the first set of column operations gives:

24222

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1 1
−G H 0 0 0 0 0 0
−C −C D D 0 0 0 0
0 0 −I J 0 0 0 0

−A −A −A −A B B B B
0 0 0 0 −K L 0 0
0 0 0 0 −E −E F F
0 0 0 0 0 0 −M N

∣∣∣∣∣∣∣∣∣∣∣∣∣
∼ 27

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 1 0 1 0
−G H +G 0 0 0 0 0 0
−C 0 D 0 0 0 0 0
0 0 −I J + I 0 0 0 0

−A 0 −A 0 B 0 B 0
0 0 0 0 −K L+K 0 0
0 0 0 0 −E 0 F 0
0 0 0 0 0 0 −M N +M

∣∣∣∣∣∣∣∣∣∣∣∣∣
Then perform the next scale column operation (3rd subtract 1st, and 7th subtract 5th)
gives

27

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 1 0 0 0
−G H +G G 0 0 0 0 0
−C 0 D + C 0 0 0 0 0
0 0 −I J + I 0 0 0 0

−A 0 0 0 B 0 0 0
0 0 0 0 −K L+K K 0
0 0 0 0 −E 0 F + E 0
0 0 0 0 0 0 −M N +M

∣∣∣∣∣∣∣∣∣∣∣∣∣
and then the 5th subtract the first gives:

27

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0
−G H +G G 0 G 0 0 0
−C 0 D + C 0 C 0 0 0
0 0 −I J + I 0 0 0 0

−A 0 0 0 A+B 0 0 0
0 0 0 0 −K L+K K 0
0 0 0 0 −E 0 F + E 0
0 0 0 0 0 0 −M N +M

∣∣∣∣∣∣∣∣∣∣∣∣∣
Now we use Laplace’s method to obtain the determinant, pivoting first on the top left
element as described in step 7.

27

∣∣∣∣∣∣∣∣∣∣∣

H +G G 0 G 0 0 0
0 D + C 0 C 0 0 0
0 −I J + I 0 0 0 0
0 0 0 A+B 0 0 0
0 0 0 −K L+K K 0
0 0 0 −E 0 F + E 0
0 0 0 0 0 −M N +M

∣∣∣∣∣∣∣∣∣∣∣
Now pivot on the finest scale diagonals, N +M , L+K, J + I and H +G:

27(N +M)

∣∣∣∣∣∣∣∣∣∣

H +G G 0 G 0 0
0 D + C 0 C 0 0
0 −I J + I 0 0 0
0 0 0 A+B 0 0
0 0 0 −K L+K K
0 0 0 −E 0 F + E

∣∣∣∣∣∣∣∣∣∣
Then:

27(N +M)(L+K)

∣∣∣∣∣∣∣∣
H +G G 0 G 0

0 D + C 0 C 0
0 −I J + I 0 0
0 0 0 A+B 0
0 0 0 −E F + E

∣∣∣∣∣∣∣∣
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Then:

27(N +M)(L+K)(J + I)

∣∣∣∣∣∣∣
H +G G G 0

0 D + C C 0
0 0 A+B 0
0 0 −E F + E

∣∣∣∣∣∣∣
Then:

27(N +M)(L+K)(J + I)(H +G)

∣∣∣∣∣D + C C 0
0 A+B 0
0 −E F + E

∣∣∣∣∣
Then the next finest: D + C and/or A+B gives

27(N +M)(L+K)(J + I)(H +G)(D + C)

∣∣∣∣A+B 0
−E F + E

∣∣∣∣
which finally gives the result as 27(A + B)(C + D)(E + F )(G + H)(I + J)(K +
L)(M + N) as required. Now, the different normalization mentioned above means
that A,B is 22 bigger than it should be, and C,D,E and F also are all twice as big.
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