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Summary

For regularly spaced one-dimensional data, wavelet shrinkage has proven to be a compelling method
for nonparametric function estimation. We create three newmultiscale methods that provide wavelet-
like transforms for both data arising on graphs and for irregularly spaced spatial data in more than
one dimension. The concept of scale still exists within these transforms but as a continuous quan-
tity rather than dyadic levels. Further, we adapt recent empirical Bayesian shrinkage techniques to
enable us to perform multiscale shrinkage for function estimation both on graphs and for irregular
spatial data. We demonstrate that our methods perform very well when compared to several other
methods for spatial regression for both real and simulated data. Although our article concentrates
on multiscale shrinkage (regression) we present our new ‘wavelet transforms’ as generic tools in-
tended to be the basis of methods that might benefit from a multiscale representation of data either
on graphs or for irregular spatial data.

1 Introduction

1.1 Background

Over the last decade a large variety of wavelet methods have been introduced to several different
areas of statistics such as curve estimation (regression, density estimation, intensity estimation,
survival function estimation), time series analysis, functional data analysis, and image warping
(see for example, Vidakovic (1999), Silverman and Vassilicos (2000), Percival and Walden (2000),
Abramovichet al. (2000) for reviews). Nearly all work in the statistical areahas been based on the
fast discrete wavelet transform (DWT) invented by Mallat (1989). The major exception being work
in statistical inverse problems which has relied on Fouriertransformation and Meyer wavelets, see
Johnstoneet al. (2004) for a recent review.

Existing work in wavelet-based function estimation has typically made use of the following
model and assumptions. Letx(t) be some function that we are interested in for somet either on
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R or some interval[a, b]. Supposeǫi is iid Gaussian with mean zero and constant varianceσ2. Let
ti = i/n. We observe

yi = xi + ǫi (1)

wherexi = x(ti), yi = y(ti) andi = 1, . . . , n. Key features of this model are that

1. the number of observations,n, is a power of two, sayn = 2J for someJ ∈ N. This restriction
is not too difficult to overcome even when using fast wavelet transforms.

2. the data are observed on the regular gridti = i/n. This assumption enables direct use of
standard wavelet (and Fourier) discrete transforms. When data are irregularly distributed
various methods, such as binning or interpolation to a regular grid, have been proposed. For
example, in one dimension, Antoniadiset al.(1997), Hall and Turlach (1997), Cai and Brown
(1999), Sardyet al.(1999), Kovac and Silverman (2000), Antoniadis and Fan (2001), Pensky
and Vidakovic (2001), Nason (2002), and Kohler (2003).

In two dimensions Herrick (2000) extended the interpolation method of Kovac and Silverman
(2000) to two dimensions but found the resulting procedure too computationally intensive to
be of any practical use.

Recently a new “second-generation” wavelet-like paradigmcalled “lifting” has been devel-
oped which can handle multidimensional irregularly spaceddata which arise commonly in
statistics. For a quick introduction to lifting see Sweldens (1996). Lifting is the mathematical
foundation of our work and it is described in more detail, with references, in Section 2.

Adaptions of lifting to curve estimation problems in one dimension are discussed in Delouille
et al. (2001) and Vanraeset al. (2002). For lifting half-regular designs (tensor product of two
one-dimensional irregular designs) see Delouille and von Sachs (2002). In two-dimensions
curve estimation with lifting has been tackled by Delouille(2002) and Delouilleet al.(2003):
this work and the current article both develop and build on Jansenet al. (2001).

3. the error distribution is iid Gaussian with zero mean and constant variance. Various authors
have weakened these assumptions. For example, see Johnstone and Silverman (1997) for
correlated noise; Neumann and von Sachs (1995) and Averkampand Houdré (2003) for non-
Gaussian noise.

The main advantages of using wavelets are their excellent theoretical properties, excellent empirical
performance both for smooth functions and also those with discontinuities or other inhomogeneities
(even when,a priori, it is not explicitly known whether the function is smooth ornot) and very fast
computational speed.

1.2 Our main contributions

The main contributions of our work can be summarized as follows. We introduce:

• a wavelet-like transform for data on a graph;

• wavelet-like transforms for irregularly spaced data in two- or higher-dimensional space;

• statistical methods for function estimation adapted to these new wavelet-like transforms.
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Our proposed methods perform very well, they are rotationally invariant, extremely fast and mem-
ory efficient, can provide credible intervals as well as ‘point estimates’ through empirical Bayes
and can very easily be extended to use smoother basis functions. See the end of this section for a
discussion of the pros and cons of our methods compared to other techniques).

The multiscale concept is particularly powerful for data that arise on networks permitting, for
the first time, the description and quantification of structure within a graph at several scales and
locations simultaneously. From now we shall be solely concerned with Gaussian iid noise but
several of the techniques mentioned above for generalizingthe distributional assumptions could be
made to work efficiently with our technique.

A key concept in many spatial regression contexts, including ours, is that of neighbourhoods.
That is, given a point which other points are “close” and which are its neighbours. In one dimension,
with the order relation onR, neighbourhoods can be more straightforwardly defined. Theclosest
points to a given point are smallest/largest point greater/less than the given point. In more than one
dimension there are many possible neighbourhood concepts that could be used. Some problems
come with their own neighbourhood structure. Where there isno a priori neighbourhood structure
we use either Voronoi polygons or minimal spanning trees (MSTs) to define neighbourhoods which
are utilized by a lifting technique.

We also carefully analyze the variance structure of the lifted wavelet coefficients and develop
a novel Bayesian wavelet shrinkage technique which works inthe absence of formal scales (for
irregularly spaced data the dyadic scale concept is artificial).

1.3 Other methods for function estimation

As the previous section highlights one of our goals is to use our newly created lifting/wavelet
transforms for function estimation. For function estimation there exists an enormous range of al-
ternatives developed across a huge range of disciplines including many in statistics. The ones that
we have considered, and compared to our methods, in writing this paper are: loess by Cleveland
and Devlin (1988), triograms, see Hansenet al. (1998) and Koenker and Mizera (2004), locfit, see
Loader (1997), thin-plate splines, see Wahba (1990) and Green and Silverman (1994), and kriging,
see Cressie (1993). The latter two sets of comparisons are tobe found in Heaton and Silverman
(2006) the others in section 7. There are many more possibilities: for example partition models,
Denisonet al. (2002), stationary and non-stationary Gaussian processes, Gaussian Markov random
fields, see Rue and Held (2005) and empirical orthogonal functions (EOFs), see Jolliffe (2002) and,
for graphs, network kriging, see Chuaet al. (2006).

Although our methods compare favourably to the first list of methods listed above our main
aim is not to conduct a ‘regression olympics’. As well as developing a new regression method
our main goal is to introduce new multiscale algorithms (forgraph and irregular data) and several
of the techniques listed above could be used in conjunction with our new multiscale algorithms.
For example, one might wish to construct a Gaussian Markov random field model on the ‘wavelet
coefficients’ of a structure.

However, we do believe that our methods have a strong set of advantages:

1. our methods are fast and efficient in storage and for the multiscale part requireO(n) op-
erations forn sites. For the Voronoi version the Voronoi tessellation canbe computed in
O(n log n) operations, see, e.g., Fortune (1987). It is not always easyto discover the com-
putational complexity of some of the methods listed above. However, EOFs are based on
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eigenvector determination (O(n3)), loess is quadratic in storage and some of the above algo-
rithms rely on variants of MCMC which do not scale well to large problems.

2. our methods are rotationally invariant. Some of the abovemethods are not.

3. our methods are easily extendable to smoother ‘predict’ and ‘update’ steps (see later for an
explanation of these). For methods such as triograms extensions to smoother basis functions
are not trivial, see Hansenet al.(1998). Moreover, our methods can even be further developed
to adapt to local smoothness conditions by use ofadaptivelifting, see Nuneset al.(2006) for
this in one dimension.

4. on a range of real and simulated examples reported in Section 7, our methods work well. The
examples considered include both discontinuous and smoothfunctions. It is reassuring that
a method developed to allow for possible discontinuities inthe function of interest also work
well in the smoother case.

The main disadvantage is that, apart from analogies with regular wavelets, there is currently no
substantial body of theory behind our methods. We discuss the reasons for this in section 8.

1.4 Krill intensity estimation example

Before we discuss lifting it is instructive to consider an example that existing wavelet techniques
would find hard to solve and other statistical techniques, such as kriging, might find challenging.

Goss and Everson (1996) describe an experiment designed to quantify the amount and distri-
bution of krill in the south Atlantic ocean around South Georgia. Figure 1 shows the interesting
sampling design and a depiction of the detected krill density. Clearly the design is very far from be-
ing a regular grid but itdoeshave a very strong structure which one might wish to take intoaccount
when performing spatial regression. For example, in some applications one might be interested in
regression on the transect itself, or one might be interested in regression over the whole domain of
definition excluding, presumably, the island, where it is known a priori that the krill intensity is
zero. Indeed, the presence of structure or a hole in the data (e.g. island) would be challenging for
more global multivariate regression techniques. Our techniques can take account of various kinds
of structure of this sort and are applied to this data set in Section 7.1.
1.5 Structure of the article

Section 2 first reviews lifting and then introduces our variation on the theme: “lifting one coefficient
at a time”. We then elaborate by introducing the multiresolution analysis underlying our scheme for
irregular spatial data and elicit the basis and dual basis functions. Section 2 closes with a description
of an efficient method for computing the variance of our lifting coefficients.

Sections 3 and 4 set out two different approaches for liftingfor irregularly located spatial data.
Section 3 describes a version of our approach that enables lifting to be applied to a function on
a graph (a network). Such a network might be constructed from, e.g. irregularly spaced data in
Euclidean space or the data itself might naturally arise in the form of a network. For example, in
a rail transportation network one might think of stations either as irregularly spaced points in two-
dimensional space or one might think of them as nodes in a network where the edges are railway
lines.
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Figure 1: An example krill intensity sampling scheme. The island of South Georgia is shown in the
bottom left of the plot. Each sample is indicated by a circle and the diameter which is proportional
to the density of krill detected at that location. (Figure kindly supplied by Alistair Murray, British
Antarctic Survey)



Multiscale methods for graphs and irregular multidimensional data. 6

For irregularly spaced data in Euclidean space Section 4 uses a Dirichlet tessellation to define
neighbourhoods and constructs a lifting transform using those neighbourhoods.

Successful wavelet shrinkage depends on good compression abilities of the underlying wavelet
transform. We compare the compression abilities of a standard 2D DWT on a regular grid to our
lifting techniques on sites with varying degrees of irregularity in Section 5.

Section 6 details the new techniques that we use to perform coefficient shrinkage on “one coef-
ficient at a time” lifting transforms. “Scale” in lifting canbe more of a continuous concept and the
fixed dyadic scales of the regular DWT no longer exist in our work. We describe several empirical
Bayes methods designed to work with the more general conceptof scale. Section 7 contains two
real life examples and summarizes several simulation studies. The real examples consider: regres-
sion of the krill data where coordinate information is used and regression of average train delay
data where station coordinates are not relevant but the inter-station distances are. Finally, section 8
concludes and provides ideas for further work.

2 General discussion of lifting

2.1 The lifting approach to the standard discrete wavelet transform

Let us begin with a general specification of the lifting scheme as it has been considered previously.
Given a vectorx of data, we divide the indices ofx into two subsets, denotedI andJ for the
moment. For example, in one dimension,I might be the odd indices andJ the even. Denote byxI

the vector(xi, i ∈ I) andxJ the vector(xj , j ∈ J).
A single step of the lifting transform works in the followingstages:

Predict UsexJ to yield an appropriate predictor̃xI of xI , and set

(xI)∗ = xI − x̃I ,

the residual from this prediction.

Update UpdatexJ by adding toxJ a suitable linear transform of(xI)∗.

A specific example is the Haar transform of the data. Suppose the original vectorx is of length
16 (for definiteness). Initially, defineI to be the odd indices{1, 3, 5, 7, 9, 11, 13, 15}, andJ to be
the even indices{2, 4, 6, 8, 10, 12, 14, 16}. The prediction is carried out by estimating each odd-
indexed element by the next element in the sequence, so

x̃2m−1 = x2m for m = 1, . . . , 8.

Hence the modified coefficients(xI)∗ are given by

x∗2m−1 = x2m−1 − x2m.

These correspond to the ‘detail’ coefficients in the Haar transform of the data. The update step is
defined by

x∗2m = x2m + 1
2
x∗2m−1 = 1

2
(x2m−1 + x2m)

so the(xJ)∗ represent the ‘scale’ coefficients at the next level, a smoothed-out version of the original
data.
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The lifting steps can be performed ‘in place’ by the two assignments

xI := xI − xJ

xJ := xJ + 1
2
xI (2)

For the next step of the Haar transform, we proceed in exactlythe same way, settingI = {2, 6, 10, 14}
andJ = {4, 8, 12, 16}. These correspond to the odd and even indices of the scale coefficients at
the previous level. We then continue the cascade by settingI = {4, 12} andJ = {8, 16}, and
for the final stepI = {8} andJ = {16}. This completes the entire multiresolution analysis of the
original vectorx, and the coefficients obtained are, in a suitable order, rescaled versions of those
obtained by the Mallat discrete wavelet transform. At each stage of the process, the current scale
coefficients are divided into two equal sets, one of which is processed in the predict step to give the
detail coefficients, and the other is updated to give the scale coefficients for the next stage.

The description we have given uses the Haar transform for simplicity, but all classical wavelet
filter banks can be factored into a sequence of lifting steps,see Daubechies and Sweldens (1998).

An attractive feature of the lifting scheme is that the inverse transform can be constructed me-
chanically. The individual step (2) is inverted by reversing the order of the assigments and changing
the signs, to give

xJ := xJ − 1
2
xI

xI := xI + xJ .
(3)

To invert the whole transform, the steps are considered in the opposite order, starting withI = {8}
andJ = {16} and finishing withI = {1, 3, 5, 7, 9, 11, 13, 15}, andJ = {2, 4, 6, 8, 10, 12, 14, 16}.

2.2 Lifting one coefficient at a time

When considering the standard wavelet transform, the setsI andJ correspond to odd and even
indices at the current level. We shall consider a different approach, where each setI is just a single
coefficient. The general paradigm we adopt will be as follows.

The first step is to construct an orderin, . . . , iℓ+1 in which the wavelet coefficients, or their
equivalents, will be obtained. Our reason for numbering in reverse order is the analogy with scale
levels in the standard wavelet transform; the first coefficients to be found will be those correspond-
ing to the finest level of detail in the function, and at the endof the processℓ coefficients will
remain, corresponding to the scaling coefficients at levelℓ.

For eachir, we construct, by some appropriate means, a set ofnr ‘neighbours’Jr, which may
not contain anyis for s > r. The underlying notion is that the valuesxj for j ∈ Jr may reasonably
be used to construct at least an approximate prediction ofxir . For eachr, our lifting transform
requires the definition of two vectorsar andbr, each of lengthnr.

At each stage, the transform consists of the same two steps aspreviously, firstly redefiningxi

to be its residual from the prediction from its neighbours, and then updating the neighbour values
appropriately. To avoid notational clutter, we suppress the explicit dependence onr of i, J , a and
b. The step of the transform can then be written

Predict xi := xi − a′xJ

Update xJ := xJ + xib
(4)
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Again, just as before, the inverse of this transform can be written down mechanically, by revers-
ing the order of the steps and changing the signs:

xJ := xJ − xib
xi := xi + a′xJ .

(5)

For computational purposes, it is convenient to specify andstore the transform in a standard
format, as a ragged array withn− ℓ rows. We call this thelifting coefficient array. Thesth row of
the array corresponds tor = n+ 1 − s and consists of the sequence of3nr + 2 integers

ir nr Jr ar br.

The computational burden of the lifting scheme is the same inorder of magnitude as the number of
elements in the lifting coefficient array, and is certainlyO(Mn) whereM = max{nr}.

In the remainder of the paper we will consider ways of constructing the lifting coefficient array,
with particular attention paid to the case of spatial irregular data. Even the Haar transform as already
discussed can be calculated one coefficient at a time. The order in which the indices are considered
would be first the odd indices, in any order, then the indices not divisible by 4, then those not
divisible by 8, and so on. In every case each index would have asingle neighbour, so thatnr = 1,
and we would havear = 1 andbr = 1

2
. The neighbourJr would be, in every case, the smallest

integerj > ir that is not a member ofir+1, . . . , in.
Further information on lifting in more than one dimension for data not on a lattice can be

found in Daubechieset al. (1999). For data on a lattice see Uytterhoeven and Bultheel (1997) and
Kovac̆ević and Sweldens (2000)

2.3 Aspects of lifting transforms for spatial irregular data

In this section, some specific issues relevant to lifting transforms for spatial irregular data are con-
sidered, but the discussion has wider validity for methods based on neighbours in any sense.

Suppose that we have valuesfi of a function atn points, orsites, ti Initially, we assume that
the function is approximated by an expansion of the form

f(t) =

n
∑

k=1

cnkφnk(t) (6)

whereφnk are scaling functions such that

φnk(ti) = δik, (7)

whereδik is the Kronecker delta, at least approximately. If the scaling functions satisfy (7) exactly
then the functionf will interpolate the valuesfi if we setcnk = fk. Denote byInk the integral of
φnk with respect to some suitable measure.

The stages of our procedure are numbereddownwardsfromn, so the first stage to be carried out
is stagen, followed byn− 1, n− 2, . . . . At stager, letSr be the indices of the scaling coefficients,
in other words those indices for which no wavelet coefficienthas yet been calculated. Initially
Sn = {1, . . . , n}. LetDr = {ir+1, . . . , in}, the indices of the detail coefficients already found.
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We assume that we have an expression forf of the form

f(t) =
∑

ℓ∈Dr

dℓψℓ(t) +
∑

k∈Sr

crkφrk(t) (8)

where theψℓ are wavelet functions with zero integral, and theφrk are scaling functions at levelr,
with integralIrk. We now set out the process whereby the various quantities, functions and sets are
updated to the next stage, whereby we find an expression corresponding to (8) but withr replaced
by r − 1.

Firstly, chooseir to be the value ofk that minimizesIrk overk in Sr; writing i = ir, the next
wavelet coefficient to be constructed isdir , say. At every stage, we eliminate the scaling function
with smallest integral. SetSr−1 = Sr \ ir andDr−1 = Dr ∪ ir.

Let Jr = J be the set of neighbours ofir as specified in the lifting coefficient array. The
specification ofJr and the weight vectorar will depend on the particular lifting strategy we adopt,
and will be discussed in subsequent sections of the paper. Wecalculate the coefficientdir in the
way specified in (4), setting

dir = crir −
∑

j∈Jr

ar
jcrj (9)

and, forj in Jr,
cr−1,j = crj + bjdir . (10)

For all otherj in Sr−1 we setcr−1,j = crj .
If the functionf(t) is constant in the neighbourhood of the sitetir we would wish the wavelet

coefficient to be zero, so we conduct the predict step with a set of weights satisfying
∑

ar
j = 1.

With judicious choice of weights we can obtain a zero coefficient for locally linear functions and a
near-zero coefficient for locally smooth functions, but this will be discussed below.

We next set out the way the scaling functions are updated. Forany fixedj ∈ Jr, consider
the special casef(t) = φr−1,j(t). For thisf , from (8), we havecr−1,j = 1 and all othercr−1,s,
s 6= j andds equal 0 fors = ir, . . . , in. Hence, inverting the lifting steps,crj = 1, from (10), and
crir = aj from (9). Therefore, by the expansion (8) forf ,

φr−1,j = φrj + ar
jφrir . (11)

To find the integrals of the scaling functions at the next stage, integrate (11) to obtain

Ir−1,j = Irj + ar
jIrir for eachj ∈ Jr. (12)

For j in Sr−1 that are not members ofJr, the same argument withar
j = 0 this givescrj = cr−1,j

as well ascrir = 0. This implies thatφr−1,j = φrj andIr−1,j = Irj.
To find an expression for the wavelet, we now considerf = ψir , so thatdir = 1 and all other

coefficients at stager−1 are equal to zero. From (10) we then havecrj = −brj for j in Jr. Equation
(9) then givescrir = 1 −

∑

j∈Jr

ar
jb

r
j . Therefore we have

ψir(t) = (1 −
∑

j∈Jr

ar
jb

r
j)φrir(t) −

∑

j∈Jr

brjφrj(t)

= φrir(t) −
∑

j∈Jr

brj(φrj(t) + ar
jφrir(t))

= φrir(t) −
∑

j∈Jr

brjφr−1,j(t), (13)
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by substituting the expression (11).
The weightsbrj are found from the requirement that the integral of the wavelet is zero. By

integrating (13), this requirement is equivalent to
∑

j∈Jr

brjIr−1,j = Irir , (14)

where the integralsIr−1,j have been found using (12). For reasons of numerical stability, we use
the minimum norm solution of the equation (14), setting

brj = IrirIr−1,j/
∑

k∈Jr

I2
r−1,k. (15)

Note that within the process it is never necessary to expressthe wavelets or scaling functions
explicitly, but the integrals of the scaling functions are used to choose the coefficientir and to
specify the weight vectorbr. Therefore, in order to start the process off, it is necessary to specify the
integralsInj of the original scaling functions. Apart from these integrals, we also need appropriate
ways of choosing the vectorsJr andar of neighbours and prediction weights at each stage. We shall
consider two particular approaches in detail later in the paper, the first based on Voronoi polygons
and the second on minimal spanning trees.

Finally, there are circumstances within which it is helpfulto have a notion of the scale of each
wavelet function. A convenient measure of this scale for thewaveletψi for ir is the integralIrir of
the scaling function for siteir at the last stage beforeir is removed from future consideration. We
denote this scale byαir . In the natural neighbour method described later,αir will be the area of the
last Voronoi cell based on siteir. In general, for any fixedr, and assuming all the weightsaj ≥ 0
we have

αj = Ir−1,ir−1
≥ Ir,ir−1

≥ Ir,ir = αi

and so the scalesαi are a monotonic function of the indexr and the order in which the lifting
scheme determines the coefficients.

2.4 The dual basis functions

The lifting procedure can be thought of in two separate ways.On the one hand, if we have a function
f of the form (6), the expansion (8) gives an expression off in terms of a multiresolution basis,
where effects of different scales are captured by differentwavelet coefficients. On the other hand, an
alternative way of thinking is to consider the lifting scheme as a linear tranformation of a vector of
valuesx, yielding a coefficient vector̃x, say, whose elements have a multiresolution interpretation.
In either case the relation between the original function ordata, and the derived coefficients, can be
elucidated by investigating the dual basis functions or vectors.

Both cases can be covered by considering suitable inner products〈·, ·〉. In the ‘function’ case,
the natural inner product between functionsg1 andg2 is an integral of the form

〈g1, g2〉 =

∫

Ω

g1(t)g2(t)dt (16)

over some fixed bounded regionΩ. In the ‘vector’ case, given vectorsx andy of values at the
data points, the standard inner product〈x, y〉 =

∑

i xiyi can be used. Ifx andy are the values of
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functionsg1 andg2 at the data sitesti, then we can equivalently use the inner product

〈g1, g2〉 =
∑

i

g1(ti)g2(ti). (17)

Suppose we have an expansion off of the form (8) in terms of the basisφr made up of the
functionsψℓ for ℓ in Dr andφrk for k in Sr. Let cr be the corresponding vector of coefficientscrk

anddℓ. We can set out the derivation of a dual basisφ∗r = {ψ∗
ℓ , φ

∗
rk} having the properties

dℓ = 〈ψ∗
ℓ , f〉 for ℓ in Dr, and cr,k = 〈φ∗rk, f〉 for k in Sr, (18)

which may be written in vector form ascr = 〈φ∗r , f〉.
The interest of the dual basis functions is that they give theweight functions that are applied to

f or tox to yield the corresponding coefficients. In this sense they make explicit the contribution of
values off or x at various points to particular wavelet coefficientsdℓ and scaling coefficientscrk.

The dual basis functions are constructed inductively. Suppose, we have constructed the func-
tions{ψ∗

ℓ , ℓ ∈ Dr} and{φ∗rk, r ∈ Sr}. To construct the functions at stager− 1, we use exactly the
updates in the lifting scheme itself, withi = ir andJ = Jr, setting

ψ∗
i = φ∗ri −

∑

j∈J

ajφ
∗
rj (19)

and, forj in J ,
φ∗r−1,j = φ∗rj + bjψ

∗
i , (20)

with φ∗r−1,k = φ∗rk for all otherj in Sr−1.
To see why these relations hold, letLr be the matrix corresponding to the lifting step that yields

the vectorcr−1 from cr. Suppose, as an inductive hypothesis, that the conditions (18) hold. Then

cr−1 = Lrcr = Lr〈φ∗r, f〉 = 〈Lrφ∗r , f〉 = 〈φ∗r−1, f〉,

as required. Therefore, as long as the original vector of dual basis functions or vectorsφ∗n satisfies
cn = 〈φ∗n, f〉, the lifting scheme will produce the required dual basis functions at every stage.

To obtain the values at the data sites of dual basis functionsrelative to the vector inner product
(17) we start the process with vectorsφ∗nj with elements(φ∗nj)i = δji. To find dual basis functions
relative to the function inner product (16), it is necessaryto find a suitable initial dual basis. For
example, if the initial basis functions are constant over non-overlapping regions, then an initial dual
basis will be given byφ∗ni = φni/

∫

(φni)
2.

2.5 The variance of the sample coefficients

In this section, we set out an approach, which operates inO(Mn) time and storage, for finding,
approximately, the variance of each wavelet and scaling coefficient as obtained by a lifting scheme.
Of course, because the lifting scheme operates linearly, for reasonably small data sets it is possible
to calculate the full covariance matrix of the coefficients by successively carrying out on the covari-
ance matrix the row and column operations corresponding to the lifting steps. This is a much more
burdensome calculation, requiringO(Mn) vector operations on vectors of lengthn, but makes it
possible to evaluate the usefulness of the approximate method.
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Suppose that the original dataxk are independent random variables with variancesVk. Consider
a single lifting step of the form (4), writingx∗ for the values after the lifting has taken place. Since
x∗i = xi −

∑

j∈J ajxj , we have

varx∗i = Vi +
∑

j∈J

a2
jVj (21)

and
cov(x∗i , xj) = −ajVj . (22)

Sincex∗j = xj + x∗i bj, it follows that

varx∗j = Vj + b2jvarx∗i + 2bjcov(x∗i , xj) = (1 − 2ajbj)Vj + b2jvarx∗i . (23)

It follows that the effect of a single lifting step is to replace the variances byV ∗
k , where

V ∗
i = Vi +

∑

j∈J a
2
jVj

V ∗
j = (1 − 2ajbj)Vj + b2jV

∗
i for j ∈ J .

(24)

The approximation we use is to neglect any correlations between the coefficients obtained at the
next stage, but simply to iterate the calculations (24). This will yield an algorithm essentially of
the same complexity as the lifting algorithm itself, and indeed that can similarly be carried out in
place. Some experiments on lifting arrays obtained from Voronoi polygons, in the way discussed
later in the paper, demonstrate that only a little accuracy is lost, mostly in the large-scale wavelet
coefficients and in the final scaling function coefficients, which tend to have small variance anyway.

In some practical situations the assumption of independentxk variables is not tenable. Such
a situation is beyond the scope of the present paper. However, we can envisage prior or estimated
information on the covariance structure can be fed into the calculation of the coefficients’ variance
along the lines of methods used for regular wavelet shrinkage such as Kovac and Silverman (2000).

3 A lifting scheme for graphs

We introduce a lifting scheme that essentially provides a kind of ‘wavelet transform on a network’.
Here we mean a ‘network’ to be a ‘function on a graph’. We consider our graphs to have arisen
in one of two ways. One way is that the graph is supplied to us predefined — for example a
transportation network or communications network. The other way is that data is supplied in a
form that can be converted into a network. For example, irregularly spaced data inK-dimensional
space on which a graph can be induced by calculating interpoint distances and constructing, say, a
minimal spanning tree. We elaborate on these next.

3.1 Minimal spanning trees and other tree-based approaches

Consider data observed at an irregular set of points inK dimensions, for someK > 2. For data sets
in two dimensions, approaches based on Voronoi cells are attractive, but in higher dimensions they
become both computationally infeasible and philosophically inappropriate. The number of Voronoi
neighbours of each point will typically be large and the computations will become burdensome.

In this section we consider an alternative lifting approachbased on trees, and in principle any
tree can be used as the basis of our scheme. In the case ofK-dimensional data, useful trees are
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those that reflect the neighbourhood structure of the points. The notion is that trees, not Voronoi
polygons, are used to incorporate the ”neighbourhood” structure of the data at each point of the
lifting scheme. If the original data sitesti lie in aK-dimensional Euclidean space, a natural ap-
proach is to useminimal spanning trees(MST), see e.g. Krzanowski and Marriott (1995), which
are easily computed. Other types of tree may be useful for particular applications, and these would
be a possible topic for future work.

There are some data sets where the data themselves naturallylive on a tree rather than in a
Euclidean space. For example, the data collection transects for the krill data depicted in Figure 1
constitute a tree. More generally, we can extend our “lifting on a tree” to more general graphs as
long as there is a suitable neighbourhood structure. For example, in protein modelling, a tree could
be defined by the chemical bonds in a large molecule. In this case, wherever it is necessary to
determine distances between points, it may be appropriate to use distances in the original tree or
graph.

For data that live naturally on a network (graph) our methodseffectively provide a kind of
‘wavelet transform on a network’. By restricting the analysis to a narrow range of scales our
methodology provides a kind of ‘coarse Fourier transform’ of a function on a network (in the same
way that a single scale level of wavelet coefficients acts as abandpass filter isolating information
about a function around a narrow range of frequencies).

See Smola and Kondor (2003) and Belkinet al. (2004) for work on regularization of functions
on graphs.

3.2 General aspects of the tree-based lifting scheme

The first step in the lifting scheme as set out in Section 2.3 was to specify the initial scaling functions
φnk and to find their integrals. In the tree context, we define the scaling functionφni to be 1 at the
nodei and zero at all other nodes of the tree. At each stage of our process, we consider the scaling
functions and wavelets as being defined on the original nodes. We define a set of weightswi and
then define the ‘integral’ of any function having valuefi at nodei as the weighted sum

∑

i wif(i).
In order to relate the weights to the tree on which we are working, we definewi to be the sum of
the lengths of the edges from the nodei to its immediate neighbours. We arbitrarily use the sum of
the lengths but the average of the lengths is another possibility that we have used.

At each stager, we calculate the wavelet coefficient corresponding to the nodeiwith the small-
est current value ofIri. LettingJ be the set of current neighbours ofi, we have to define a suitable
set of weightsa. We may either letJ be the immediate neighbours within the tree, or we may
include second- or even higher-order neighbours in the setJ .

Once the setJ is defined, we need to define the prediction weight vectora. For reasons ex-
plained below, we mostly useinverse distance prediction weights, settingaij = cδ−1

ij , whereδij is
the distance from pointi to point j, andc is chosen so the weights sum to1. In the extreme case
whereJ contains only one indexj, the value at nodej is used as the predictor at nodei.

Alternatively, in some circumstances, e.g. the krill data,the nodes do possessbona fideEu-
clidean coordinates. In which case the tree can be used to define the neighbours but the coordinates
are used by least squares to form prediction weights. To distinguish between these two variants we
refer to them either as “tree with inverse distances weights” or “tree with least squares coordinate
weights”. As an example of these two algorithms in action seeFigure 4.
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Having defined the weight vectora, we can update the integrals using equation (12), and calcu-
late the update weightsbj using the equation (15).

The final step is to update the neighbourhood structure. We shall assume that as a pointi is
eliminated from consideration, the spanning tree is modified locally, only changing the linkage
structure between points previously linked directly toi. If the pointi to be removed has immediate
neighboursj1, . . . , jm, say, then we replace the links betweeni and thejk by the links of the
minimum spanning tree of the points indexed byj1, . . . , jm. This procedure maintains the tree
structure of the pattern of links between points under current consideration.

How many orders of neighbours should be used in the prediction part of the lifting scheme?
“Mixed scale” points cause minor practical problems for ourmethod based on Voronoi tessellations,
mostly near the boundaries. They are the source of the long and thin Delaunay triangles that we
discuss, with some solutions to the resulting problems, in Section 4.3.

On average points in a tree have fewer neighbours than those from a Voronoi tessellation. For
example, compare the Voronoi mosaic for the krill data in Figure 2 (right) with the ship track in
Figure 4 (bottom left). This can be made precise: there are(n − 1) edges in a tree constructed
on n points so the average number of neighbours for a point in a tree is2(1 − 1

n) irrespective of
dimension or distribution of the points, or the method of construction of the tree. For Voronoi
tessellations the average number of neighbours is higher, nearer 6 in two-dimensions for moderate
numbers of points (see Penrose (1996) and Penrose and Yukich(2003)). In a tree, therefore, if only
immediate neighbours are considered inJ there is less opportunity for “mixed scales” to occur.
On the other hand we may wish to include higher-order neighbours inJ in order to obtain better
predictions. If it is decided to use higher-order neighbours, one could either use neighbours up to a
given order, or one could increase the order of the neighbours until the size ofJ reached a certain
level.

Finally, our algorithm is not just restricted to trees. The same steps can be followed for any
general graph where distances and integrals can be sensiblydefined. For example, with the UK rail
network, see section 7.2.

3.3 Why use inverse-distance prediction weights?

In this section, we explore a correspondence between inverse distance prediction weights and local
linear prediction. Suppose we are working on a tree, that we are predicting the value at a pointi,
and thatJ = {j1, j2, . . . , jr} for somer ≥ 2. Work on the philosophy that a tree is defined only by
its linkage structure and the lengthsδij of its edges. We consider a particular Euclidean embedding
of the tree near the pointi.

Definer unit vectorsuj in (r − 1)-space to be as far as possible from one another on the unit
sphere, so that the end points of theuj form a line segment, equilateral triangle, regular tetrahe-
dron, or higher-dimensional regular simplex, in all cases centred at the origin. We will then have
∑

j∈J uj = 0. Now place the vertexi at the origin, and place vertexj at δijuj for j ∈ J . In
the case where there are two neighbours, this is simply placing i on a straight line between its two
neighbours. More generally, this corresponds to arrangingthe edges around vertexi to be as far as
possible in different directions.

Given valuesyj at vertexj for eachj in J , define the linear functionL(t) = a′t+ b in (r− 1)-
space to be the interpolant of the valuesyj at the pointsδijuj ; the graph of this function will be the
unique hyperplane through ther points(δijuj , yj) in r-space. Definey∗ to be the value obtained
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by inverse-distance weighting the valuesyj. We now have, settingc such thatc
∑

j δ
−1
ij = 1,

y∗ = c
∑

j∈J

δ−1
ij yj = c

∑

j∈J

δ−1
ij L(δijuj)

= c
∑

j∈J

δ−1
ij (δija

′
uj + b) = ca′

∑

j∈J

uj + b = b = L(0).

It follows that, with this particular embedding of the tree in Euclidean space, the linear interpolant
at the vertexi to the valuesyj at the verticesj is precisely the inverse-distance weighted average
y∗.

4 A lifting scheme based on Voronoi polygons

In this section we consider a lifting scheme for spatial irregular data based around Voronoi polygons
and Delaunay triangulations. The basic idea is to construct, at each stage, a triangulation of the data
sites. The neighbours of any site are then the sites joined tothat site by edges within the triangula-
tion. Once a detail coefficient corresponding to a particular site has been found, the triangulation is
appropriately modified to remove that site.

4.1 Voronoi polygons, Delaunay triangulations and Dirichlet tessellations

Consider a set of sites in the plane. LetΩ be a suitable region in the plane containing all the sites
under consideration. The regionΩ may, for example, be the whole plane, or a suitable rectangle, or
the convex hull of the sites. Comments about the precise choice ofΩ will be made later. TheVoronoi
cell of any particular site is the set of points inΩ nearer to that site than to any other. Because the
boundaries of each cell are all perpendicular bisectors of lines joining two sites, the Voronoi cells
are polygons, and theDirichlet tessellationis the partition of theΩ into these polygons. See Figure
2 for an example. Two sites are neighbours if their Voronoi cells have a boundary in common,
and the joins of all pairs of neighbours forms theDelaunay triangulation. There are algorithms for
finding the Delaunay triangulation in the first place, and forupdating the triangulation when a site
is removed. For further detailed information see Okabeet al. (1992); for more information on these
methods in statistics see Herrmannet al. (1995) or Allard and Fraley (1997) for example.

At each stage of the lifting scheme, the neighboursJ of a sitei under consideration are the
neighbours ofi within the current Delaunay triangulation, and the values at these neighbours are
used in the predict and update steps. More sophisticated prediction methods could be based on
higher order neighbours.

The paradigm set out in Section 2.3 requires two more ingredients, the integrals of the initial
scaling functionsφnk, and a method of specifying the prediction weightsar at each stage. Provided
Ω is a finite region, a natural definition of the initial scalingfunctionφnk is the indicator function of
the Voronoi cell of the sitetk, and so the integral of the scaling function is the area of this Voronoi
cell.

We consider two main methods of prediction, thenatural neighbourmethod as proposed by Sib-
son (1981), and local least squares.
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Figure 2: Left: Voronoi mosaic of 100 points uniformly distributed in [0, 1]2. Right: Voronoi
mosaic of krill data portion used in later examples, e.g. Figure 4. The thick line indicates the track
of the ship. Both plots constructed using the R packagetripack .

4.2 Natural neighbour interpolation

If site i is removed and the Dirichlet tessellation recomputed, the Voronoi cell of that site will be
divided among its neighbours. Assume the regionΩ is finite. LetAi be the cell corresponding to
sitei and letAij be the part of the cell made up of points whose next nearest site, afteri, is the site
j. If site i is removed, thenAij will form part of the new cell of sitej. If j is not a neighbour ofi
thenAij will be empty.

The lifting scheme using natural neighbour interpolation works by settingaj = |Aij |/|Ai| for
each neighbourj of i, where| · | denotes area. Provided the cellAi does not intersect the boundary
of Ω, the prediction weights thus obtained through natural neighbour interpolation will predict a
constant or linear function perfectly, and have other attractive regularity, continuity and stability
properties. A corollary of the perfect prediction of linearfunctions is that if a function is linear,
then its wavelet coefficients will be zero except for possible boundary effects. If the function is
approximately linear in the region of the siteti and its neighbours{tj : j ∈ J}, then the linear
prediction based on the neighbours will be quite good and so the wavelet coefficient will be small.
Another good property is that the scheme isinterpolating; if the siteti is very close to one of its
neighbourstj then the prediction at siteti will be close to the value at sitetj , and will tend to this
value in the limit as siteti coincides with sitetj.

One disadvantage of the natural neighbour method is its computational intensity, though the
method does remain linear in the number of sites.

4.3 Local least squares prediction

A computationally simpler approach to prediction uses local least squares. A least squares plane
is fitted to the values at the sitestj for j in J , and used to interpolate at the siteti. This scheme
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obviously has the property that if the functionf is linear over the siteti and its neighbours, then the
wavelet coefficient is zero. Therefore it shares some of the good properties of the natural neighbour
method.

There are, however, some numerical and conceptual issues with the local least squares method
which require careful attention. For example, unlike the natural neighbour method, the local least
squares method is not interpolating. The residuals from theleast squares plane through the values at
the sites with indicesJ will not, in general, be zero. Therefore, even if the siteti is very close to one
of its neighbours, the predicted value will not necessarilybe close to the value at that neighbour, and
more distant neighbours will still have a relatively heavy impact on the prediction. This is in contrast
with the natural neighbour method, where more distant neighbours are automatically downweighted
in the prediction, because of having small values of|Aij |. In the local least squares approach it is
desirable to avoid neighbour configurations with a mixture of short and long edges, because these
rise to neighbour relationships between sites that are a long way apart on the scale currently being
considered. Because distant neighbours will influence the prediction, for a smooth function the
magnitude of a wavelet coefficient at a site will be affected by the distance to its furthest neighbour,
and so the method may have worse compression properties thanthe natural neighbour approach.
Triangles which are very far from equilateral are particularly likely to occur near the boundary,
where two fairly distant sites may still have Voronoi cells that touch one another, particularly if the
boundary ofΩ is some distance from the actual boundary of the data. This behaviour can be seen
in the right hand plot in Figure 2.

One way of dealing with this issue is to remove from the triangulation those narrow triangles
with two vertices on the boundary where the opposite angle isobtuse. This corresponds to re-
definingΩ to be the convex hull of the sites under current consideration, so that sites will only be
considered to be neighbours if their Voronoi cells touch within the convex hull. A more relaxed
policy could allow obtuse triangles, but only up to 120 degrees, say. In any event, the approach
may need some modification at the corners of the configuration, where the approach described may
leave sites with a single neighbour, and in this case it may beappropriate to re-introduce narrow
triangles.

A related matter is the treatment of sites lying some distance from the remainder of the configu-
ration, so that the angle subtended by all the site’s neighbours is quite small. In this case, prediction
is more like extrapolation, and can be quite unstable. A good, if fairly ad hoc, way of dealing with
this is to project both the siteti and the set of neighbours{tj : j ∈ J} onto the first principal
component direction of the set{tj : j ∈ J}. This is equivalent to using a least squares fitting
plane constrained to have gradient in this direction. Especially in this case, the raw local linear least
squares weights may fall outside the range[0, 1], though it will be only in rather pathological cases
that this will happen in the modified method. The natural neighbour approach cannot suffer from
this instability because its weights are necessarily in[0, 1].

4.4 Conclusions and further comparisons

Whichever method is used, it is necessary to retriangulate the configuration each time a site is
removed. If the natural neighbour method is used, then the Dirichlet tessellation within the region
Ω will be needed for the next stage, though of course only the cells neighbouring the siteir will
have to be modified. It is conceivably possible to modifyΩ at each stage but there is not usually
any particular point in doing so. Overall, the natural neighbour method is more stable and more
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elegant, but at a considerable computational cost which is usually not warranted.

5 Compression

Figure 3 illustrates the varying compression performancesfor two different 2D multiscale methods
(Voronoi lifting and regular 2D Daubechies wavelets). The plots are constructed as follows: an
equally spaced16 × 16 grid is constructed; 2D analogues of theBlocks, Bumps, Heavisineand
Dopplersignals from Donoho and Johnstone (1994) as well as a piecewise linear function (called
mfa) are evaluated on the grid on[0, 1] × [0, 1] (these analogues are defined in Nasonet al. (2004)
and illustrated in this article in Figure 9); a wavelet or lifting transform is performed; then a certain
number of the largest coefficients are retained, the rest areset to zero; the inverse transform is
applied; the error between the inversion and the original iscomputed. For the transforms we have
also added varying amounts of jitter: to eachx andy grid coordinate a uniform random variable
on the interval[−η, η] is added for three values ofη: 0.1, 0.01, and 0.001: the results are medians
over 100 simulations with different jittered grids (only the smallest and largest jitter is shown for
clarity).

Good compression is about having the smallest error for a given number of coefficients re-
moved. Generally speaking the Voronoi method has much better compression abilities than the
graph-based lifting. This is not surprising as Voronoi makes much more use of neighourhood infor-
mation that graph-based lifting (although remember that tree-based lifting can even be used when
only inter-point distance information is present).

Figure 3 shows the compression performance for the 2D Daubechies wavelet with two vanishing
moments (both for jittered and unjittered values). Readersacquainted with the excellent compres-
sion properties of 1D wavelets may be surprised at the poor looking compression performance of
the discrete wavelet transform (DWT). The fact that wavelets do not compress 2D images particu-
larly well is known and has spurred the field of multiscale geometric image processing, see Starck
et al. (2000) for example. The lifting methods seem to do particularly well then for themfa and
Heavisinefunction, maybe not too bad forBumpsbut less well forDopplerandBlocks.

For large jitter (0.1, code C for Daubechies, and dashed linefor Voronoi) the Voronoi lifting
has better compression abilities. This is not really surprising as the jittered values, when transferred
back to a regular grid, mean that the Daubechies wavelets aretrying to compress a very irregular
function. However, the point here is that compression performance is much better for Voronoi
which is designed to take account of the irregularity. In thecase of themfa function, Bumpsand
Dopplerour performance is somewhat better and in these cases it is somewhat more surprising that
the compression performance of our methods with jitter is better than even regular wavelets with
no jitter.

With small, or no, jitter, regular wavelets perform better than Voronoi lifting onBlocksand
Heavisine. The latter signal is mostly very smooth, the former is blocky and the Haar wavelets
adapt extremely well.

We have also drawn similar plots but retaining more coefficients and the conclusions are broadly
the same. The overall conclusion we draw from this plot is that for data that are reasonably irregular
our Voronoi lifting methods are no worse than Daubechies wavelets, and sometimes much better.
In reality it would not, in any case, be possible to use Daubechies wavelets as one would not know
how to map irregular data back to a grid and/or one might not have the correct number of points
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unless the data were obviously only slightly jittered. However, it is somewhat reassuring to learn
that our methods have compression abilities broadly in linewith regular wavelets.

6 Bayesian shrinkage

Now consider the following model of observations subject tonoise:

Zi = f(ti) + ǫi, (25)

where the noiseǫi are independentN(0, σ2
i ) random variables. The grid locations are irregular but

considered fixed for the purposes of the analysis. Wavelet based smoothing algorithms estimatef
by taking an appropriate wavelet transform, modifying the coefficients in order to reduce noise, and
finally inverse transforming the updated coefficients. Because of the notion that the wavelet trans-
form of the unknown function is likely to be in some sense ‘economical’, some form of thresholding
or shrinkage procedure is used to process the observed coefficients. Soft and hard thresholding are
the best known thresholding methods, but more sophisticated shrinking may follow (among others)
from a Bayesian analysis of the noisy coefficients.

6.1 Prior model and posterior density

The essence of the thresholding problem is the following. Suppose we have a parameterθ and an
observationZ ∼ N(θ, 1). In the wavelet smoothing case,θ would be an individual coefficient
rescaled so that the empirical coefficient had unit variance. Following papers such as, Clydeet al.
(1998), Abramovichet al. (1998) and Johnstone and Silverman (2004) the assumption that θ is a
coefficient from an economical expansion is modelled by using a mixture prior forθ of the form

θ ∼ (1 − π)δ0 + πγ (26)

whereγ is a symmetric density.
Johnstone and Silverman (2004) explore the advantages of using a heavy-tailed density forγ,

such as the density
γ(u) = (2π)−1/2{1 − |u|Φ̃(|u|)/φ(u)} (27)

whereΦ̃(u) is the upper tail probability of the standard normal distribution. This density has tails
that decay asu−2, the same weight as those of the Cauchy distribution. For this reason we refer to
the density (27) as thequasi-Cauchydensity.

Supposeθ ∼ (1 − π)δ0 + πγ andZ ∼ N(θ, 1). Johnstone and Silverman (2004) set out
details of the calculation of the posterior densityf(θ|Z) and also of the marginal densityf(Z) =
∫

{(1 − π)δ0(u) + πγ(u)}φ(z − u)du.

6.2 Bayesian decision rule: posterior median

Once we have the expression for the posterior densityfθ|Z, we have various choices of possible
point estimates ofθ. The posterior mean

θ̂ = E(θ|Z = z)
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is a popular decision rule but it lacks the thresholding property. UnlessZ = 0 the estimate will be
non-zero, which does not accord with the notion that the coefficient may well be zero. An alternative
is the posterior mediañθ(z), satisfyingF̃θ|Z=z(θ̃) = 0.5. With the quasi-Cauchy distribution forγ,

this leads to a tractable expression forθ̃(z) in terms of the standard normal distribution function and
its inverse. See Johnstone and Silverman (2005a) for details and for a computer implementation.

The posterior median rule is a strict thresholding rule, with the property that, for any givenπ,
there is a thresholdτ(π) such thatθ̃(z) = 0 if and only if |z| ≤ τ(π). An alternative to the use
of the full posterior median is to use hard or soft thresholding with thresholdτ(π). The smaller
the probabilityπ the larger the thresholdτ(π), and the choice of prior probabilityπ that θ 6= 0
corresponds to the choice of threshold. It is this choice that we consider next.

6.3 Estimating the parameters (MLE)

Suppose that we have sequenceθi of coefficients and a sequence of observationsZi ∼ N(θi, 1),
for i = 1, 2, . . . , n. Suppose, initially, that theθi have independent prior distributions (26) all with
the same value ofπ and that the observationsZi are themselves independent conditional on the
θi. Let g be the convolution ofγ with the standard Normal density, so that the marginal density of
theZi is (1 − π)φ(z) + πg(z). Johnstone and Silverman (2004, 2005b) explore attractive practical
and theoretical features of a marginal maximum likelihood approach to the choice ofπ, whereπ is
chosen to maximize the log likelihood

ℓ(π) =
∑

i

log{(1 − π)φ(zi) + πg(zi)}.

This procedure is an empirical Bayes approach. First of all,the whole data set is used to estimate
the parameterπ. The estimated value is then used as a prior probability in the model (26) and
the inference carried out for each coefficient separately. For theoretical and practical reasons, the
maximisation is usually carried out over a range ofπ bounded below at a point corresponding to
the threshold taking the ‘universal threshold’ value

√
2 log n.

In the case of a classical orthogonal wavelet estimate, the coefficients are arranged into levels,
and it is appropriate for the probabilityπ to be constant within levels but to be allowed to vary
between levels. To this end, each level of the transform is treated separately by the marginal max-
imum likelihood method, and an estimated parameterπj is obtained for each levelj. Typically,
the parameter decreases as the resolution increases. At thelevels of the transform corresponding
to fine-scale effects, the prior probabilityπj is small and an observed coefficient has to pass a high
threshold in order not to yield an estimate of zero. At the coarser-scale levels, a smaller threshold
will usually be appropriate.

In the lifting case, for example, the division into ‘dyadic’levels is no longer appropriate, and
instead one of a number of other possible approaches can be pursued. Overall, it can be assumed
that the prior used for coefficientθi has probabilityπi of being nonzero. The criterion for choosing
theπi is still the maximization of the marginal log likelihood

ℓ(π1, . . . , πn) =
∑

i

log{(1 − πi)φ(zi) + πig(zi)}.

but subject to appropriate constraints on the parametersπi.
Various different possibilities arise, for example
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Parametric dependenceThe coefficients are constrained to belong to a particular low-dimensional
parametric family. For example, for the lifting scheme one might constrainπi to be propor-
tional to the scaleαi, or perhaps to some powerαλ

i . This accords with the notion that there
are singularities of some sort in the underlying function. If the singularities are points,αi

is proportional to the probability of the wavelet encountering one of these singularities. For
line singularities a more appropriate model for this probability is α

1/2

i , and so on for spaces
of singularities of different fractal dimension.

Artificial levels This approach is an adaptation of the dyadic structure of thestandard discrete
wavelet transform. One splits up the coefficients into levels in some arbitrary way, and one
possibility is simply to impose an artificial dyadic split, with the highest level containing
the half of the coefficients with finest scale, and subsequently lower levels successively one-
quarter, one-eighth, and so on of the total number of coefficients in the order defined by the
lifting scheme. An alternative is to group the coefficients taking account of the values of their
pseudo-scales. For example, ifα0 is the median scale of the coefficients, then levels could
be defined with coefficients with scales in ranges(2jα0, 2

j−1α0] for j ≥ 1, with the highest
level consisting of all those coefficients with scales up to and includingα0.

Parametric dependence within artificial levels The simplest approach using artificial levels is to
constrainπi to be constant within levels. An alternative is to allow a parametric dependence,
for exampleπi proportional toα1/2

i , with a constant of proportionality that is allowed to
depend on the level. Finally, whatever method is chosen, it may be appropriate to smooth or
interpolate the estimatedπi.

Monotone dependenceConceptually the simplest constraint on theπi would be to require only
thatπi increases as the individual scaleαi increases. Because of the convexity properties of
the log likelihood function, estimation ofπi subject to this constraint can be carried out using
an iteratively reweighted least squares isotone regression algorithm. Part of the standard
theory of least squares isotone regression is a convexity argument showing that the least
squares isotone regression function is piecewise constant. The same argument shows that
the resulting estimatedπi are also piecewise constant functions of the scalesαi, and so this
method indirectly splits the coefficients up into levels, with constantπi within each level.
Further details are available from Johnstone and Silverman(2005b). See Figure 4 (Bottom
right) for an example of using such an algorithm.

The calculations for maximizing the log likelihood are easily set out. Define

β(w) = {g(w) − φ(w)}/φ(w) = w−2(ew
2/2 − 1) − 1.

Then, by simple calculus, we have

∂ℓ

∂πi
=

β(zi)

1 + πiβ(zi)

which is a decreasing function ofπi. Obviously we always constrainπi ≤ 1. In addition, to avoid
excessively high thresholds, and in line with the theory developed in Johnstone and Silverman
(2004), we impose a lower limit onπi corresponding approximately to a threshold value equal
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to the universal threshold
√

2 log n. For simplicity, we choose the lower limitπlo to satisfy the
condition

P (θi = 0|zi =
√

2 log n) = 1/2

which is equivalent to setting
π−1

lo = 1 + (n− 1)/(2 log n).

Details of the algorithms used to make the constrained maximum likelihood choice of theπi for
the parametric and monotone dependence cases are set out in Johnstone and Silverman (2005a).

6.4 Parametric dependence within artificial levels

Full details of the parametric dependence algorithm can be found in Johnstone and Silverman
(2005a). We consider the modifications necessary to adapt the procedure to the artificial levels
case for lifting.

General setup: Suppose we have datazi for i = 1, . . . , n, and consider the basic model
πi = ciζ whereci are known constants. In order to enforce the constraintsπlo ≤ πi ≤ 1 we refine
this to

πi(ζ) = median{πlo, ciζ, 1}. (28)

Letting g be the convolution ofγ with φ, the marginal log likelihood function is then given by

ℓ(ζ) =
∑

i

log[{1 − πi(ζ)}φ(zi) + πi(ζ)g(zi)] (29)

By the definition ofπi there is no loss of generality in consideringζ only over the interval

[πlo(max ci)
−1, (min ci)

−1] = [ζlo, ζhi],

say. If ζ < ζlo then all theπi will be πlo and if ζ > ζhi the all theπi will be 1, regardless of how
far outside the intervalζ lies.

For artifical levels: All of the artificial levels cases reduce to the same general form. Within
a particular levelL, we have (28), whereci are known constants such as 1 orα1/2

i , andζ is a
parameter to be estimated. The likelihood,ℓL, for the levelL is now (29) but where the sum is now
overi ∈ L.

In the straightforward artificial levels case, all theci = 1, andℓL is a concave function ofζ in
[πlo, 1]. We have

ℓ′L(ζ) =
∑

i∈L

β(zi)/{1 + ζβ(zi)},

a decreasing function ofζ. By checking the signs ofℓ′L(ζ) at the ends of the range it can be
discovered whetherℓL(ζ) has its maximum at one end or the other; if not, a binary searchon the
decreasing functionℓ′L(ζ) will find the maximum likelihood estimate.

If the ci are not all the same, then we apply the ‘parametric dependence’ approach within each
artificial level as described in Johnstone and Silverman (2005a).
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7 Examples and comparisons

7.1 Multiscale lifting for krill data

Background.Goss and Everson (1996) report that as a by-product of a fish stock assessment study
an opportunity was taken to estimate the biomass of Antarctic krill on the South Georgia shelf by
the British Antarctic Survey (BAS). Goss and Everson (1996)state that krill biomass determination
is important because they are basic part of the “food web”. Krill are consumed by large numbers
of birds, mammals and fish but it is also increasingly being harvested for both human and animal
consumption. As well as potential over-fishing krill stocksare also under pressure from a variety of
other sources such as sea temperature rise or increased UV penetration of sea water.

Since the study was a by-product of another study the sampling points took little account of
the expected distribution of krill. Indeed, stations were selected for the fish abundance study and
the shortest overall track was selected that visited all of the sampling stations. Figure 1 shows a
selection from the transects and the sample values of krill taken along it. Figure 4 shows a different
portion of the krill data subjected to regression analyses using lifting with trees using both least
squares coordinate and inverse distance weights. Figure 6 shows estimates obtained using Voronoi
lifting.

Fitting. For all of the regression estimates a small proportion of small negative values were
replaced by zero. In all estimates a lot of the original zero data values have been replaced by
very small intensity values. In Figure 4 it is interesting tonote the differences between the two
estimates around the [175km, 262km] location. The estimatebased on the MST estimates some
“lumps” of intensity, whereas the one based on the ships track estimates small intensities following
the ships path. There are at least two reasons for these differences: (i) the ships track only uses
neighbours from the previous and next sample in the track whereas the MST algorithm will use
nearest neighbours irrespective of the track; (ii) the total time that the ship takes to cover points
in the region (within a 25km2 box centred on [175, 262]) is approximately 12 hours and the ship
crosses near to the centre about 5 times and the actual krill density over this time may change.

With regards to the second point if the density field of a system is subject to rapid change then
maybe the estimate that follows the ship’s track would be more reliable. Otherwise, if the field is
slowly changing then estimates that take more account of geographical spread, like the MST, or
even Voronoi might be more appropriate.

Model Verification.Let us take the MST lifted using least squares coordinate weights analysis
further. The estimate from this procedure is shown in the topright of Figure 4. We examined the
residuals from the fit and discovered that the residuals wereapproximately normally distributed
(both by inspecting a histogram and through a Kolmogorov-Smirnov testp-value of 0.18) with a
standard deviation of about 11.4. The variance of the residuals appears remarkably constant over
the plane. All of this indicates a very good fit to model (1).

Comparisons.Our results are in direct contast to results generated byloessand the MATLAB
‘triogram’ function. Both of these methods did not deal withthe ‘clumpiness’ of the krill data
at all well. Both methods smoothed out some features and missed others completely. Hence the
residuals also did not look satisfactory either. These results concur with our simulated comparisons
in section 7.3 below.

Physical Interpretation.Figure 5 shows the piecewise constant thresholds which are derived
from the piecewise constant weight estimatesπi arising from the monotone dependence constraints
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Figure 4: Analyses of selected portion of krill data set. Circle radius (not Bottom Left) encodes
square root of krill density estimate in gm−2: largest value is 14981gm−2. Top left: krill den-
sity supplied by BAS. Top right: MST lifted estimate with least squares coordinate weights and
eBayesThresh applied to lifting coefficients at all scales.Bottom left: circles indicate krill sample
locations, line indicates tree determined by ship transect. Bottom right: ship-determined transect
tree lifted estimate using inverse distance weights and eBayesThresh with monotone dependence of
πi.
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Figure 5: Piecewise constant thresholds arising from the monotone dependence constraints when
maximizing the marginal maximum likelihood forπi for the Krill data fit at the bottom right of
Figure 4. Large thresholds are applied to finer scales.

that are applied to likelihood maximization described in Section 6.3. The figure is particularly
interesting as the piecewise constant functions implicitly divide the scale space into a number of
data-defined resolution levels. (For those familiar with regular wavelet methods Figure 5 is an
example of level-dependent thresholding but where the resolution levels are not fixed dyadic but
arise from, and depend on, the data). The smallest thresholdvalue is approximately4.6 × 10−9

for the coarsest 345 coefficients. This means wavelet coefficients in scale ranges from 0.8km and
up are essentially not thresholded. Another way of interpreting this, familiar to wavelet shrinkage
researchers, is to say that 0.8km is the “primary resolution”. Finer scales than this get monotonically
higher thresholds in bands[0.71, 0.8), [0.58, 0.71), [0.09, 0.58) and less than 0.09. Figure 5 and
these bands statistically indicate that these is little or no variation in the ‘true’ intensity pattern at
less than 100m and there is reduced variation at less than 600m. This information could be then
cross-referenced with individual clusters of wavelet coefficients to provide estimated information
about particular cluster groupings and locations.

In summary, we obtain information in terms of the estimatebut alsoinformation on the variation
of the ‘true’ intensity via the thresholds.

Finally, the krill data distribution does not look particularly Gaussian. Figure 6 shows two
more estimates using Voronoi based lifting with and withoutthe log transformation. In future the
Haar-Fisz transform, see Fryzlewicz and Nason (2004) or Jansen (2006) might be used.



Multiscale methods for graphs and irregular multidimensional data. 27

km

km

150 160 170 180 190 200

23
0

24
0

25
0

26
0

27
0

km

km

150 160 170 180 190 200
23

0
24

0
25

0
26

0
27

0

Figure 6: Krill density estimates computed using Voronoi least-squares lifting with regular
eBayesThresh. Left: estimate on raw data; Right: estimate on log transformed data.

7.2 Multiscale lifting for rail network delay data

Figure 7 (top) shows a portion of the UK railway network concentrating on main lines in the south-
west of England and South Wales. The station locations are not geographical positions but are a 2D
projection of a classical multidimensional scaling solution computed from distances obtained from
a list of rail routes and inter-station distances compiled by Butler (1999). In this example the graph,
which is not a tree, arises as an integral part of the data.

For each train scheduled to arrive at a station Network Rail reports its estimated arrival time.
We assume that the reported delays are the actual delays subjected to additive error. The error is
due to a number of factors including the discrete nature of train monitoring points, trains making up
time, further delays occuring. Figure 8 (top) shows the average delay for trains arriving into each
station at 1655 on 30th July 2004. StationsBristol Temple Meads, Westbury, Gloucester, Exeter
andNewton Abbotthave the largest average delays. Clearly there are many other kinds of network
similar to this one for which it is useful to estimate the actual delays or other statistics.

Figure 8 (bottom) depicts the estimated average delay at each station using network lifting with
inverse distance weights and the monotone dependence selection of{πi} as described in section 6.3.
Figure 7 (bottom) shows the residuals from this fit.

A picture (not shown) of the lifting (wavelet) coefficients of the raw data in Figure 7 tends
to characterise discontinuities in a similar way to, e.g., the 2D regular wavelet transform often
highlights edges in images. So, for example, in Figure 7Bristol Temple Meadshas a very high
average delay but the surrounding stations have a low value and hence a spatial discontinuity exists
at this location. On a picture of the lifting coefficients those coefficients immediately surrounding
(but not including)Bristol Temple Meadsform a circular ridge that characterises the ‘edge’ between
the large delay atTemple Meadsand the small delays in surrounding stations.

There are many other interesting tasks that one might consider using this new ‘wavelet trans-
form’ for graphs rather than using the raw data on the nodes. In some situations it might be advanta-
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Table 1: Median (MAD) of 100 simulated sums of squares error values forloess , Tree based
lifting (pictree ) using coordinate information, and Voronoi based lifting (liftvorLS ). Jitter
η = 0.01, SNR=5,ng = 162, monotone dependence EBayesThresh, (×1000).

Signal Loess Tree Voronoi
mfc 18 (1.6) 75 (46) 26 (4)

Doppler 130 (5.9) 35 (26) 8 (1.0)
Heavisine 530 (49) 410 (200) 72 (20)

Blocks 2300 (53) 190 (91) 160 (37)
Bumps 3000 (160) 770 (500) 210 (32)

geous for information to be represented using the lifting coefficients scale-location characterisation
rather than on the nodes directly. For example, propagatinginformation throughout a network at
different scales, or forecasting future network behaviour.

It would be inappropriate to replace the given rail network graph with one calculated, say, from
just the inter-station distances since the computed edges might not correspond to actual rail lines.
Moreover, it does not really make sense to ask questions about the behaviour of the underlying
functionover a region. For example, it makes no sense to ask questions about the average delay at
a location where no station exists. Compare this to the krilldata set where one can ask about the
density of krill in a location in the sea but not on the ship transect. However, it might make sense
to ask hypothetical questions about planned stations that might come to be. We discuss later the
methods of Heaton and Silverman (2006) that would permit this prediction to be achieved.

7.3 Comparisons

7.3.1 Comparing our lifting methods with themselves andloess

We carried out a large simulation study with our new methods and compared them toloess a
well-known statistical smoothing method using theR implementation (see Cleveland and Devlin
(1988) for more information onloess , see R Development Core Team (2005) for R). We evalu-
ated these methods on 2D analogues of theBlocks, Bumps, HeavisineandDoppler test functions
introduced by Donoho and Johnstone (1994) and the piecewiselinear functionmfc . Pictures of
the test functions appear in Figure 9. Full mathematical definitions of these functions along with
comprehensive simulation results appear in Nasonet al. (2004).

Every simulation run was based on estimating one of the test functions on a jittered16 × 16
grid and adding iid Gaussian noise. Varying amounts of jitter (distributed as Unif[−η, η] for
η = 0.1, 0.01, 0.001, varying signal-to-noise ratios. Sensitivity to “primaryresolution” (the num-
ber of points that get removed in the lifting transform) was also explored. We also explored the
performance of our different ways of carrying out our MLE as described in Section 6.3.

Table 1 shows a selection of results from Nasonet al.(2004). One can see that for the very sim-
ple piecewise linear functionmfc the loess procedure does very well, but the Voronoi lifting is not
far behind. For all other signals the lifting procedures do better or much better. However, note that
the performance for the tree based lifting is highly variable (large MAD values) this is because of
the fewer neighbours it uses in constructing neighbours. The excellent performance of the Voronoi
based lifting is seen throughout all simulations. Primary resolution does not appear to dramatically
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Figure 7: Top: diagram showing our selected stations and their connections. Bottom: residuals
from the fit described in the text. Circles with lines oriented at 45◦ are positive, those at 135◦ are
negative. The largest residual in absolute size isSt Keyneat 55 seconds. Axes are arbitrary from
multidimensional scaling.
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Figure 8: Top: Raw average delay data. Radius of each circle is proportional to average delay for
each station. Largest average delay is 15 minutes atBristol Temple Meads(unfortunately). Bot-
tom: Network lifted regression estimate using inverse distance weights and monotone dependence
eBayesThresh. Largestestimatedaverage delay atBristol TM is 14 minutes 28 seconds. Axes are
arbitrary from multidimensional scaling.
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Figure 9: 2D analogues of Donoho and Johnstone test functions. From top left clockwise: Doppler,
Heavisine, Blocks,mfc(not an analogue), Bumps.

influence performance but small differences appear, especially with the tree-based lifting. Likewise,
amongst all of the methods for carrying out MLE (all coefficients, parametric dependence, artificial
levels, parametric dependence within artificial levels, and monotone dependence) there seems to be
no clear winner. Each method seemed to do better than the others on occasion. If forced to select
one method then monotone dependence usually seemed to do well.

7.3.2 Comparing Voronoi lifting with Triograms

Hansenet al.(1998) introduced the triogram method for function estimation using piecewise linear,
bivariate splines based on an adaptively constructed triangulation (see also Koenker and Mizera
(2004) for a smoothing spline approach to triograms based onthe Delaunay triangulation). We
compare our Voronoi lifting method to Triograms using thequantreg package.

We used two test functions for this simulation study. First define the generic function:

gf(x, y,horizon) = (2x+ y)I {horizon(x, y) ≤ 0} + (10 − x)I {horizon(x, y) > 0} , (30)

whereI is the usual indicator function and then define horizons

horizonA(x, y) = 3x− y − 1 andhorizonB(x, y) = (x− 1/2)2 + (y − 1/2)2 − 1/16, (31)

and then our test functions are

mfa(x, y) = gf(x, y,horizonA(x, y)) andmfb(x, y) = gf(x, y,horizonB(x, y)), (32)
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Table 2: Mean averaged squared errors resulting from 50 simulation runs for denoising ofmfa and
mfb by triogram and Voronoi lifting method.

Functionmfa Functionmfb
Method 15dB 18dB 15dB 18dB

Triograms 20.9 (0.04) 20.0 (0.04) 19.9 (0.04) 19.3 (0.04)
Voronoi 16.4 (0.02) 11.1 (0.02) 14.3 (0.03) 9.7 (0.02)

in words: two different piecewise functions defined on two different ‘horizons’ for each function
(one a line, the other a disc).

For each simulation run in this section we generated 1000(x, y) locations from a 2D uniform
density on[0, 1] × [0, 1]. We then generated noisy observations by adding Gaussian noise with two
signal to noise ratios (SNRs) of 18dB and 15dB. In each case weperformed 50 simulations. The
results are shown in Table 2 and indicate the superior performance of the Voronoi lifting method
for these functions and SNRs. Further experiments show that for very low SNRs triogram methods
do better.

7.3.3 Comparing Voronoi lifting with thin-plate splines and kriging.

In recent work Heaton and Silverman (2006) compare our Voronoi lifting methodology addition-
ally equipped with an imputation method with both thin-plate spline and kriging methodology and
show that Voronoi lifting is competitive when compared to those methods, see Section 8 for further
information.

8 Conclusions and future possibilities

This article has described a variation on the lifting theme:“lifting one coefficient at a time” and
specified a new multiscale methodology for non-parametric regression in two or more dimensions.
Three types of lifting methodology are developed: lifting with the Dirichlet tessellation using co-
ordinate information in two-dimensions, lifting with trees and graphs using coordinate information
and lifting with trees and graphs using inter-point distance information. With these algorithms
“scale” naturally arises as a continuous concept and various empirical Bayes methods have been
invented that make use of the continuous scale knowledge in aconsistent way. The compression
abilities of our techniques have been investigated and compare well to the standard 2D wavelet
transform. We have also demonstrated the utility of our techniques both on the krill data (where
ships track information can optionally be used) and also to an example where the underlying neigh-
bourhood network is prespecified (the rail delay example). An aim of this article is to provide a solid
framework for developing lifting “one coefficient at a time”algorithms. Subsequently we described
three main methods for applying to spatial data with and without a predefined graph structure.

Clearly though, there is room for imaginative alternatives: new ways of defining and using
neighbourhood structures, new integral definitions and newways of predicting points that get left
out.

A further innovation would be to choose from amongst different types of predict and/or update
steps as each coefficient is generated. In generic lifting this is known as ‘adaptive lifting’, see
Claypooleet al. (2003). For lifting one coefficient at a time adaptive lifting has been described in
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one dimension by Nuneset al. (2006) who build on Jansenet al. (2001) and preprint versions of
this article by permitting a choice of regression order (linear, quadratic or cubic) and/or number of
neighbours involved in prediction. Nuneset al. (2006) provide a full literature review of adaptive
lifting. They also present the results of a comprehensive simulation study which shows that one-
dimensional adaptive lifting one coefficient at a time produces extremely good compression and
nonparametric regression results on irregular data when compared toLocfit (Loader, 1997, 1999)
the smoothing spline function in S-Plus (smooth.spline() and the regular wavelet algorithm
for irregular data introduced by Kovac and Silverman (2000). Our methods can be developed further
to cope with heteroscedastic variance using ideas similar to those proposed by Kovac and Silverman
(2000). This has already been done for the 1D implementationof our lifting one-coefficient-at-a-
time by Nuneset al. (2006). The techniques of Kovac and Silverman (2000) could also be used to
cope with correlated errors: essentially an estimate of thecorrelation structure would be fed into
the variance estimation stage as described in section 2.5. Naturally, there are several other ideas
that might be tried.

As well as estimating values of a function (either on irregularly spaced spatial data or on a
network) in the presence of noise from a given set of points one might also wish to estimate the
function at a new set of points. For example, in a wireless network over time network nodes may
enter and leave a network for a variety of reasons such as going in and out of radio range or as
a result of power saving considerations. Heaton and Silverman (2006) describe a method that
imputes the value of the function at a set of sites given information from another set of sites using
the Bayesian lifting model that we present above using the Gibbs sampler. The demonstrate their
method successfully both on regularly spaced data using theclassical wavelet transform and also
on simulated and real data using our two-dimensional Voronoi lifting that we describe above. In
particular, they exhibit good results for rainfall prediction at ‘new’ sites in the US using data from
the National Atmospheric Deposition Program (seehttp://nadp.sws.uiuc.edu ). For both
simulated and real data their results are competitve with both kriging and thin-plate spline methods
and in one of the three cases for the rainfall data the liftingimputation method is significantly
better. More in-depth simulations and comparisons need to be performed to thoroughly expore the
utility of these methods. Other questions along these linesremain — for example, how to deal with
locations that disappear when one is modelling data structures through time.

Another important possibility would be to more accurately model the variance and correlation
between lifting coefficients ideally in a computationally efficient way. Such a possibility could
be incorporated into the empirical Bayes paradigm but issues of computational efficiency would
have to be dealt with. This train of thought also leads onto the fascinating possibility of defining
stochastic processes on the lifting coefficients themselves, and additionally, defining a process for
the locationsti. For example, one might envisage developing a similar kind of model to locally
stationary wavelet processes as introduced by Nasonet al. (2000) using our lifting techiques, or,
defining a Markov random field model on the coefficients ratherthan in the data domain. Our
main aim in this paper is to introduce a new multiscale tool todomains where wavelets are hard or
impossible to use and show some examples of its use. However,there are many other situations that
might benefit from these new general tools.

This article introduces a new methodology which we believe to be useful not only to statistics
but more widely to situations involving data on graphs and irregular spatial data. However, we have
not, as yet, discussed any theoretical considerations. In contrast to the cornucopia of theoretical
properties of regular wavelet estimators (e.g. near-optimal risk bounds over wide function classes,
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oracle inequalities) there are several challenges to developing similar theory for lifting, even for
dyadic lifting. Some obstacles to statistical advancementcan be traced back to well-known math-
ematical difficulties in determining the smoothness of functions constructed by lifting, see, e.g.,
Daubechieset al. (1999), that the basis functions are now no longer dilation and translations of a
single function (like in regular wavelets, see Sweldens (1997)), and that the bases are not guaran-
teed to be Riesz basis Additional statistical difficulties would be caused by the fact that the order
of points to be removed depends on the locationsti (and for adaptive lifting the order additionally
depends on the function values themselves, see Nuneset al. (2006)). In summary, it would be a
considerable challenge to develop a deep theoretical understanding of our methods it is, of course,
an interesting topic for future research.
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