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Abstract

This article addresses the problem of denoising piecewise constant func-

tions by using both an jump-tolerant moving average and Haar wavelet

shrinkage. The piecewise constant functions are contaminated with Poisson-

like noise and are measurements of perceived itch by human subjects in an

experiment to relate perceived itch to bloodow in response to histamine

iontophoresis. We show that the translation-invariant wavelet transform

with universal wavelet shrinkage provides a fast and automatic method

for producing good estimates of the underlying perceived itch and that

the method is superior to the jump-tolerant moving average and standard

wavelet shrinkage. The article then looks in more detail at the noise struc-

ture of the signals and highlights some new wavelet techniques that might

be useful.
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Cet article adresse le probl�eme de denoising des fonctions par morceaux

constantes en utilisant un r�etr�ecissement brancher-tolrant de moyenne mo-

bile et de ondelette de Haar. Les fonctions par morceaux constantes

sont souill�ees avec Poisson-comme le bruit et sont des mesures de per�cu

d�emangent par les sujets humains dans une exp�erience pour associer per�cu
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d�emangent au bloodow en r�eponse �a l'iontophoresis d'histamine. Nous

prouvons que le ondelette traduction-invariable transforment avec le r�etr�ecissement

universel de ondelette fournit un rapide et la m�ethode automatique pour

produire de bonnes �evaluations du fondamental per�cu d�emangent et que

la m�ethode est sup�erieure �a la moyenne mobile brancher-tol�erante et au

r�etr�ecissement standard de ondelette. L'article regarde alors en plus d�etail

la structure de bruit des signaux et met en valeur quelques nouvelles tech-

niques de wavelet qui pourraient être utiles.

1 Introduction

This article addresses the problem of denoising piecewise constant functions. The
piecewise constant functions in this article are recorded signals where the sig-
nal level registers a subject's perception of itch. Simultaneous measurements of
bloodow are taken and the eventual aim of the experimentation is to measure
the extent to which perceived itch level is related to bloodow. Once the relation
is quanti�ed future itch measurements can be more reliably and easily measured
using bloodow measurements.

However, the piecewise constant functions which register the perceived level
of itch (controlled by a subject) are themselves measured in the presence of
noise. The functions need to be denoised before they can be related to bloodow
measurements and this article addresses only this problem. Section 2 describes
the experimental issues in more detail.

There are many ways in which piecewise constant functions can be denoised
see for example Spokoiny [14] and references contained therein. We describe two
here: one is based on adapting a moving average; the other is based on wavelet
shrinkage using Haar wavelets. Section 3 shows that the jump-tolerant moving
average method performs well, but only if its parameters are chosen manually and
di�erently for each signal. Section 4 describes wavelet shrinkage using the discrete
wavelet transform and shows how it performs well except for a noticeable Gibb's
e�ect near jumps. Using Coifman and Donoho's TI-transform [2] the over- and
undershooting e�ects almost completely disappear resulting in extremely good
estimates. Section 5 looks in more detail at the noise that is present with the itch
response data and makes suggestions about more advanced shrinkage methods
that could be used.

To keep this article self-contained we have included a brief description of
wavelets and wavelet shrinkage in Section 4. However, ours is a sparse description
and more comprehensive expositions may be found in Donoho et al. [6] or in
Nason and Silverman [13]. For more comprehensive discussions of wavelets see
Daubechies [3], Meyer [12] or Burrus and Gopinath [1].
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2 Itch response data

2.1 Introduction and background to data

In attempting to design personal products which give pleasing sensations to the
skin, it is important to develop a detailed understanding of the underlying physio-
logical and neurophysiological mechanisms which take place. One area of research
that aims to address this is the measurement of blood ow in the skin, in the
presence of certain chemicals. The chemicals can be used to produce various
common sensations such as itching, stinging and burning, so that links may be
drawn between the occurrence of these sensations and the behaviour of the blood-
ow. The use of wavelets in helping to analyse the results of these experiments
was investigated for the particular sensation of itch, but the procedure would be
similar for any sensation.

2.2 Experimental details

The sensation of itch may be stimulated by the presence of histamine. In order
that this is not confused with other sensations such as pain, it is necessary that
the histamine is brought under the skin `non-invasively'. In other words it should
not be injected. The method used is known as iontophoresis. A chamber �lled
with a histamine solution is placed in contact with the skin. Inside the chamber
are two electrodes, which are also in contact with the skin. When a voltage
is applied across the electrodes, an electric current will pass through the skin,
drawing histamine with it. Using this method it is possible to control the exact
dose of histamine which enters the skin by altering the voltage. The chamber is
approximately 3cm in diameter. As it is possible that the action of attaching the
chamber may itself cause itch, a period of several minutes is allowed to elapse
between attachment and application of voltage, in order for any such itch to settle
down. It is accepted that after this period the static presence of the chamber
on the skin will not cause itch. Further details about the methodology and
applications of iontophoresis are given in Harris [7].

These experiments test the hypothesis that the level of itch which a subject
feels is linked to the increase in blood ow around the skin area where the ion-
tophoresis takes place. To test this hypothesis, the blood ow and subjective itch
are measured simultaneously. The blood ow response signal or ux is measured
using laser Doppler apparatus.

Subjective itch is measured by the subject moving a slider along a poten-
tiometer. Two scales are used:

� Visual Intensity Scale (VIS) | a purely quantitative zero to one scale, on
which zero represents no itch, and one represents the most intense itch
imaginable by the subject. The subject is trained in the use of this scale
and operates the potentiometer continuously themself.
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Figure 1: Complete output for subject 11.2. Top left: blood ow at iontophoresis
site. Top right: blood ow at remote site. Bottom left: recorded itch intensity
VIS scale. Bottom right: recorded itch intensity VAS scale. The scale is \Time
in seconds/8" which means that t = 800 on the plot corresponds to 100 seconds
from the beginning of the experiment. These units are chosen by the recording
apparatus.

� Visual A�ective Scale (VAS) | a �ve-point qualitative scale, with the �ve
points representing descriptors such as annoying, unpleasant, painful. The
investigator operates the potentiometer, updating the reading every minute
by asking the panellist which of the descriptors best describes their present
feeling. For presentation these descriptors are ordered and translated to
points on a zero to one scale.

2.3 An example data set

Figure 1 shows an actual output from an iontophoresis experiment where the
iontophoresis is begun at t = 2000. Each experiment produces a set of four curves
all measured over time. Typically the ux (top line in �gure) and subjective
curves (bottom line) are very di�erent. The ux usually increases steadily after
iontophoresis, with a small amount of noise around the signal. The subjective
curves consist of almost vertical jumps, separated by horizontal plateaux | they
are approximately piecewise constant. There is a lot of very spiky noise around
the signal of the subjective data, mostly due to the recording apparatus. One
overall and eventual goal of our analyses is to link the ux data to the subjective
data: before this can be done successfully the VIS and VAS curves need to be
denoised. The next section considers two methods that might be appropriate.
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3 Methods for curve estimation

There are very many methods that can be used to estimate curves within the
presence of noise. Only a small proportion of these are suitable for curves where
it is known a priori that the curves contain discontinuities, such as with our VAS
and VIS curves above. To be of any use in our practical context our eventual
chosen method has to be completely automatic and fast. Many methods were
considered but since the curves seemed to be piecewise constant we ended up
considering two methods: one based on an jump-tolerant moving average; the
other based on wavelet shrinkage with Haar wavelets. Note there are still many
other competitors that we could have used such as local polynomials.

3.1 Adapted moving averages

We devised the following moving average method which was designed to preserve
large jumps and smooth out small ones. The moving average routine depends
on two user-de�ned parameters: smoothing width, m, and minimum jump size,
r, which are chosen subjectively. First de�ne

Ui;r = min
j
fj :j yi � yi+j j> r; j > 0g � 1 (1)

Li;r = min
j
fj :j yi � yi�j j> r; j > 0g+ 1: (2)

Then our jump-tolerant moving average ai is de�ned as

ai =
1

[min(m;Ui;r)�max(�m;Li;r) + 1]

min(m;Ui;r)X
j=max(�m;Li;r)

yi+j: (3)

The jump-tolerant moving average is best described with the aid of diagrams.

Suppose m = 5. Then for a given yi there are three possible ways in which
ai will be calculated. In general, the point yi itself, the previous 5 points and
the next 5 points are all used to compute ai. If all of these points are inside the
range yi � r (Case 1: see Figure 2) then they are all included in the average. If,
however, yi+3 say, were to fall outside the range yi � r (Case 2: see Figure 3)
then it would not be included in the average, and neither would any of the later
points. These later points are excluded even if some of them fall inside the range
yi � r (Case 3: see �nal point in Figure 3). (Note: If yi�3 was outside the range,
then it would be excluded from the average along with all earlier points).

The smoothing width, m, and the minimum jump size, r, are chosen subjec-
tively to obtain the best �t. The value of m determines the degree of smoothing
along the plateaux, while r determines the minimum jump between two consecu-
tive points that is considered as a step change rather than noise. When optimising
m, the assumption that the underlying signal is approximately piecewise constant
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Figure 4: VIS curve for subject 11.2: Raw data and moving average

means that within each plateau it is impossible to over-smooth the data, suggest-
ing that m may be chosen arbitrarily large. However in cases where the size of
the noise is close to the size of discontinuities in the signal, a smaller value of m is
advantageous as it reduces the smoothing out of these discontinuities. Also, the
algorithm becomes slow if large values of m are chosen. Choosing r can be di�-
cult: if it is too large then the routine smooths out discontinuities in the signal,
whereas if it is too small then the routine interprets noise as real discontinuities.
For a given signal it is usually possible to choose a suitable value of r by hand,
by manually assessing the size of the smallest discontinuity and estimating the
amplitude of the noise, then choosing r to be between these values. When the
size of the noise is close to the size of the discontinuities it is not possible to
choose an ideal value of r, and the e�ect of over-smoothing needs to be reduced
by choosing a small value of m as mentioned above.

The moving average routine proved successful in smoothing the noise from
the VIS curves whilst retaining the discontinuities in the signal. For example, see
Figure 4.

By choosing separate values of m and r for each subject it would have been
possible to achieve a very good �t in each case. However, this approach seemed
too complex and subjective, so an attempt was made to choose values of m and
r which could be used for all subjects. It was possible to choose values of m and
r which gave reasonably good results for all subjects, although it took some work
to �nd these. It would therefore be useful if the choice of these parameters could
be made automatic which is not easy.
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Furthermore, in cases where the amplitude of the noise was as large as the
smallest discontinuity (determined by observing where the signal exhibited a step
change rather than a short spike) the method su�ered from the problem that
there was no ideal value of r, and even reducing the value of m did not solve
this entirely. To summarise, there were two problems with the moving average
routine:

� not automatic | necessary to choose a suitable value of m and r for the
sample of curves, and in order to achieve a very good �t, necessary to
choose m and r separately for each curve. Would be advantageous to have
an automatic method, i.e. one which did not require any subjectively chosen
parameters.

� poor performance when the noise amplitude is greater than or equal to the
smallest discontinuity in signal.

These two problems with the moving average method indicated that it would
be worthwhile seeking an alternative \smoothing" method. The main require-
ment of this new method would be that it could perform as well automatically
as the moving average method performed with manual parameter selection. If
possible the method should be able to perform as well as the moving average
routine with parameters chosen separately for each curve, but certainly it should
be able to perform as well as the moving average routine with one set of param-
eters chosen for all the curves in the sample. It would be a bonus if the method
was able to reconstruct signals in the presence of noise whose amplitude was of
a similar size to the step changes.

4 Wavelet shrinkage

4.1 Introduction

Wavelet shrinkage is a beautifully simple method: the noisy signal is represented
as a wavelet expansion. The wavelet coe�cients are then shrunk and the resulting
expansion forms an estimate of the true, underlying signal. We only give the
barest details here. However, there are many papers describing the technique
notably the seminal Donoho, Johnstone, Picard and Kerkyacharian [6] but see
also Nason and Silverman [13] for a simple introduction.

In mathematical terms the wavelet shrinkage procedure goes as follows. We
assume that noisy VIS or VAS signals are generated on the interval [0; 1]. Suppose
that the true underlying function is given by f(t) and that the noisy signal, fyig

n
i=1

is given by the signal plus noise model

yi = f

�
i

n

�
+ �i (4)
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where f�ig
n
i=1 is a independent and identically distributed sequence of Gaussian

random variables with mean zero and common variance of �2. The basic wavelet
shrinkage method also assumes that n = 2J for some integer J , in other words
the number of data points has to be dyadic. Note also that model (4) only
includes data that are equally-spaced on a �xed design. More recent research work
has relaxed the restrictive design, number of data points and error distribution
assumptions and some of these are described in section 5.

Wavelets. As mentioned above the underlying function f(t) has a wavelet
expansion. This is similar to a Fourier expansion or an expansion in terms of or-
thogonal polynomials. The main di�erence is that the basis functions are wavelets
(small waves) and not sine/cosine or polynomials. The two basic building blocks
in our expansion for the VIS/VAS curves are the Haar scaling function given by

�(x) =

(
1 x 2 [0; 1]
0 otherwise

and the Haar mother wavelet given by

 (x) =

8><
>:

1 x 2 [0; 1
2
);

�1 x 2 [1
2
; 1];

0 otherwise

The mother wavelet and scaling function are subjected to translation and scaling
by factors of 2 (also called dilation). For example, we can simultaneously dilate
the mother wavelet by a factor of 2j and translate it by 2�jk for integers j and
k by forming

 jk(x) = 2j=2 (2jx� k):

Functions can be built out of scaled and translated mother wavelets and trans-
lated scaling functions at a particular scale j0. The following expansion is used:

f(x) =
X
k

ck�j0k(x) +
X
j�j0

X
k

djk jk(x); (5)

where
�j0k(x) = 2j0=2�(2j0x� k):

The equation is very suggestive and shows how the function f(x) can be con-
structed out of: shifted versions of the scaling functions at j0 | roughly speak-
ing representing the overall level of the function over x; and scaled and shifted
versions of the mother wavelets | roughly speaking representing the detail of
the function at di�erent scales. Expansion (5) is not restricted to Haar wavelets
it works for many di�erent classes of wavelets which sometimes have very spe-
cial and useful properties: such as vanishing moments, symmetry, orthogonality.
However, for our simple VAS/VIS functions Haar wavelets are ideal because they
exactly emulate the underlying piecewise constant nature of the curves.
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In all that follows assume that j0 = 0. The quantity j0 is often called the
primary resolution as it determines the �neness on which the expansion is based.
In real problems it is a parameter that needs to be chosen.

The discussion above describes the wavelet transform of a function f(x). How-
ever, our data, given by model (4) is actually discrete. Fortunately, there is a
simple discretized version of (5). The noisy data can be transformed into discrete
wavelet coe�cients d by

d = Wy (6)

where y = (y1; y2; : : : ; yn)
T are our data, and d is a n � 1 vector of wavelet

coe�cients (discretized versions of the ck and djk given in (5)). The discrete
wavelet coe�cients in d have a special pyramidal structure: there is only one c�
coe�cient, one d0� coe�cient, two d1�, and so on. This means that the coe�cients
can be written as a pyramid as0

BBBBBB@

c0
d00

d10; d11;

d20; d21; d22; d23
� � �

1
CCCCCCA

(7)

Indeed, there is a fast algorithm due to Mallat [11] that computes the discrete
wavelet transform using a \pyramid algorithm". The pyramid algorithm only
requires O(n) operations in contrast to the matrix multiplication in (6) which
requires O(n2). The Haar wavelets are a family of orthonormal wavelets and
consequently the transform matrix in (6) is orthogonal and hence the inverse
matrix is merely W T . Further, there is a fast, O(n) inverse algorithm as well.

Wavelet shrinkage The discrete wavelet transform of our y = f + � noise
model in (4) is

d = � + �;

where � = Wf . The noise � in the wavelet domain is also iid Gaussian with the
same variance as in the data domain because of the orthonormality of the trans-
form W . The main reason for using wavelet shrinkage arises from the following
heuristics:

1. the signal, f , (in this case the VIS and VAS curves) can be represented
e�ciently by few wavelet coe�cients, �, (in this case the VAS/VIS curves
can be sparsely represented by Haar wavelets)

2. since the noise is iid it will be statistically the same for each coe�cient.
In other words, the noise does not show any preference for any particular
coe�cient or set of coe�cients.

Therefore if the noise level is small enough then the wavelet transform of our
VIS/VAS curves will consist of a few large coe�cients (which come from the
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Figure 5: Raw VIS curve for subject 09.

signal plus noise) and many smaller coe�cients (which correspond to just noise).
An obvious way of recovering the true signal is to keep the large coe�cients and
remove any small ones. This technique is known as hard thresholding but there are
many variants. The concepts of large and small in this case are taken with respect
to the noise level � which is estimated. In these examples we taken the �nest
scale wavelet coe�cients and use the mean absolute deviation (MAD) estimator
of � divided by 0.6745 (this constant ensures a consistent estimator for Gaussian
data). Many methods have been created to choose a threshold value at which
smaller coe�cients are removed. In this paper we only consider two: universal
thresholding (or VisuShrink) and SUREshrink. Detailed descriptions of these two
techniques can be found in Donoho and Johnstone [4] and [5] respectively.

After shrinkage the transform can be inverted producing an estimate of the
true VIS or VAS curve.

4.2 A simple example

As an example of wavelet shrinkage we apply the technique to the data presented
in Figure 5 which contains the VIS curve for subject 09. VIS curve for subject 09
is simple as it clearly only contains one hump. The curve contains 8192 points
and was recorded over about 20 minutes. Curve 09's simplicity is useful because
if our methods work well on this simple curve then they should also work well on
more complicated examples.
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Wavelet Decomposition Coefficients
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Figure 6: Haar wavelet coe�cients for subject 09's VIS curve. Each level in this
plot has been magni�ed to its maximum extent so that you can see the structure.
If all coe�cients were to be plotted to the same scale then you would not see the
higher resolution coe�cients | they would be too small.

Figure 6 shows a plot of the coe�cients from a discrete wavelet transform of
subject 09's VIS curve. The plot shows the pyramidal structure of the wavelet
coe�cients: each small vertical line in the plot corresponds to a discrete wavelet
coe�cient. The horizontal axis in this plot corresponds exactly to the horizontal
time axis in Figure 5 (although they are labelled di�erently). The coe�cient
at the top (resolution level 0) is d00, those at resolution level 1 are d10 and
d11, and so on just like the pyramid in (7), except we have omitted to plot c0.
The coe�cients at the top are coe�cients of large-scale wavelets and those at
the bottom are coe�cients of the small-scale wavelets. Notice how there are
many more small-scale wavelets | basically because you can �t more in at that
resolution level and retain orthogonality between wavelets.

Our heuristics above are illustrated very nicely by Figure 6. The underlying
signal (the large hump) is exhibited in the large coe�cients at horizontal position
1450 and 2270 at resolution levels from 2 upwards. The \hump" is sparsely
represented by these coe�cients. The noise has actually spread out over all
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Figure 7: Haar wavelet coe�cients after hard thresholding using a universal
threshold. Each level in this plot has been magni�ed to its maximum extent so
that you can see the structure.

coe�cients fairly evenly. However, since the higher resolution levels have been
magni�ed (so that you can see them) the noise is clearest at resolution level 12).

Now we apply hard thresholding estimating the noise by using the robust
MAD-based estimate. Using universal thresholding we obtain a threshold value
of approximately 0.136. Any coe�cient smaller than this value in absolute mag-
nitude is removed | this results in a tableau of coe�cients depicted in Figure 7.
Notice how the procedure has successfully removed most of the noise. Finally,
to obtain our estimate we invert the hard thresholded wavelet coe�cients: the
estimate is shown in Figure 8. Note that the estimate is very good apart from
around the jump: here the estimate overshoots both at the jump up and jump
down. The next section describes how we used a more sophisticated wavelet
algorithm to produce a better estimate.
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somewhat inappropriately used because the noise is not homogeneous and the
thresholding methods above assume stationary noise. The noise is composed of
two di�erent types and wavelet methods that can be applied are described in the
next section.

5 A closer look at the noise

The noise structure was examined in closer detail by looking at small sections of
the VIS curve from subject 09. These are shown in Figure 10 and suggest that
the noise behaves in two distinct patterns depending on whether the underlying
signal is zero or positive.

First of all the data with zero signal was investigated. A plot of the �rst
thousand points is shown at the top of Figure 10. The noise appears to exist at
three distinct amplitudes:

� 0.01 itch units - these are very frequent

� 0.02 - around 1 of these spikes for every 100 data points

� 0.03 - only 1 in the whole data set

The data with positive signal was then investigated. On viewing a sequence of
1000 points from this section of the signal (bottom plot in Figure 10) it appeared
that the signal occured at a level of 0.145, and that there was noise at the following
amplitudes:

� 0.005 - very frequently.

� 0.015

� 0.025

On closer inspection it was revealed that the situation was slightly more com-
plex. The signal seemed to oscillate between the values 0.14 and 0.15. As well
as this oscillation there was noise of amplitude 0.01 in both directions and also
noise of amplitude 0.02, but this did not occur frequently and only occured in
the positive direction.

One possible explanation for the various amplitudes was that they were due
to human induced noise (i.e. hand shaking while operating the potentiometer)
and machine induced noise. However, human noise is unlikely to have a constant
amplitude so it could be due to di�erent types of machine induced noise, for
example di�erent amplitudes of feedback in the electrical circuitry. These possible
explanations were investigated further by recording the VIS curve without a
subject operating the potentiometer and it was found that machine noise was
responsible.
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Figure 10: V09 Non-interpolated: Two di�erent sections of 1000 points.

The added noise is clearly discrete in nature and it is possible that the Poisson
distribution (or some close variant) might be suitable for modelling it. Indeed,
most wavelet shrinkage models (including the ones we used above) assume ad-
ditive normally distributed errors which is certainly not the case here (and the
models do not assume a discrete process whose intensity might be piecewise con-
stant). Kolaczyk [9] provides a more detailed description of what to do in certain
cases of Poisson noise, although this extension is beyond the scope of the present
paper. Indeed, empirically the variance of the noise does not increase with the
mean so strict Poisson noise is unlikely. However, since we know the amplitude
and form of the noise it is quite easy to choose a threshold value. Since we are
using Haar wavelets we can easily compute the size of the largest Haar wavelet
coe�cient due purely to the noise (since we know the size of the smallest noise
spike). Choosing the threshold like this results in a threshold of 0.022. This
produces an acceptable estimate, although a few noise spikes are erroneously
retained. Figure 11 shows a denoised version of the �rst 8192 observations of
VAS recording in the bottom right of Figure 1 | the denoising was carried out
using the TI-transform, with universal thresholding and using the MAD-based
estimate of noise level estimation. This shows that although the noise structure
is not normally distributed the TI-method for normal noise is reasonably robust.
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