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Summary

For regularly spaced one-dimensional data, wavelet shg@kas proven to be a compelling method
for nonparametric function estimation. We create three meNtiscale methods that provide wavelet-
like transforms for both data arising on graphs and for utady spaced spatial data in more than
one dimension. The concept of scale still exists within ¢hieansforms but as a continuous quan-
tity rather than dyadic levels. Further, we adapt recentiecap Bayesian shrinkage techniques to
enable us to perform multiscale shrinkage for functionneation both on graphs and for irregular
spatial data. We demonstrate that our methods perform veliywhen compared to several other
methods for spatial regression for both real and simulagd. dAlthough our article concentrates
on multiscale shrinkage (regression) we present our newelgatransforms’ as generic tools in-
tended to be the basis of methods that might benefit from dsoalé representation of data either

on graphs or for irregular spatial data.

1 Introduction

1.1 Background

Over the last decade a large variety of wavelet methods heee imtroduced to several different
areas of statistics such as curve estimation (regressemsgitgl estimation, intensity estimation,
survival function estimation), time series analysis, tional data analysis, and image warping
(see for example, Vidakovic (1999), Silverman and Vaszdi2000), Percival and Walden (2000),
Abramovichet al. (2000) for reviews). Nearly all work in the statistical ate#s been based on the
fast discrete wavelet transform (DWT) invented by Mall&@a&§2). The major exception being work
in statistical inverse problems which has relied on Fourgmsformation and Meyer wavelets, see
Johnstoneet al. (2004) for a recent review.

Existing work in wavelet-based function estimation hasdglly made use of the following
model and assumptions. Lett) be some function that we are interested in for saneéher on
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R or some intervala, b]. Suppose; is iid Gaussian with mean zero and constant variarice_et
t; = i/n. We observe
Yi = Ti + € 1)

wherex; = z(t;), y; = y(t;) andi = 1,...,n. Key features of this model are that

1. the number of observations, is a power of two, say = 2” for someJ € N. This restriction
is not too difficult to overcome even when using fast wavektdforms.

2. the data are observed on the regular grig= i/n. This assumption enables direct use of
standard wavelet (and Fourier) discrete transforms. Wtaa dre irregularly distributed
various methods, such as binning or interpolation to a exgmtid, have been proposed. For
example, in one dimension, Antoniadital.(1997), Hall and Turlach (1997), Cai and Brown
(1999), Sardet al. (1999), Kovac and Silverman (2000), Antoniadis and Fan 120Rensky
and Vidakovic (2001), Nason (2002), and Kohler (2003).

In two dimensions Herrick (2000) extended the interpofatitethod of Kovac and Silverman
(2000) to two dimensions but found the resulting procedocecomputationally intensive to
be of any practical use.

Recently a new “second-generation” wavelet-like paradagied “lifting” has been devel-
oped which can handle multidimensional irregularly spadath which arise commonly in
statistics. For a quick introduction to lifting see Sweld¢h996). Lifting is the mathematical
foundation of our work and it is described in more detail hwitferences, in Section 2.

Adaptions of lifting to curve estimation problems in one dimsion are discussed in Delouille
et al. (2001) and Vanraest al. (2002). For lifting half-regular designs (tensor produfctveo
one-dimensional irregular designs) see Delouille and vachS (2002). In two-dimensions
curve estimation with lifting has been tackled by DeloufR802) and Delouillet al. (2003):
this work and the current article both develop and build arséaet al. (2001).

3. the error distribution is iid Gaussian with zero mean amastant variance. Various authors
have weakened these assumptions. For example, see JehasirSilverman (1997) for
correlated noise; Neumann and von Sachs (1995) and Averkachploudré (2003) for non-
Gaussian noise.

The main advantages of using wavelets are their excelleotdical properties, excellent empirical
performance both for smooth functions and also those wétaditinuities or other inhomogeneities
(even whena priori, it is not explicitly known whether the function is smoothrat) and very fast
computational speed.

1.2 Our main contributions
The main contributions of our work can be summarized aswaldNe introduce:
e a wavelet-like transform for data on a graph;
o wavelet-like transforms for irregularly spaced data in+teohigher-dimensional space;

e statistical methods for function estimation adapted te¢hsew wavelet-like transforms.
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Our proposed methods perform very well, they are rotatlgriavariant, extremely fast and mem-
ory efficient, can provide credible intervals as well as fpi@stimates’ through empirical Bayes
and can very easily be extended to use smoother basis fuact®ee the end of this section for a
discussion of the pros and cons of our methods compared ¢o @thniques).

The multiscale concept is particularly powerful for datatthrise on networks permitting, for
the first time, the description and quantification of stroetwithin a graph at several scales and
locations simultaneously. From now we shall be solely come# with Gaussian iid noise but
several of the techniques mentioned above for generalthiaglistributional assumptions could be
made to work efficiently with our technique.

A key concept in many spatial regression contexts, inclydiars, is that of neighbourhoods.
Thatis, given a point which other points are “close” and Wtace its neighbours. In one dimension,
with the order relation o, neighbourhoods can be more straightforwardly defined. clbsest
points to a given point are smallest/largest point greletes/than the given point. In more than one
dimension there are many possible neighbourhood condeptsdould be used. Some problems
come with their own neighbourhood structure. Where thermia priori neighbourhood structure
we use either Voronoi polygons or minimal spanning treesTs)$o define neighbourhoods which
are utilized by a lifting technique.

We also carefully analyze the variance structure of thedifivavelet coefficients and develop
a novel Bayesian wavelet shrinkage technique which work&enabsence of formal scales (for
irregularly spaced data the dyadic scale concept is aatifici

1.3 Other methods for function estimation

As the previous section highlights one of our goals is to userewly created lifting/wavelet
transforms for function estimation. For function estiroatthere exists an enormous range of al-
ternatives developed across a huge range of disciplin&sding many in statistics. The ones that
we have considered, and compared to our methods, in wrhisgpaper are: loess by Cleveland
and Devlin (1988), triograms, see Hansdral. (1998) and Koenker and Mizera (2004), locfit, see
Loader (1997), thin-plate splines, see Wahba (1990) andrGaad Silverman (1994), and kriging,
see Cressie (1993). The latter two sets of comparisons de found in Heaton and Silverman
(2006) the others in section 7. There are many more posibilifor example partition models,
Denisonet al. (2002), stationary and non-stationary Gaussian proceSsesssian Markov random
fields, see Rue and Held (2005) and empirical orthogonatifome (EOFs), see Jolliffe (2002) and,
for graphs, network kriging, see Chaaal. (2006).

Although our methods compare favourably to the first list @ftinods listed above our main
aim is not to conduct a ‘regression olympics’. As well as dapmg a new regression method
our main goal is to introduce new multiscale algorithms @aph and irregular data) and several
of the techniques listed above could be used in conjunctith eur new multiscale algorithms.
For example, one might wish to construct a Gaussian Markodaw field model on the ‘wavelet
coefficients’ of a structure.

However, we do believe that our methods have a strong setvahéaes:

1. our methods are fast and efficient in storage and for theisoale part requir€(n) op-
erations forn sites. For the Voronoi version the Voronoi tessellation bancomputed in
O(nlogn) operations, see, e.g., Fortune (1987). It is not always &adiscover the com-
putational complexity of some of the methods listed aboveweéler, EOFs are based on
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eigenvector determinatiof)(n?)), loess is quadratic in storage and some of the above algo-
rithms rely on variants of MCMC which do not scale well to langroblems.

2. our methods are rotationally invariant. Some of the algthods are not.

3. our methods are easily extendable to smoother ‘predict’‘apdate’ steps (see later for an
explanation of these). For methods such as triograms egtento smoother basis functions
are not trivial, see Hanseat al. (1998). Moreover, our methods can even be further developed
to adapt to local smoothness conditions by usadzafptivelifting, see Nunet al. (2006) for
this in one dimension.

4. on arange of real and simulated examples reported inddettiour methods work well. The
examples considered include both discontinuous and snioottions. It is reassuring that
a method developed to allow for possible discontinuitieth@nfunction of interest also work
well in the smoother case.

The main disadvantage is that, apart from analogies withlaegvavelets, there is currently no
substantial body of theory behind our methods. We discussafisons for this in section 8.

1.4 Kirill intensity estimation example

Before we discuss lifting it is instructive to consider aample that existing wavelet techniques
would find hard to solve and other statistical techniquesh ss kriging, might find challenging.

Goss and Everson (1996) describe an experiment designadaiify the amount and distri-
bution of krill in the south Atlantic ocean around South Ggar Figure 1 shows the interesting
sampling design and a depiction of the detected krill dgn€itearly the design is very far from be-
ing a regular grid but idloeshave a very strong structure which one might wish to takeactmunt
when performing spatial regression. For example, in sonpéicgtions one might be interested in
regression on the transect itself, or one might be intedesteegression over the whole domain of
definition excluding, presumably, the island, where it igWkn a priori that the krill intensity is
zero. Indeed, the presence of structure or a hole in the dajai¢land) would be challenging for
more global multivariate regression techniques. Our tieghas can take account of various kinds
of structure of this sort and are applied to this data set ¢li@e7.1.
1.5 Structure of the article

Section 2 first reviews lifting and then introduces our vi@miaon the theme: “lifting one coefficient
at atime”. We then elaborate by introducing the multiresofuanalysis underlying our scheme for
irregular spatial data and elicit the basis and dual basigtions. Section 2 closes with a description
of an efficient method for computing the variance of ourdifticoefficients.

Sections 3 and 4 set out two different approaches for liftoxgrregularly located spatial data.
Section 3 describes a version of our approach that enalftieg lio be applied to a function on
a graph (a network). Such a network might be constructed,fem irregularly spaced data in
Euclidean space or the data itself might naturally arisdénform of a network. For example, in
a rail transportation network one might think of statiorthei as irregularly spaced points in two-
dimensional space or one might think of them as nodes in aanktwhere the edges are railway
lines.
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Figure 1: An example krill intensity sampling scheme. Tharid of South Georgia is shown in the
bottom left of the plot. Each sample is indicated by a cireld the diameter which is proportional
to the density of krill detected at that location. (Figuraddiy supplied by Alistair Murray, British

Antarctic Survey)
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For irregularly spaced data in Euclidean space Section g aigarichlet tessellation to define
neighbourhoods and constructs a lifting transform usingemeighbourhoods.

Successful wavelet shrinkage depends on good compredsiliies of the underlying wavelet
transform. We compare the compression abilities of a stan2® DWT on a regular grid to our
lifting techniques on sites with varying degrees of irregity in Section 5.

Section 6 details the new techniques that we use to perfoefficdent shrinkage on “one coef-
ficient at a time” lifting transforms. “Scale” in lifting calbe more of a continuous concept and the
fixed dyadic scales of the regular DWT no longer exist in ourkwdVe describe several empirical
Bayes methods designed to work with the more general comfeqmale. Section 7 contains two
real life examples and summarizes several simulationesudihe real examples consider: regres-
sion of the krill data where coordinate information is used aegression of average train delay
data where station coordinates are not relevant but thestagon distances are. Finally, section 8
concludes and provides ideas for further work.

2 General discussion of lifting

2.1 The lifting approach to the standard discrete wavelet tansform

Let us begin with a general specification of the lifting scleeas it has been considered previously.
Given a vectorr of data, we divide the indices of into two subsets, denotefland J for the
moment. For example, in one dimensidnight be the odd indices anfithe even. Denote by’
the vector(z;,i € I) andz” the vector(z;, j € J).

A single step of the lifting transform works in the followirsgages:

Predict Usez” to yield an appropriate predictaf of =/, and set
(.Z'I)* :$I —i‘l,
the residual from this prediction.

Update Updatez” by adding tor” a suitable linear transform ¢f/)*.

A specific example is the Haar transform of the data. Suppgeseriginal vector: is of length
16 (for definiteness). Initially, definé to be the odd indice$l,3,5,7,9,11, 13,15}, and.J to be
the even indiceg2,4,6,8,10,12,14,16}. The prediction is carried out by estimating each odd-
indexed element by the next element in the sequence, so

Tom—1 = Tom form = 1,...,8.
Hence the modified coefficients’)* are given by
*
Toym—1 = T2m—1 — T2m-

These correspond to the ‘detail’ coefficients in the Haardfarm of the data. The update step is
defined by

x;m = Tom + %wgm—l = %(me—l + me)
so the(z”)* represent the ‘scale’ coefficients at the next level, a shreabbut version of the original
data.
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The lifting steps can be performed ‘in place’ by the two assignts

o = ol —ad

= o+ %:EI 2)
For the next step of the Haar transform, we proceed in extietlgame way, setting= {2, 6, 10, 14}
andJ = {4,8,12,16}. These correspond to the odd and even indices of the scalceargb at
the previous level. We then continue the cascade by sefting {4,12} andJ = {8, 16}, and
for the final stepl = {8} andJ = {16}. This completes the entire multiresolution analysis of the
original vectorz, and the coefficients obtained are, in a suitable orderaledosersions of those
obtained by the Mallat discrete wavelet transform. At eaelgyes of the process, the current scale
coefficients are divided into two equal sets, one of whichrigessed in the predict step to give the
detail coefficients, and the other is updated to give theesuaéfficients for the next stage.
The description we have given uses the Haar transform fqolgiity, but all classical wavelet
filter banks can be factored into a sequence of lifting steps,Daubechies and Sweldens (1998).
An attractive feature of the lifting scheme is that the iseetransform can be constructed me-
chanically. The individual step (2) is inverted by revegsihe order of the assigments and changing
the signs, to give

vl = ﬂc‘]—%xl ?)
= 2l 2l

To invert the whole transform, the steps are consideredeimgiposite order, starting with= {8}
andJ = {16} and finishing withl = {1, 3,5,7,9,11,13,15}, and.J = {2,4,6,8, 10,12, 14, 16}.

2.2 Lifting one coefficient at a time

When considering the standard wavelet transform, the /[setsd J correspond to odd and even
indices at the current level. We shall consider a differ@praach, where each skts just a single
coefficient. The general paradigm we adopt will be as follows

The first step is to construct an ordgy, ..., i1 in which the wavelet coefficients, or their
equivalents, will be obtained. Our reason for numberingeirerse order is the analogy with scale
levels in the standard wavelet transform; the first coefiisi¢o be found will be those correspond-
ing to the finest level of detail in the function, and at the @fidhe procesd coefficients will
remain, corresponding to the scaling coefficients at lével

For eachi,., we construct, by some appropriate means, a set afeighbours’J,., which may
not contain any, for s > r. The underlying notion is that the valuggfor j € J, may reasonably
be used to construct at least an approximate predictiary, of For eachr, our lifting transform
requires the definition of two vectoe$ andb”, each of length,..

At each stage, the transform consists of the same two stgp®wasusly, firstly redefining;
to be its residual from the prediction from its neighboursg ¢ghen updating the neighbour values
appropriately. To avoid notational clutter, we suppressetkplicit dependence anof i, J, a and
b. The step of the transform can then be written

Predict z; := z; —dz’/

Update z7/ := 27/ +ab “)
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Again, just as before, the inverse of this transform can baemrdown mechanically, by revers-
ing the order of the steps and changing the signs:

) = 2l — b

r = x;+dz’. ©)

For computational purposes, it is convenient to specify stode the transform in a standard
format, as a ragged array with— ¢ rows. We call this thdifting coefficient array The sth row of
the array corresponds to=n + 1 — s and consists of the sequence3af. + 2 integers

i n. Joa" b,

The computational burden of the lifting scheme is the sanoeder of magnitude as the number of
elements in the lifting coefficient array, and is certai6ly)M/n) whereM = max{n, }.

In the remainder of the paper we will consider ways of cormsitng the lifting coefficient array,
with particular attention paid to the case of spatial irtagdata. Even the Haar transform as already
discussed can be calculated one coefficient at a time. Thee oravhich the indices are considered
would be first the odd indices, in any order, then the indicetsdivisible by 4, then those not
divisible by 8, and so on. In every case each index would haiegie neighbour, so that, = 1,
and we would have, = 1 andb, = % The neighbout/, would be, in every case, the smallest
integer;j > i, that is not a member af., 1, ..., 5.

Further information on lifting in more than one dimension ftata not on a lattice can be
found in Daubechiest al. (1999). For data on a lattice see Uytterhoeven and Bulti€8I'7) and
Kovacevi¢t and Sweldens (2000)

2.3 Aspects of lifting transforms for spatial irregular data

In this section, some specific issues relevant to liftinggfarms for spatial irregular data are con-
sidered, but the discussion has wider validity for methagsed on neighbours in any sense.

Suppose that we have valugsof a function atn points, orsites t; Initially, we assume that
the function is approximated by an expansion of the form

F&) = cktdnn(t) (6)
k=1

whereg,,, are scaling functions such that
k(i) = Ok, (7

whered;; is the Kronecker delta, at least approximately. If the sgafunctions satisfy (7) exactly
then the functionf will interpolate the valueg; if we setc,, = fr. Denote byl,,; the integral of
oni With respect to some suitable measure.

The stages of our procedure are numbeategnwardsrom n, so the first stage to be carried out
is stagen, followed byn — 1,n —2,.... At stager, letS, be the indices of the scaling coefficients,
in other words those indices for which no wavelet coefficieas yet been calculated. Initially
S, =A{1,...,n}. LetD, = {i,y1,...,i,}, the indices of the detail coefficients already found.
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We assume that we have an expressionffof the form

Z dete(t Z Crk®ri(t 8

LeD, keS,

where they, are wavelet functions with zero integral, and the are scaling functions at leve|
with integral I,... We now set out the process whereby the various quantitiestibns and sets are
updated to the next stage, whereby we find an expressionspormding to (8) but withr replaced
byr —1.

Firstly, choose,. to be the value of that minimizesl,; overk in S,; writing i = i,, the next
wavelet coefficient to be constructedds, say. At every stage, we eliminate the scaling function
with smallest integral. S&&,._; = S, \ i, andD,_; = D, U,.

Let J. = J be the set of neighbours éf as specified in the lifting coefficient array. The
specification of/,. and the weight vectat” will depend on the particular lifting strategy we adopt,
and will be discussed in subsequent sections of the papercaltalate the coefficient;. in the
way specified in (4), setting

di, = Cri, — Y dicr €)
JjEIr
and, forjin J,,
Cr—1,5 = Crj t+ b]dz, (20)

For all otherj in S, we setc,_1 ; = c;.

If the function f(t) is constant in the neighbourhood of the sifewe would wish the wavelet
coefficient to be zero, so we conduct the predict step witht afsereights satisfying) aj = 1.
With judicious choice of weights we can obtain a zero coedfitifor locally linear functions and a
near-zero coefficient for locally smooth functions, busthill be discussed below.

We next set out the way the scaling functions are updated.afptfixed; € J,., consider
the special casg¢(t) = ¢,_1,;(t). For thisf, from (8), we have:,_; ; = 1 and all otherc,_ ,

s # j andd, equal O fors = 4,,...,%,. Hence, inverting the lifting steps,; = 1, from (10), and
cri, = a; from (9). Therefore, by the expansion (8) for
Gr-1,j = Prj + ajPri,.. (11)

To find the integrals of the scaling functions at the nextestagtegrate (11) to obtain
I =1+ a;?I,,Z-7, for eachj € J,. (12)

Forj in S,_; that are not members of., the same argument witty = 0 this givesc,; = ¢,—1,;
as well as:;;, = 0. This implies thatp,_1 ; = ¢,; andl,_q ; = I,;.

To find an expression for the wavelet, we now consifle ¢; , so thatd; = 1 and all other
coefficients at stage— 1 are equal to zero. From (10) we then haye= —0b’; for j in J,.. Equation
(9) then gives:,;, =1 — Ejejr a;b%. Therefore we have

1/%7. (t) - Z aTbr (bm, Z bT(br]

jEJr jeIr
= ¢mr Z br ¢7‘] ‘|‘ a; ¢mr( ))
Jj€Jr
= (bm, Z b’ (br 1,] (13)

jer
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by substituting the expression (11).
The weightsb’ are found from the requirement that the integral of the wetvisl zero. By
integrating (13), this requirement is equivalent to

Z bily—1j = Ipi,, (14)

JEJIr

where the integral$,_; ; have been found using (12). For reasons of numerical dtabile use
the minimum norm solution of the equation (14), setting

b =L Lr1j/ Y TPy (15)
keJr

Note that within the process it is never necessary to expheswavelets or scaling functions
explicitly, but the integrals of the scaling functions arsed to choose the coefficiefit and to
specify the weight vectdr". Therefore, in order to start the process off, it is necgssespecify the
integrals/,,; of the original scaling functions. Apart from these intdgrave also need appropriate
ways of choosing the vector8 anda” of neighbours and prediction weights at each stage. We shalll
consider two particular approaches in detail later in theepahe first based on Voronoi polygons
and the second on minimal spanning trees.

Finally, there are circumstances within which it is helgfuhave a notion of the scale of each
wavelet function. A convenient measure of this scale fontheelety; for i, is the integrall,.;, of
the scaling function for sité. at the last stage befoig is removed from future consideration. We
denote this scale by;.. In the natural neighbour method described laigr,will be the area of the
last Voronoi cell based on sitg. In general, for any fixed, and assuming all the weights > 0
we have

Q5 = Lr—1/,_4 > I > I

— 72-7‘71 — 7ir' = Oéi
and so the scales; are a monotonic function of the indexand the order in which the lifting

scheme determines the coefficients.

2.4 The dual basis functions

The lifting procedure can be thought of in two separate waysthe one hand, if we have a function
f of the form (6), the expansion (8) gives an expressiorf @f terms of a multiresolution basis,
where effects of different scales are captured by diffenevelet coefficients. On the other hand, an
alternative way of thinking is to consider the lifting sche@s a linear tranformation of a vector of
valuesz, yielding a coefficient vectat, say, whose elements have a multiresolution interpretatio
In either case the relation between the original functiodaia, and the derived coefficients, can be
elucidated by investigating the dual basis functions otorsc

Both cases can be covered by considering suitable inneupi®d, -). In the ‘function’ case,
the natural inner product between functignsandgs, is an integral of the form

(91, 92) Z/le(t)gz(t)dt (16)

over some fixed bounded regiéh In the ‘vector’ case, given vectots andy of values at the
data points, the standard inner prodicty) = ). z;y; can be used. If andy are the values of
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functionsg; andg, at the data sites;, then we can equivalently use the inner product

<%m=2mmmm. (17)

Suppose we have an expansionfodf the form (8) in terms of the basis. made up of the
functionsy, for £ in D, and¢,, for k in S,.. Let ¢, be the corresponding vector of coefficients
andd,. We can set out the derivation of a dual bagis= {1}, ¢7,.} having the properties

dy = (¢y, f) for £in D,, and ek = (Orp, f) forkin S, (18)

which may be written in vector form as = (¢7, f).
The interest of the dual basis functions is that they giveateght functions that are applied to
f ortox to yield the corresponding coefficients. In this sense thalkarexplicit the contribution of
values off or z at various points to particular wavelet coefficiedisand scaling coefficients, .
The dual basis functions are constructed inductively. 8sppwe have constructed the func-
tions{¢;,¢ € D, } and{¢},,r € S,}. To construct the functions at stage- 1, we use exactly the

updates in the lifting scheme itself, with= i, andJ = J,., setting

U =0 — D a;or; (19)
jed
and, forj in J,
¢;ﬁ—17j = ¢:j + bﬂ/’:a (20)

with ¢}, , = ¢y, for all otherjin S, ;.
To see why these relations hold, Igt be the matrix corresponding to the lifting step that yields
the vectorc"~! from ¢”. Suppose, as an inductive hypothesis, that the conditiBjshpld. Then

-1 =L"c, = LT<¢:7f> = <Lr¢;>f> = <¢;—17f>7

as required. Therefore, as long as the original vector off lolasis functions or vectors;, satisfies
cn = (¢}, f), the lifting scheme will produce the required dual basisfioms at every stage.

To obtain the values at the data sites of dual basis functilagive to the vector inner product
(17) we start the process with vectars; with elements(¢>;§j)i = d;;. To find dual basis functions
relative to the function inner product (16), it is necesdaryind a suitable initial dual basis. For
example, if the initial basis functions are constant over-oeerlapping regions, then an initial dual

basis will be given by?, = ¢ni/ [(¢ni)?.

2.5 The variance of the sample coefficients

In this section, we set out an approach, which operate3(iin») time and storage, for finding,
approximately, the variance of each wavelet and scalinfficieat as obtained by a lifting scheme.
Of course, because the lifting scheme operates linearygésonably small data sets it is possible
to calculate the full covariance matrix of the coefficiengsshccessively carrying out on the covari-
ance matrix the row and column operations correspondinetdifting steps. This is a much more
burdensome calculation, requirii@g(Mn) vector operations on vectors of length but makes it
possible to evaluate the usefulness of the approximateaneth
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Suppose that the original data are independent random variables with variariGgeConsider
a single lifting step of the form (4), writing™ for the values after the lifting has taken place. Since
T} = — )y a;x;, we have

varzy =Vi+ Y _alV; (21)
jel
and
cov(zy, x;) = —a;Vj. (22)

Sincex} = z; + x7b;, it follows that
varz; = V; + bivarz; + 2b;cov(x;, z;) = (1 — 2a;b;)V; + bivarz}. (23)
It follows that the effect of a single lifting step is to repéathe variances by,*, where

Vo= Vit Xe, 0

Vi = (1= 2a;0;)V; + b3V forj e J. (29)

The approximation we use is to neglect any correlations éetmthe coefficients obtained at the
next stage, but simply to iterate the calculations (24).sMiil yield an algorithm essentially of
the same complexity as the lifting algorithm itself, andeed that can similarly be carried out in
place. Some experiments on lifting arrays obtained fronolor polygons, in the way discussed
later in the paper, demonstrate that only a little accuradgst, mostly in the large-scale wavelet
coefficients and in the final scaling function coefficientbjah tend to have small variance anyway.
In some practical situations the assumption of independgmniariables is not tenable. Such
a situation is beyond the scope of the present paper. Hoywseeran envisage prior or estimated
information on the covariance structure can be fed into #ieutation of the coefficients’ variance
along the lines of methods used for regular wavelet shrialsagh as Kovac and Silverman (2000).

3 Alifting scheme for graphs

We introduce a lifting scheme that essentially providesna kif ‘wavelet transform on a network’.
Here we mean a ‘network’ to be a ‘function on a graph’. We atdeisour graphs to have arisen
in one of two ways. One way is that the graph is supplied to eslgfined — for example a
transportation network or communications network. Theeptlay is that data is supplied in a
form that can be converted into a network. For example, ilaaty spaced data i -dimensional
space on which a graph can be induced by calculating intetrpigtances and constructing, say, a
minimal spanning tree. We elaborate on these next.

3.1 Minimal spanning trees and other tree-based approaches

Consider data observed at an irregular set of poinfs oimensions, for som& > 2. For data sets
in two dimensions, approaches based on Voronoi cells awctite, but in higher dimensions they
become both computationally infeasible and philosophidabppropriate. The number of Voronoi
neighbours of each point will typically be large and the camagons will become burdensome.

In this section we consider an alternative lifting approbeled on trees, and in principle any
tree can be used as the basis of our scheme. In the caSedohensional data, useful trees are
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those that reflect the neighbourhood structure of the poifite notion is that trees, not Voronoi
polygons, are used to incorporate the "neighbourhood’cgire of the data at each point of the
lifting scheme. If the original data sités lie in a K-dimensional Euclidean space, a natural ap-
proach is to useninimal spanning tree@VIST), see e.g. Krzanowski and Marriott (1995), which
are easily computed. Other types of tree may be useful foicpkar applications, and these would
be a possible topic for future work.

There are some data sets where the data themselves nativealbn a tree rather than in a
Euclidean space. For example, the data collection tram$ecthe krill data depicted in Figure 1
constitute a tree. More generally, we can extend our “liftom a tree” to more general graphs as
long as there is a suitable neighbourhood structure. Fanpba in protein modelling, a tree could
be defined by the chemical bonds in a large molecule. In ttde,caherever it is necessary to
determine distances between points, it may be appropoatsd distances in the original tree or
graph.

For data that live naturally on a network (graph) our metheffisctively provide a kind of
‘wavelet transform on a network’. By restricting the an@ys a narrow range of scales our
methodology provides a kind of ‘coarse Fourier transforfra dunction on a network (in the same
way that a single scale level of wavelet coefficients acts laanalpass filter isolating information
about a function around a narrow range of frequencies).

See Smola and Kondor (2003) and Belkinal. (2004) for work on regularization of functions
on graphs.

3.2 General aspects of the tree-based lifting scheme

The first step in the lifting scheme as set out in Section 2 8tvapecify the initial scaling functions
onr and to find their integrals. In the tree context, we define tadirsg functiong,,; to be 1 at the
nodei and zero at all other nodes of the tree. At each stage of oaepspwe consider the scaling
functions and wavelets as being defined on the original nodé&sdefine a set of weights; and
then define the ‘integral’ of any function having valfieat node: as the weighted su, w; f ().

In order to relate the weights to the tree on which we are wgrkive definaw; to be the sum of
the lengths of the edges from the nade its immediate neighbours. We arbitrarily use the sum of
the lengths but the average of the lengths is another ptigsthat we have used.

At each stage, we calculate the wavelet coefficient corresponding to tuenwith the small-
est current value aof,;. Letting J be the set of current neighboursipive have to define a suitable
set of weightsa. We may either let/ be the immediate neighbours within the tree, or we may
include second- or even higher-order neighbours in thd set

Once the sel is defined, we need to define the prediction weight veetoFor reasons ex-
plained below, we mostly usaverse distance prediction weightettinga;; = céi;l, whered;; is
the distance from pointto point j, andc is chosen so the weights sumtolIn the extreme case
whereJ contains only one indey, the value at nodg is used as the predictor at node

Alternatively, in some circumstances, e.g. the krill ddtee nodes do possebsna fideEu-
clidean coordinates. In which case the tree can be used teedb® neighbours but the coordinates
are used by least squares to form prediction weights. Tidisish between these two variants we
refer to them either as “tree with inverse distances weightstree with least squares coordinate
weights”. As an example of these two algorithms in actionFgare 4.
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Having defined the weight vectar we can update the integrals using equation (12), and calcu-
late the update weights using the equation (15).

The final step is to update the neighbourhood structure. \&# absume that as a points
eliminated from consideration, the spanning tree is madlifaeally, only changing the linkage
structure between points previously linked directlyi tdf the pointi to be removed has immediate
neighboursji, ..., jm, say, then we replace the links betweeand thej. by the links of the
minimum spanning tree of the points indexed Qy...,j... This procedure maintains the tree
structure of the pattern of links between points under ciircensideration.

How many orders of neighbours should be used in the predigtat of the lifting scheme?
“Mixed scale” points cause minor practical problems for mathod based on Voronoi tessellations,
mostly near the boundaries. They are the source of the loddham Delaunay triangles that we
discuss, with some solutions to the resulting problemsgictin 4.3.

On average points in a tree have fewer neighbours than thased Voronoi tessellation. For
example, compare the Voronoi mosaic for the krill data inuFég2 (right) with the ship track in
Figure 4 (bottom left). This can be made precise: there(are 1) edges in a tree constructed
on n points so the average number of neighbours for a point ineaisr2(1 — %) irrespective of
dimension or distribution of the points, or the method of stauction of the tree. For Voronoi
tessellations the average number of neighbours is higkaren 6 in two-dimensions for moderate
numbers of points (see Penrose (1996) and Penrose and Y@kigR)). In a tree, therefore, if only
immediate neighbours are considered/itthere is less opportunity for “mixed scales” to occur.
On the other hand we may wish to include higher-order neigtsom J in order to obtain better
predictions. If it is decided to use higher-order neighkpone could either use neighbours up to a
given order, or one could increase the order of the neiglsbontil the size of/ reached a certain
level.

Finally, our algorithm is not just restricted to trees. Tlaeng steps can be followed for any
general graph where distances and integrals can be sedsiimgd. For example, with the UK ralil
network, see section 7.2.

3.3 Why use inverse-distance prediction weights?

In this section, we explore a correspondence between inkstance prediction weights and local
linear prediction. Suppose we are working on a tree, thatreg@eedicting the value at a poiit
and that/ = {j1, j2, ..., jr} for somer > 2. Work on the philosophy that a tree is defined only by
its linkage structure and the lengths of its edges. We consider a particular Euclidean embedding
of the tree near the poirit

Definer unit vectorsu; in (r — 1)-space to be as far as possible from one another on the unit
sphere, so that the end points of theform a line segment, equilateral triangle, regular tetrahe
dron, or higher-dimensional regular simplex, in all casestied at the origin. We will then have
ZjeJ u; = 0. Now place the vertex at the origin, and place vertekat ¢;;u; for j € J. In
the case where there are two neighbours, this is simplymgaadn a straight line between its two
neighbours. More generally, this corresponds to arrangiagedges around vertéxo be as far as
possible in different directions.

Given valuegy; at vertex;j for eachj in J, define the linear functiof(t) = a’t +bin (r —1)-
space to be the interpolant of the valggsat the points);;u;; the graph of this function will be the
unique hyperplane through thepoints (6;;u;, y;) in r-space. Defing* to be the value obtained
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by inverse-distance weighting the valugs We now have, setting such that Zj 6%1 =1,

y'o= cZ&i_jlyj:cZ(SiglL(éijuj)

jeJ jeJ
= CZ(Si_jl(éija/u]’ +b) = cd’ Zuj +b=">b=L(0).
jeJ jeJ

It follows that, with this particular embedding of the treeBuclidean space, the linear interpolant
at the vertex to the valuegy; at the verticeg is precisely the inverse-distance weighted average

*

Y.

4 Alifting scheme based on Voronoi polygons

In this section we consider a lifting scheme for spatialguiar data based around Voronoi polygons
and Delaunay triangulations. The basic idea is to constatietach stage, a triangulation of the data
sites. The neighbours of any site are then the sites joindthtaite by edges within the triangula-
tion. Once a detail coefficient corresponding to a particsie has been found, the triangulation is
appropriately modified to remove that site.

4.1 Voronoi polygons, Delaunay triangulations and Dirichét tessellations

Consider a set of sites in the plane. Kebe a suitable region in the plane containing all the sites
under consideration. The regiéhmay, for example, be the whole plane, or a suitable rectangle
the convex hull of the sites. Comments about the preciseeludi) will be made later. Th&oronoi
cell of any particular site is the set of points@hnearer to that site than to any other. Because the
boundaries of each cell are all perpendicular bisectorimesljoining two sites, the Voronoi cells
are polygons, and thirichlet tessellatioris the partition of thef2 into these polygons. See Figure
2 for an example. Two sites are neighbours if their Vorondisdeave a boundary in common,
and the joins of all pairs of neighbours forms Belaunay triangulation There are algorithms for
finding the Delaunay triangulation in the first place, andupdating the triangulation when a site
is removed. For further detailed information see Okabal. (1992); for more information on these
methods in statistics see Herrmagtral. (1995) or Allard and Fraley (1997) for example.

At each stage of the lifting scheme, the neighboliiref a sitei under consideration are the
neighbours of within the current Delaunay triangulation, and the valuethase neighbours are
used in the predict and update steps. More sophisticataticioemn methods could be based on
higher order neighbours.

The paradigm set out in Section 2.3 requires two more ingreglj the integrals of the initial
scaling functionsp,,;,, and a method of specifying the prediction weiglitat each stage. Provided
Q) is a finite region, a natural definition of the initial scalifupction ¢,,; is the indicator function of
the Voronoi cell of the site;,, and so the integral of the scaling function is the area afaronoi
cell.

We consider two main methods of prediction, tredural neighboumethod as proposed by Sib-
son (1981), and local least squares.
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Figure 2: Left: Voronoi mosaic of 100 points uniformly dibtited in [0, 1]2. Right: \Voronoi
mosaic of krill data portion used in later examples, e.guFagd. The thick line indicates the track
of the ship. Both plots constructed using the R packageack

4.2 Natural neighbour interpolation

If site 4 is removed and the Dirichlet tessellation recomputed, t@noi cell of that site will be
divided among its neighbours. Assume the redibis finite. Let A; be the cell corresponding to
sites and letA;; be the part of the cell made up of points whose next nearestater:, is the site
Jj- If site i is removed, them;; will form part of the new cell of sitg. If j is not a neighbour of
then 4;; will be empty.

The lifting scheme using natural neighbour interpolaticorks by settings; = |A;;|/|A;| for
each neighbouy of i, where| - | denotes area. Provided the célldoes not intersect the boundary
of 2, the prediction weights thus obtained through natural gagr interpolation will predict a
constant or linear function perfectly, and have other etitra regularity, continuity and stability
properties. A corollary of the perfect prediction of lindanctions is that if a function is linear,
then its wavelet coefficients will be zero except for possibbundary effects. If the function is
approximately linear in the region of the siteand its neighbourgt; : j € J}, then the linear
prediction based on the neighbours will be quite good antisaviavelet coefficient will be small.
Another good property is that the schemeénierpolating if the sitet; is very close to one of its
neighbourst; then the prediction at sit will be close to the value at sitg, and will tend to this
value in the limit as site; coincides with sitet ;.

One disadvantage of the natural neighbour method is its atatipnal intensity, though the
method does remain linear in the number of sites.

4.3 Local least squares prediction

A computationally simpler approach to prediction uses lléeast squares. A least squares plane
is fitted to the values at the sités for j in J, and used to interpolate at the site This scheme
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obviously has the property that if the functigns linear over the site; and its neighbours, then the
wavelet coefficient is zero. Therefore it shares some of tloel gproperties of the natural neighbour
method.

There are, however, some numerical and conceptual isstiesh&ilocal least squares method
which require careful attention. For example, unlike thured neighbour method, the local least
squares method is not interpolating. The residuals froneidis squares plane through the values at
the sites with indiced will not, in general, be zero. Therefore, even if the sjtes very close to one
of its neighbours, the predicted value will not necessdrdyclose to the value at that neighbour, and
more distant neighbours will still have a relatively heawypact on the prediction. Thisis in contrast
with the natural neighbour method, where more distant rtighs are automatically downweighted
in the prediction, because of having small value$Af|. In the local least squares approach it is
desirable to avoid neighbour configurations with a mixturehmrt and long edges, because these
rise to neighbour relationships between sites that aregway apart on the scale currently being
considered. Because distant neighbours will influence tedigtion, for a smooth function the
magnitude of a wavelet coefficient at a site will be affectgdhe distance to its furthest neighbour,
and so the method may have worse compression propertiegsharatural neighbour approach.
Triangles which are very far from equilateral are partidyldikely to occur near the boundary,
where two fairly distant sites may still have Voronoi celiat touch one another, particularly if the
boundary ofQ2 is some distance from the actual boundary of the data. Tlhavieur can be seen
in the right hand plot in Figure 2.

One way of dealing with this issue is to remove from the tridatjon those narrow triangles
with two vertices on the boundary where the opposite anglebiase. This corresponds to re-
defining 2 to be the convex hull of the sites under current considerago that sites will only be
considered to be neighbours if their Voronoi cells touchhimitthe convex hull. A more relaxed
policy could allow obtuse triangles, but only up to 120 degresay. In any event, the approach
may need some modification at the corners of the configuratibare the approach described may
leave sites with a single neighbour, and in this case it maggmeopriate to re-introduce narrow
triangles.

A related matter is the treatment of sites lying some digtdram the remainder of the configu-
ration, so that the angle subtended by all the site’s neigisiis quite small. In this case, prediction
is more like extrapolation, and can be quite unstable. A gdddirly ad hoc, way of dealing with
this is to project both the site; and the set of neighbouf; : j € J} onto the first principal
component direction of the s¢t; : j € J}. This is equivalent to using a least squares fitting
plane constrained to have gradient in this direction. Bgfigdn this case, the raw local linear least
squares weights may fall outside the raf@e ], though it will be only in rather pathological cases
that this will happen in the modified method. The natural hea@ur approach cannot suffer from
this instability because its weights are necessarily jn].

4.4 Conclusions and further comparisons

Whichever method is used, it is necessary to retriangulseconfiguration each time a site is
removed. If the natural neighbour method is used, then thietidét tessellation within the region
Q will be needed for the next stage, though of course only tile neighbouring the site. will
have to be modified. It is conceivably possible to mod¥fyat each stage but there is not usually
any particular point in doing so. Overall, the natural nbeigir method is more stable and more
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elegant, but at a considerable computational cost whichually not warranted.

5 Compression

Figure 3 illustrates the varying compression performafaetwvo different 2D multiscale methods
(Voronoi lifting and regular 2D Daubechies wavelets). Thatgpare constructed as follows: an
equally spaced6 x 16 grid is constructed; 2D analogues of tBéocks Bumps Heavisineand
Doppler signals from Donoho and Johnstone (1994) as well as a pisedimear function (called
mfa) are evaluated on the grid ¢, 1] x [0, 1] (these analogues are defined in Nasbal. (2004)
and illustrated in this article in Figure 9); a wavelet otiti§ transform is performed; then a certain
number of the largest coefficients are retained, the ressetréo zero; the inverse transform is
applied; the error between the inversion and the originabraputed. For the transforms we have
also added varying amounts of jitter: to eactandy grid coordinate a uniform random variable
on the interval—n, n] is added for three values gf 0.1, 0.01, and 0.001: the results are medians
over 100 simulations with different jittered grids (onlyetkmallest and largest jitter is shown for
clarity).

Good compression is about having the smallest error for anghumber of coefficients re-
moved. Generally speaking the Voronoi method has muchrbett®pression abilities than the
graph-based lifting. This is not surprising as Voronoi nsakaich more use of neighourhood infor-
mation that graph-based lifting (although remember thed-trased lifting can even be used when
only inter-point distance information is present).

Figure 3 shows the compression performance for the 2D Dhidewavelet with two vanishing
moments (both for jittered and unjittered values). Readeguainted with the excellent compres-
sion properties of 1D wavelets may be surprised at the paiirig compression performance of
the discrete wavelet transform (DWT). The fact that wawetlt not compress 2D images particu-
larly well is known and has spurred the field of multiscalergetric image processing, see Starck
et al. (2000) for example. The lifting methods seem to do partitylevell then for themfa and
Heavisinefunction, maybe not too bad f@umpsbut less well forDopplerandBlocks

For large jitter (0.1, code C for Daubechies, and dashedftin&oronoi) the Voronoi lifting
has better compression abilities. This is not really saipgi as the jittered values, when transferred
back to a regular grid, mean that the Daubechies waveletisyang to compress a very irregular
function. However, the point here is that compression perémce is much better for Voronoi
which is designed to take account of the irregularity. Inc¢hse of thanfa function, Bumpsand
Dopplerour performance is somewhat better and in these cases misvgaat more surprising that
the compression performance of our methods with jitter teebeéhan even regular wavelets with
no jitter.

With small, or no, jitter, regular wavelets perform betthar Voronoi lifting onBlocksand
Heavisine The latter signal is mostly very smooth, the former is bloekd the Haar wavelets
adapt extremely well.

We have also drawn similar plots but retaining more coeffisi@nd the conclusions are broadly
the same. The overall conclusion we draw from this plot isfibvadata that are reasonably irregular
our Voronoi lifting methods are no worse than Daubechieseles, and sometimes much better.
In reality it would not, in any case, be possible to use Dahlescwavelets as one would not know
how to map irregular data back to a grid and/or one might neé lthe correct number of points
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unless the data were obviously only slightly jittered. Heereit is somewhat reassuring to learn
that our methods have compression abilities broadly inwitk regular wavelets.

6 Bayesian shrinkage
Now consider the following model of observations subjeatddse:
Zi = f(ti) + €, (25)

where the noise; are independen (0, 02) random variables. The grid locations are irregular but
considered fixed for the purposes of the analysis. Waveksdamoothing algorithms estimate
by taking an appropriate wavelet transform, modifying tbefficients in order to reduce noise, and
finally inverse transforming the updated coefficients. Biseaof the notion that the wavelet trans-
form of the unknown function is likely to be in some sense femmical’, some form of thresholding
or shrinkage procedure is used to process the observedciemtffi Soft and hard thresholding are
the best known thresholding methods, but more sophisticgtienking may follow (among others)
from a Bayesian analysis of the noisy coefficients.

6.1 Prior model and posterior density

The essence of the thresholding problem is the followingopdae we have a parameteand an
observationZ ~ N(6,1). In the wavelet smoothing casé,would be an individual coefficient
rescaled so that the empirical coefficient had unit variaf@dowing papers such as, Clyeé¢al.
(1998), Abramovichet al. (1998) and Johnstone and Silverman (2004) the assumptad th a
coefficient from an economical expansion is modelled bygisimixture prior for of the form

0~ (1 —m)dp + 7y (26)

where~ is a symmetric density.
Johnstone and Silverman (2004) explore the advantagesnyf aseavy-tailed density foy,
such as the density

y(w) = (2m) 2L — Jul @ (Jul) /é(w)} (27)

where@(u) is the upper tail probability of the standard normal disttibn. This density has tails
that decay as 2, the same weight as those of the Cauchy distribution. Ferr#zson we refer to
the density (27) as thguasi-Cauchydensity.

Suppose ~ (1 — m)dg + 7y andZ ~ N(6,1). Johnstone and Silverman (2004) set out
details of the calculation of the posterior densftyf|Z) and also of the marginal densify(Z) =

JAQ = m)do(u) + my(u)}é(z — u)du.

6.2 Bayesian decision rule: posterior median

Once we have the expression for the posterior denfity, we have various choices of possible
point estimates of. The posterior mean

0=EW0|Z==z)
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Figure 3: Compression abilities of Voronoi lifting and réypu2D Daubechies wavelets. Key: solid
line: Voronoi lifting with jitter=0.1; dashed line: Voromdifting with jitter=0.001. O=Daubechies
wavelet with no jitter; A=Daubechies wavelet with jitter801; C=Daubechies wavelet with jit-
ter=0.1. For all plots Daubechies extremal phase wavelbt2wanishing moments was used apart
from Blockfuncwhere we used Haar wavelets.
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is a popular decision rule but it lacks the thresholding prop UnlessZ = 0 the estimate will be
non-zero, which does not accord with the notion that thefuefit may well be zero. An alternative
is the posterior mediaﬁ(z), satisfyingF9|Z:Z(§) = 0.5. With the quasi-Cauchy distribution for,
this leads to a tractable expression¢t) in terms of the standard normal distribution function and
its inverse. See Johnstone and Silverman (2005a) for sl@iadl for a computer implementation.

The posterior median rule is a strict thresholding rulehvtiite property that, for any given,
there is a threshold(7) such that)(z) = 0 if and only if |z| < 7(r). An alternative to the use
of the full posterior median is to use hard or soft thresh@dwith thresholdr (7). The smaller
the probabilityr the larger the threshold(r), and the choice of prior probability thatf # 0
corresponds to the choice of threshold. It is this choicew®aconsider next.

6.3 Estimating the parameters (MLE)

Suppose that we have sequergef coefficients and a sequence of observatighns- N (6;,1),
fori =1,2,...,n. Suppose, initially, that the; have independent prior distributions (26) all with
the same value of and that the observatiorns; are themselves independent conditional on the
;. Let g be the convolution ofy with the standard Normal density, so that the marginal dgias$i
the Z; is (1 — m)¢(z) + mg(z). Johnstone and Silverman (2004, 2005b) explore attractaetipal
and theoretical features of a marginal maximum likelihopdraach to the choice of, wherer is
chosen to maximize the log likelihood

() = Z log{(1 — m)¢(2i) + mg(2i)}

This procedure is an empirical Bayes approach. First otfadlwhole data set is used to estimate
the parameterr. The estimated value is then used as a prior probability ennttodel (26) and
the inference carried out for each coefficient separataty.ttieoretical and practical reasons, the
maximisation is usually carried out over a rangerdbiounded below at a point corresponding to
the threshold taking the ‘universal threshold’ valye log n.

In the case of a classical orthogonal wavelet estimate,db#icients are arranged into levels,
and it is appropriate for the probability to be constant within levels but to be allowed to vary
between levels. To this end, each level of the transformesté&d separately by the marginal max-
imum likelihood method, and an estimated parameteis obtained for each level. Typically,
the parameter decreases as the resolution increases. e of the transform corresponding
to fine-scale effects, the prior probability is small and an observed coefficient has to pass a high
threshold in order not to yield an estimate of zero. At theseascale levels, a smaller threshold
will usually be appropriate.

In the lifting case, for example, the division into ‘dyadievels is no longer appropriate, and
instead one of a number of other possible approaches canrbeedu Overall, it can be assumed
that the prior used for coefficiefit has probabilityr; of being nonzero. The criterion for choosing
them; is still the maximization of the marginal log likelihood

Umy,. .. ) = Z log{(1 — m)(z) + mig(z)}.

but subject to appropriate constraints on the parameters
Various different possibilities arise, for example



Multiscale methods for graphs and irregular multidimenalalata. 22

Parametric dependenceThe coefficients are constrained to belong to a particuladonensional
parametric family. For example, for the lifting scheme ornighthconstrainr; to be propor-
tional to the scaley;, or perhaps to some power. This accords with the notion that there
are singularities of some sort in the underlying functiohth& singularities are pointsy;
is proportional to the probability of the wavelet encouimtgrone of these singularities. For
line singularities a more appropriate model for this prolitsitis a}/z, and so on for spaces
of singularities of different fractal dimension.

Artificial levels This approach is an adaptation of the dyadic structure ofstaedard discrete
wavelet transform. One splits up the coefficients into lewelsome arbitrary way, and one
possibility is simply to impose an artificial dyadic splitjtivthe highest level containing
the half of the coefficients with finest scale, and subsedyé&wer levels successively one-
guarter, one-eighth, and so on of the total number of coefftsiin the order defined by the
lifting scheme. An alternative is to group the coefficiemtising account of the values of their
pseudo-scales. For examplenif is the median scale of the coefficients, then levels could
be defined with coefficients with scales in rang&kg, 2/~ ag) for j > 1, with the highest
level consisting of all those coefficients with scales uprtd scludingcy.

Parametric dependence within artificial levels The simplest approach using artificial levels is to
constrainm; to be constant within levels. An alternative is to allow agmaetric dependence,
for exampler; proportional thj/ 2. with a constant of proportionality that is allowed to
depend on the level. Finally, whatever method is chosenayt be appropriate to smooth or
interpolate the estimaterd.

Monotone dependenceConceptually the simplest constraint on thewould be to require only
thatm; increases as the individual scalgincreases. Because of the convexity properties of
the log likelihood function, estimation af; subject to this constraint can be carried out using
an iteratively reweighted least squares isotone regnesdgorithm. Part of the standard
theory of least squares isotone regression is a convexgiynagnt showing that the least
squares isotone regression function is piecewise consfemt same argument shows that
the resulting estimated; are also piecewise constant functions of the scajesnd so this
method indirectly splits the coefficients up into levelsthwtonstantr; within each level.
Further details are available from Johnstone and Silver(@@@5b). See Figure 4 (Bottom
right) for an example of using such an algorithm.

The calculations for maximizing the log likelihood are &aset out. Define
Bw) = {g(w) — d(w)}/d(w) = w2(e*/? 1) - 1.
Then, by simple calculus, we have

6£ o ﬁ(zl)
om;  1+mB(z)

which is a decreasing function af. Obviously we always constrain, < 1. In addition, to avoid
excessively high thresholds, and in line with the theoryetigyed in Johnstone and Silverman
(2004), we impose a lower limit om; corresponding approximately to a threshold value equal
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to the universal thresholg/2 logn. For simplicity, we choose the lower limit;, to satisfy the

condition
P(0; =0|z; = \/2logn) =1/2

which is equivalent to setting
Tt =1+ (n—1)/(2logn).

Details of the algorithms used to make the constrained mamitlikelihood choice of ther; for
the parametric and monotone dependence cases are set obhgtahe and Silverman (2005a).

6.4 Parametric dependence within artificial levels

Full details of the parametric dependence algorithm canoob@d in Johnstone and Silverman
(2005a). We consider the modifications necessary to adappribcedure to the artificial levels
case for lifting.

General setup: Suppose we have data for i = 1,...,n, and consider the basic model
m; = ¢;C wherec; are known constants. In order to enforce the constraits m; < 1 we refine
this to

7i(¢) = mediaq{m, ¢;¢, 1}. (28)
Letting g be the convolution of with ¢, the marginal log likelihood function is then given by

4Q) = 2 logl[{1 = mi(Q)}(z) + mi(Q)g(=)] (29)

By the definition ofr; there is no loss of generality in consideria@nly over the interval

[mio(max ;) ", (min ¢;) ™' = [Go, Chal,

say. If < (, then all ther; will be 7, and if { > (3; the all ther; will be 1, regardless of how
far outside the interva] lies.

For artifical levels: All of the artificial levels cases reduce to the same generahf Within
a particular levell, we have (28), where; are known constants such as 1@;5/2, and( is a
parameter to be estimated. The likelihodg, for the levell is now (29) but where the sum is now
overi € L.

In the straightforward artificial levels case, all the= 1, and/, is a concave function af in
[710, 1]. We have

CE(C) = Bz /{1 + ¢B(=)},
il

a decreasing function af. By checking the signs of.(¢) at the ends of the range it can be
discovered whethef(¢) has its maximum at one end or the other; if not, a binary seanctie
decreasing functiof . (¢) will find the maximum likelihood estimate.

If the ¢; are not all the same, then we apply the ‘parametric depeedapproach within each
artificial level as described in Johnstone and Silvermag%ap
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7 Examples and comparisons

7.1 Multiscale lifting for krill data

Background.Goss and Everson (1996) report that as a by-product of a fisk assessment study
an opportunity was taken to estimate the biomass of Antaketil on the South Georgia shelf by
the British Antarctic Survey (BAS). Goss and Everson (1996é)e that krill biomass determination
is important because they are basic part of the “food weblll &re consumed by large numbers
of birds, mammals and fish but it is also increasingly beinyésted for both human and animal
consumption. As well as potential over-fishing krill stoeis also under pressure from a variety of
other sources such as sea temperature rise or increasedrg¥gimn of sea water.

Since the study was a by-product of another study the sagpliints took little account of
the expected distribution of krill. Indeed, stations westested for the fish abundance study and
the shortest overall track was selected that visited alhefdampling stations. Figure 1 shows a
selection from the transects and the sample values of &kt along it. Figure 4 shows a different
portion of the krill data subjected to regression analysaequlifting with trees using both least
squares coordinate and inverse distance weights. Figurevéssestimates obtained using Voronoi
lifting.

Fitting. For all of the regression estimates a small proportion ofllsnegative values were
replaced by zero. In all estimates a lot of the original zestadvalues have been replaced by
very small intensity values. In Figure 4 it is interestingriote the differences between the two
estimates around the [175km, 262km] location. The estirbated on the MST estimates some
“lumps” of intensity, whereas the one based on the ship& gatimates small intensities following
the ships path. There are at least two reasons for theseetiffes: (i) the ships track only uses
neighbours from the previous and next sample in the trackedsethe MST algorithm will use
nearest neighbours irrespective of the track; (ii) thel ttae that the ship takes to cover points
in the region (within a 25kmbox centred on [175, 262]) is approximately 12 hours and ke s
crosses near to the centre about 5 times and the actualdmility over this time may change.

With regards to the second point if the density field of a sysesubject to rapid change then
maybe the estimate that follows the ship’s track would beemeliable. Otherwise, if the field is
slowly changing then estimates that take more account ajrgebical spread, like the MST, or
even Voronoi might be more appropriate.

Model Verification.Let us take the MST lifted using least squares coordinatglhtgianalysis
further. The estimate from this procedure is shown in therigipt of Figure 4. We examined the
residuals from the fit and discovered that the residuals \@ppgoximately normally distributed
(both by inspecting a histogram and through a KolmogorowrSma testp-value of 0.18) with a
standard deviation of about 11.4. The variance of the ratsdappears remarkably constant over
the plane. All of this indicates a very good fit to model (1).

Comparisons.Our results are in direct contast to results generatelddgsand the MATLAB
‘triogram’ function. Both of these methods did not deal wille ‘clumpiness’ of the krill data
at all well. Both methods smoothed out some features andedhisthers completely. Hence the
residuals also did not look satisfactory either. Theselt®soncur with our simulated comparisons
in section 7.3 below.

Physical Interpretation.Figure 5 shows the piecewise constant thresholds which emneed
from the piecewise constant weight estimatearising from the monotone dependence constraints
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Figure 4. Analyses of selected portion of krill data set. c@mradius (not Bottom Left) encodes
square root of krill density estimate in grft largest value is 14981gm. Top left: krill den-
sity supplied by BAS. Top right: MST lifted estimate with s#ssquares coordinate weights and
eBayesThresh applied to lifting coefficients at all scalgsttom left: circles indicate krill sample
locations, line indicates tree determined by ship transBottom right: ship-determined transect
tree lifted estimate using inverse distance weights angeskhresh with monotone dependence of
n
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Figure 5: Piecewise constant thresholds arising from theatome dependence constraints when
maximizing the marginal maximum likelihood far; for the Krill data fit at the bottom right of
Figure 4. Large thresholds are applied to finer scales.

that are applied to likelihood maximization described irct®m 6.3. The figure is particularly
interesting as the piecewise constant functions impliaiVide the scale space into a number of
data-defined resolution levelgFor those familiar with regular wavelet methods Figures &n
example of level-dependent thresholding but where thdugso levels are not fixed dyadic but
arise from, and depend on, the data). The smallest threstatiié is approximatelyt.6 x 10~
for the coarsest 345 coefficients. This means wavelet caaffecin scale ranges from 0.8km and
up are essentially not thresholded. Another way of intéimpgethis, familiar to wavelet shrinkage
researchers, is to say that 0.8km is the “primary resollutiBimer scales than this get monotonically
higher thresholds in band8.71,0.8), [0.58,0.71), [0.09,0.58) and less than 0.09. Figure 5 and
these bands statistically indicate that these is little mwariation in the ‘true’ intensity pattern at
less than 100m and there is reduced variation at less tham.60@is information could be then
cross-referenced with individual clusters of wavelet fiorits to provide estimated information
about particular cluster groupings and locations.

In summary, we obtain information in terms of the estimatealsoinformation on the variation
of the ‘true’ intensity via the thresholds.

Finally, the krill data distribution does not look partiadly Gaussian. Figure 6 shows two
more estimates using Voronoi based lifting with and withitnat log transformation. In future the
Haar-Fisz transform, see Fryzlewicz and Nason (2004) sela(R006) might be used.
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Figure 6: Krill density estimates computed using Voronaskesquares lifting with regular
eBayesThresh. Left: estimate on raw data; Right: estinmategtransformed data.

7.2 Multiscale lifting for rail network delay data

Figure 7 (top) shows a portion of the UK railway network camicating on main lines in the south-
west of England and South Wales. The station locations drgewgraphical positions but are a 2D
projection of a classical multidimensional scaling santcomputed from distances obtained from
a list of rail routes and inter-station distances compilgdhbtler (1999). In this example the graph,
which is not a tree, arises as an integral part of the data.

For each train scheduled to arrive at a station Network Rgibrts its estimated arrival time.
We assume that the reported delays are the actual delayectdjo additive error. The error is
due to a number of factors including the discrete natureairi tmonitoring points, trains making up
time, further delays occuring. Figure 8 (top) shows the ayerdelay for trains arriving into each
station at 1655 on 30th July 2004. Statiddisstol Temple Meads, Westbury, Gloucester, Exeter
andNewton Abbothave the largest average delays. Clearly there are manylatteks of network
similar to this one for which it is useful to estimate the attelays or other statistics.

Figure 8 (bottom) depicts the estimated average delay atsgtation using network lifting with
inverse distance weights and the monotone dependencéaeleic|{ r; } as described in section 6.3.
Figure 7 (bottom) shows the residuals from this fit.

A picture (not shown) of the lifting (wavelet) coefficient$ the raw data in Figure 7 tends
to characterise discontinuities in a similar way to, e.ge 2D regular wavelet transform often
highlights edges in images. So, for example, in FiguiBristol Temple Meadéas a very high
average delay but the surrounding stations have a low valdé&@nce a spatial discontinuity exists
at this location. On a picture of the lifting coefficients sleacoefficients immediately surrounding
(but not including)Bristol Temple Mead®rm a circular ridge that characterises the ‘edge’ between
the large delay afemple Meadand the small delays in surrounding stations.

There are many other interesting tasks that one might censising this new ‘wavelet trans-
form’ for graphs rather than using the raw data on the nodesorine situations it might be advanta-
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Table 1. Median (MAD) of 100 simulated sums of squares ereduas forloess , Tree based
lifting (pictree ) using coordinate information, and Voronoi based liftififf\orLS ). Jditter

n = 0.01, SNR=5,n, = 162, monotone dependence EBayesThresh000).

Signal Loess Tree \Voronoi

mfc 18 (1.6) 75 (46) 26 4

Doppler| 130 (5.9) 35 (26) 8 (1.0

Heavisine| 530 (49) 410 (200) 72 (20)

Blocks| 2300 (53) 190 (91) 160 (37)

Bumps| 3000 (160) 770 (500) 210 (32)

geous for information to be represented using the liftingfittients scale-location characterisation
rather than on the nodes directly. For example, propagatiiogmation throughout a network at
different scales, or forecasting future network behaviour

It would be inappropriate to replace the given rail netwardqdy with one calculated, say, from
just the inter-station distances since the computed eddgist mot correspond to actual rail lines.
Moreover, it does not really make sense to ask questionst dbewehaviour of the underlying
function over a region For example, it makes no sense to ask questions about tregaveelay at
a location where no station exists. Compare this to the #tath set where one can ask about the
density of krill in a location in the sea but not on the shijmsrect. However, it might make sense
to ask hypothetical questions about planned stations tigittroome to be. We discuss later the
methods of Heaton and Silverman (2006) that would permnstphédiction to be achieved.

7.3 Comparisons
7.3.1 Comparing our lifting methods with themselves andoess

We carried out a large simulation study with our new methauts @ompared them tlmess a
well-known statistical smoothing method using tRémplementation (see Cleveland and Devlin
(1988) for more information otoess , see R Development Core Team (2005) for R). We evalu-
ated these methods on 2D analogues ofBlaeks Bumps Heavisineand Doppler test functions
introduced by Donoho and Johnstone (1994) and the piecéinessr functionmfc. Pictures of
the test functions appear in Figure 9. Full mathematicahdifhs of these functions along with
comprehensive simulation results appear in Na=a. (2004).

Every simulation run was based on estimating one of the tegitibns on a jittered6 x 16
grid and adding iid Gaussian noise. Varying amounts ofrjiftistributed as Unif-n,n| for
n = 0.1,0.01,0.001, varying signal-to-noise ratios. Sensitivity to “primamsolution” (the num-
ber of points that get removed in the lifting transform) wsaexplored. We also explored the
performance of our different ways of carrying out our MLE a&sctibed in Section 6.3.

Table 1 shows a selection of results from Naebal. (2004). One can see that for the very sim-
ple piecewise linear functiomfc the loess procedure does very well, but the Voronoi liftisgot
far behind. For all other signals the lifting procedures dtidr or much better. However, note that
the performance for the tree based lifting is highly vaga@dhrge MAD values) this is because of
the fewer neighbours it uses in constructing neighbourg éXtellent performance of the Voronoi
based lifting is seen throughout all simulations. Primagotution does not appear to dramatically
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Figure 7: Top: diagram showing our selected stations and te@nections. Bottom: residuals
from the fit described in the text. Circles with lines oriehtt 45 are positive, those at 13%@re
negative. The largest residual in absolute siz8tiKeyneat 55 seconds. Axes are arbitrary from
multidimensional scaling.
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Figure 8: Top: Raw average delay data. Radius of each csgheoportional to average delay for
each station. Largest average delay is 15 minutdriatol Temple Meadgunfortunately). Bot-
tom: Network lifted regression estimate using inverseatise weights and monotone dependence
eBayesThresh. Largesstimatecaverage delay d@ristol TMis 14 minutes 28 seconds. Axes are
arbitrary from multidimensional scaling.
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Figure 9: 2D analogues of Donoho and Johnstone test fursctfenom top left clockwise: Doppler,
Heavisine, Blocksmfc(not an analogue), Bumps.

influence performance but small differences appear, eglbewiith the tree-based lifting. Likewise,
amongst all of the methods for carrying out MLE (all coeffidie parametric dependence, artificial
levels, parametric dependence within artificial levelsl amonotone dependence) there seems to be
no clear winner. Each method seemed to do better than thesatheoccasion. If forced to select
one method then monotone dependence usually seemed toldo wel

7.3.2 Comparing Voronoi lifting with Triograms

Hanseret al. (1998) introduced the triogram method for function estioratising piecewise linear,
bivariate splines based on an adaptively constructedgwiation (see also Koenker and Mizera
(2004) for a smoothing spline approach to triograms basetherDelaunay triangulation). We
compare our Voronoi lifting method to Triograms using theantreg package.

We used two test functions for this simulation study. Fiesirte the generic function:

gf(z,y, horizon) = (2z + y)I {horizon(z,y) < 0} + (10 — z)I {horizon(x,y) > 0}, (30)
wherel is the usual indicator function and then define horizons

horizon(z,y) = 3z — y — 1 andhorizonpg(z,y) = (x — 1/2)* + (y — 1/2)* — 1/16, (31)
and then our test functions are

mfa(z, y) = gf (z,y, horizona(z,y)) andmfb(z, y) = gf (z,y, horizonp(z,y)), ~ (32)
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Table 2: Mean averaged squared errors resulting from 50aiion runs for denoising afhfa and
mfb by triogram and Voronoi lifting method.

Functionmfa Functionmfhb

15dB 18dB ‘ 15dB 18dB
20.9 (0.04) 20.0 (0.04t 19.9 (0.04) 19.3(0.04)

Method
Triograms
\Voronoi

16.4 (0.02) 11.1(0.02) 14.3(0.03) 9.7 (0.02)

in words: two different piecewise functions defined on twifedent ‘horizons’ for each function
(one a line, the other a disc).

For each simulation run in this section we generated 1009) locations from a 2D uniform
density on[0, 1] x [0, 1]. We then generated noisy observations by adding Gaussisé wih two
signal to noise ratios (SNRs) of 18dB and 15dB. In each caspesermed 50 simulations. The
results are shown in Table 2 and indicate the superior pagoce of the Voronoi lifting method
for these functions and SNRsurther experiments show that for very low SNRs triogranthods
do better.

7.3.3 Comparing Voronoi lifting with thin-plate splines and kriging.

In recent work Heaton and Silverman (2006) compare our Marbiing methodology addition-
ally equipped with an imputation method with both thin-plapline and kriging methodology and
show that Voronoi lifting is competitive when compared togh methods, see Section 8 for further
information.

8 Conclusions and future possibilities

This article has described a variation on the lifting thetfidfting one coefficient at a time” and
specified a new multiscale methodology for non-paramegggassion in two or more dimensions.
Three types of lifting methodology are developed: liftinghthe Dirichlet tessellation using co-
ordinate information in two-dimensions, lifting with treand graphs using coordinate information
and lifting with trees and graphs using inter-point disemeformation. With these algorithms
“scale” naturally arises as a continuous concept and verdoapirical Bayes methods have been
invented that make use of the continuous scale knowledgeconsistent way. The compression
abilities of our techniques have been investigated and eoengell to the standard 2D wavelet
transform. We have also demonstrated the utility of ourrepkes both on the krill data (where
ships track information can optionally be used) and alsatexample where the underlying neigh-
bourhood network is prespecified (the rail delay exampl@)ain of this article is to provide a solid
framework for developing lifting “one coefficient at a timalgorithms. Subsequently we described
three main methods for applying to spatial data with andauitta predefined graph structure.

Clearly though, there is room for imaginative alternativegw ways of defining and using
neighbourhood structures, new integral definitions and waws of predicting points that get left
out.

A further innovation would be to choose from amongst différypes of predict and/or update
steps as each coefficient is generated. In generic liftingyithknown as ‘adaptive lifting’, see
Claypooleet al. (2003). For lifting one coefficient at a time adaptive liffihas been described in
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one dimension by Nunest al. (2006) who build on Jansegt al. (2001) and preprint versions of
this article by permitting a choice of regression orderggin quadratic or cubic) and/or number of
neighbours involved in prediction. Nunesal. (2006) provide a full literature review of adaptive
lifting. They also present the results of a comprehensimaukition study which shows that one-
dimensional adaptive lifting one coefficient at a time progki extremely good compression and
nonparametric regression results on irregular data wherpaced toLocfit (Loader, 1997, 1999)
the smoothing spline function in S-Plusnfooth.spline() and the regular wavelet algorithm
for irregular data introduced by Kovac and Silverman (20@)r methods can be developed further
to cope with heteroscedastic variance using ideas sinildwose proposed by Kovac and Silverman
(2000). This has already been done for the 1D implementatiaur lifting one-coefficient-at-a-
time by Nuneset al. (2006). The techniques of Kovac and Silverman (2000) colsld lae used to
cope with correlated errors: essentially an estimate ottheslation structure would be fed into
the variance estimation stage as described in section Zakurdlly, there are several other ideas
that might be tried.

As well as estimating values of a function (either on irregiyl spaced spatial data or on a
network) in the presence of noise from a given set of points might also wish to estimate the
function at a new set of points. For example, in a wireleswolt over time network nodes may
enter and leave a network for a variety of reasons such ag goiand out of radio range or as
a result of power saving considerations. Heaton and Silaar2006) describe a method that
imputes the value of the function at a set of sites given imfdion from another set of sites using
the Bayesian lifting model that we present above using thE&sampler. The demonstrate their
method successfully both on regularly spaced data usingléssical wavelet transform and also
on simulated and real data using our two-dimensional Varbfiimg that we describe above. In
particular, they exhibit good results for rainfall predlict at ‘new’ sites in the US using data from
the National Atmospheric Deposition Program (bég://nadp.sws.uiuc.edu ). For both
simulated and real data their results are competitve with kiiging and thin-plate spline methods
and in one of the three cases for the rainfall data the liftmgutation method is significantly
better. More in-depth simulations and comparisons neee foebformed to thoroughly expore the
utility of these methods. Other questions along these lieemin — for example, how to deal with
locations that disappear when one is modelling data stregtinrough time.

Another important possibility would be to more accuratelgdal the variance and correlation
between lifting coefficients ideally in a computationallffi@ent way. Such a possibility could
be incorporated into the empirical Bayes paradigm but s@fecomputational efficiency would
have to be dealt with. This train of thought also leads onéofétscinating possibility of defining
stochastic processes on the lifting coefficients themselwed additionally, defining a process for
the locationst;. For example, one might envisage developing a similar kinchadel to locally
stationary wavelet processes as introduced by Nasah (2000) using our lifting techiques, or,
defining a Markov random field model on the coefficients rathan in the data domain. Our
main aim in this paper is to introduce a new multiscale toaldmains where wavelets are hard or
impossible to use and show some examples of its use. Howkees, are many other situations that
might benefit from these new general tools.

This article introduces a new methodology which we believbd useful not only to statistics
but more widely to situations involving data on graphs anejular spatial data. However, we have
not, as yet, discussed any theoretical considerations.onirast to the cornucopia of theoretical
properties of regular wavelet estimators (e.g. near-agdtimsk bounds over wide function classes,
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oracle inequalities) there are several challenges to dewej similar theory for lifting, even for
dyadic lifting. Some obstacles to statistical advancencantbe traced back to well-known math-
ematical difficulties in determining the smoothness of fiors constructed by lifting, see, e.g.,
Daubechiest al. (1999), that the basis functions are now no longer dilatiodh anslations of a
single function (like in regular wavelets, see Swelden®7)p and that the bases are not guaran-
teed to be Riesz basis Additional statistical difficultiesuld be caused by the fact that the order
of points to be removed depends on the locatign@@nd for adaptive lifting the order additionally
depends on the function values themselves, see Netnals(2006)). In summary, it would be a
considerable challenge to develop a deep theoretical stasheling of our methods it is, of course,
an interesting topic for future research.
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