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Abstract

We propose a new approach to wavelet threshold estimation of spectral densities of station-
ary time series. Our proposal addresses the problem of heteroscedasticity and non-normality of
the (tapered) periodogram. We estimate thresholds for the empirical wavelet coefficients of the
periodogram as appropriate linear combinations of the periodogram values similar to empirical
scaling coefficients. Our solution introduces “asymptotically noise-free reconstruction thresh-
olds” which parallels classical wavelet theory for nonparametric regression with iid Gaussian
errors. Our simulations show promising results that clearly improve on existing approaches. In
addition, we derive theoretical results on the near-optimal rate of convergence of the minimax
mean-square risk for a class of spectral densities, including those of low regularity.
Key words: spectral density estimation, wavelet thresholding, wavelet-Fisz, periodogram,
Besov spaces, smoothing.

1 Introduction

The estimation of spectral densities is a fundamental problem in both theoretical and applied
time series analysis (Priestley (1981)). Typically, inference in the spectral domain uses the
periodogram of the data xt. A data taper is often applied prior to periodogram computation
in order to reduce leakage (Dahlhaus (1983)). The (tapered) periodogram is an inconsistent
estimator and needs to be smoothed to achieve consistency. For highly regular spectral densities
linear smoothing techniques (e.g. kernel smoothing) are appropriate, see e.g. Brillinger (1981),
Koopmans (1995) and Shumway and Stoffer (2000). Multiple tapers lead to, both leakage-
reduced and smoothed, multitaper spectrum estimators, see e.g. Cristan and Walden (2002).

However, linear smoothing methods are incapable of achieving the optimal mean-square rate
of convergence for spectra whose smoothness is distributed inhomogeneously over the domain of
interest, and a need for non-linear methods arises. An interesting example of a highly irregular
spectral density (which satisfies all our technical assumptions specified later) is given e.g. in
Neumann (1994), Section 8, item 2. Nonlinear methods also have benefits for spectra with
multiple (sharp) peaks and troughs. Two nonlinear methods for spectral density estimation
were recently proposed by Comte (2001) and Davies and Kovac (2004).

In the “function + iid Gaussian noise” regression model, wavelet thresholding, first pro-
posed by Donoho and Johnstone (1994), has become the nonlinear smoothing method of choice.
However, the periodogram approximately follows a multiplicative regression set-up where the
“noise” variance is proportional to the level of the underlying spectral density. This is a hurdle
for nonlinear wavelet thresholding, where the noise variance needs to be either known or easily
estimable. To tackle this problem, two main approaches have been proposed in the literature.

The first approach took the log transform of the periodogram to stabilize the variance, and
only then proceeded with the wavelet smoothing, see e.g. Gao (1993, 1997), Moulin (1994) and
Pensky and Vidakovic (2003). The “price” for using the log transform is that it flattens out
the data, often obscuring interesting features, such as peaks or troughs. Also, the resulting
exponentiated estimators of the spectrum are biased, and even after the bias correction, their
mean-square properties are not easy to establish.

The second approach (Neumann, 1996) consists in pre-estimating the variance of the peri-
odogram via kernel smoothing, so that it can be supplied to the wavelet estimation procedure.
As with other plug-in estimators, the question of the choice of the pre-estimation procedure and
its parameters arises. Also, kernel pre-estimation may not be appropriate in cases where the
underlying spectral density is of low regularity.

To overcome the drawbacks of the above log-based and plug-in estimators, we propose a new
nonlinear wavelet technique for periodogram smoothing, where the empirical wavelet coefficient
thresholds are built as appropriate local weighted l1 norms of the periodogram, as opposed to
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the l2 norm used in Neumann (1996). Section 2 explains that the use of the l1 norm is motivated
by the fact that, asymptotically, the mean of the periodogram is equal to its standard deviation.
Also, unlike Neumann (1996), we avoid kernel pre-estimation of the spectral density. Our
approach yields a rapidly computable, mean-square consistent estimator which performs well in
practice. Also, it permits the construction of noise-free reconstruction thresholds which produce
visually appealing estimates and offer particularly impressive empirical performance.

2 Set-up and motivation

2.1 Problem set-up

Assume that we observe a sample path {Xt}Nt=1 of a real-valued, zero-mean, second-order sta-
tionary process {Xt}∞t=1. Our aim is to estimate the spectral density

f(ω) =
1

2π

∞∑

s=−∞

cov(Xt, Xt+s) exp(−iωs), ω ∈ [−π, π].

We place the following assumption on f .

Assumption 2.1 The spectral density f(ω) satisfies (i) f(ω) ≥ µ > 0, (ii) f is continuous and
of finite total variation over [−π, π].

Assumption 2.1(i) is essential in obtaining strong asymptotic normality of the empirical wavelet
coefficients of the periodogram of Xt. Assumption 2.1(ii) is a mild smoothness assumption on
f . We also place the following technical assumption on the process itself.

Assumption 2.2 Assume

sup
1≤t1<∞

(
∞∑

t2,...,tk=1

| cum(Xt1 , . . . , Xtk)|
)

≤ Ck(k!)1+γ ,

for all k = 2, 3, . . ., where C is a generic positive constant and γ ≥ 0.

As in Neumann (1996) Assumption 2.2 implies, uniformly over t, asymptotic normality of the
(appropriately scaled) local cumulative sums of Xt. By Remark 3.1 in Neumann (1996), if Xt is
α-mixing at an appropriate rate and its marginal distribution is Gaussian, exponential, gamma,
or inverse Gaussian, then γ can be set equal to zero. For heavier-tailed distributions, a positive
value of γ might be required.

Our nonparametric estimator is based on the periodogram of the (possibly tapered) data

IN (ω) = (2πH
(N)
2 )−1

∣∣∣∣∣

N∑

s=1

h (s/N) Xs exp(−iωs)
∣∣∣∣∣

2

,

where H
(N)
k =

∑N
s=1 h

k(s/N) and the taper function h(x) : [0, 1] → R satisfies the following:

Assumption 2.3 The function h is of bounded variation and satisfies H :=
∫ 1

0 h
2(x)dx > 0.

With this assumption, we obtain, in particular, that H
(N)
2 ∼ NH . Note that h(x) ≡ 1 yields

the non-tapered periodogram. We refer the reader to Dahlhaus (1983) for a discussion of some
interesting properties of tapered periodograms. A classical example of a non-trivial taper func-
tion is the so-called Hanning window (see e.g. Priestley, 1981, Section 7.4.1). It is well known
to reduce leakage effects which occur in spectra with a high dynamic range.
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2.2 Motivation for the wavelet-Fisz approach

Ignoring the edge effects, periodogram ordinates IN (ωk), computed at the Fourier frequencies
ωk = 2πk/N−π, k = N/2, . . . , N , are asymptotically independent and exponentially distributed
with means f(ωk) (see e.g. Brockwell and Davis, 1987, Section 10.3). With this in mind, we
demonstrate the mechanics of our estimation procedure on the following simplified model:

Jn(ωk) = f(ωk) ek, (1)

where {ek}nk=1 are iid Exp(1), and the means f(ωk) need to be estimated. The model (1) is
considered for pedagogical purposes: our rigorous results in Section 3 concern estimation in the
full model specified in Section 2.1.

As mentioned in the Introduction, we base our estimation theory on wavelets, without the
prior logarithmic transform. Model (1) can be rewritten as Jn(ωk) = f(ωk) + ε̃k, where ε̃k =
f(ωk)(ek − 1). Applying the Discrete Wavelet Transform (DWT), a multiscale orthonormal
linear transform, gives ϑ̃j,k = ϑj,k + ε̃j,k, j = 0, . . . , log2 n− 1, k = 1, . . . , 2j, and k = 1 for

j = −1, where j and k are (respectively) scale and location parameters, and ϑ̃j,k, ϑj,k and ε̃j,k
are the wavelet coefficients of Jn(ωk), f(ωk) and ε̃k, respectively. Drawing inspiration from the
“universal” threshold theory for Gaussian regression (Donoho and Johnstone (1994)), Neumann

(1996) estimates ϑj,k by ϑ̂j,k = ϑ̃j,kI(|ϑ̃j,k| > tj,k), where the thresholds tj,k are set equal to the
universal threshold tj,k = σ̃j,k

√
2 log n with σ̃j,k = {var(ε̃j,k)}1/2. In the simplified model (1),

each σ̃j,k is of the form

σ̃j,k =






Lj∑

l=1

ψ2
j,lf

2(ωl+τ )






1/2

, (2)

where τ is a shift parameter dependent on j and k, ψj are discrete wavelet vectors with support
lengths Lj . Obviously, f2 is unknown, and Neumann (1996) overcomes this by pre-estimating
f(ωk) via kernel smoothing, and uses this to obtain estimates of σ̃j,k to compute the universal
threshold. Although simple and intutive, this approach generates a number of questions.

Firstly, as mentioned in Section 2.1, the spectral density f may not be smooth as apart from
continuity (as a consequence of Assumption 2.2) we only impose the total variation constraint
on f . In this case, pre-estimating f via kernel smoothing might not be suitable in practice as
“irregularities” in f , such as cusps, sharp peaks or troughs, will be smoothed out. This is then
likely to affect the performance of the final estimator f̂ . Also, the kernel pre-estimator would
demand a choice of smoothing parameter, which might not be easy to select optimally (most
likely by a local bandwidth selection procedure, and hence costly).

To circumvent this, it may be advantageous to pre-estimate f(ωk) in (2) by the inherently
local estimate Jn(ωk). To our knowledge, this approach has not been considered in literature.
With this approach, the estimated σ̃j,k is simply a local weighted l2 norm of {Jn(ωk)}k.

Our wavelet-Fisz methodology is inspired by this observation, but instead of the local
weighted l2 norm, it estimates thresholds using a local weighted l1 norm of {Jn(ωk)}k. The
heuristic reason for this is as follows. As the wavelet vectors ψj are compactly supported and
well localised, and the function f(ω) is likely to be “mostly smooth” (possibly with occasional
irregularities), the hope is that for most values of j and k, the function f(ω) can be well ap-
proximated by a constant over the support of ψj . Denoting the approximating constant by
fj,k, and using the fact that ‖ψ2

j‖2 = 1, formula (2) implies that σ̃j,k is approximately equal to
fj,k. Thus, estimating σ̃j,k is approximately equivalent to estimating the constant fj,k, which is
simply the local mean of an iid exponential sample. Because the maximum likelihood estimator
of the mean (= standard deviation) of an iid exponential sample is the sample mean, rather
than the sample standard deviation, we propose to estimate thresholds as a local weighted l1
norm of {Jn(ωk)}k, rather than the local l2 norm. Another way to think of this is that since
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fj,k (≈ σ̃j,k) is the value of a spectral density, it is the most naturally pre-estimated by a local
average of the periodogram, which is an l1-type estimate. Because of the above link to maximum
likelihood estimation, the hope is that this provides a ‘better’ estimator. In fact, this argument
can be extended to spectral densities which are Lipschitz-continuous. Indeed, it can be shown
that for such spectral densities, estimating (squared) thresholds t2j,k using our l1-based estimator
asymptotically reduces the Mean-Square Error (in comparison to the l2-estimator) by 20%.

The added benefit of using the local l1 norm, as opposed to l2, is that it permits the construc-
tion of noise-free reconstruction thresholds, see Section 4. In addition, as with other l1-based
estimators, our threshold estimators are less sensitive to outliers than the l2 estimators, as well
as involving lower moments of the periodogram, which makes then potentially less variable.

The idea of using a local weighted l1 norm also underlies the Haar-Fisz estimation theory,
introduced by Fryzlewicz and Nason (2006) and Fryzlewicz et al. (2006) for other multiplicative
models, namely for evolutionary wavelet spectrum and locally stationary volatility estimation,
respectively. A fundamental novelty of our approach is that we use general wavelets, as opposed
to the Haar wavelets used in the latter work. This generalisation is essential as it permits
us to include some commonly encountered spectral densities (such as those corresponding to
AR processes) in our estimation theory, which would not have been possible had we just used
Haar wavelets (we remind the readers that Haar wavelet estimators produce piecewise-constant
reconstructions, and since spectral densities corresponding to AR processes are continuous, it is
“more optimal” to use continuous wavelets to estimate them). On the other hand, more general
wavelets require the use of different proof techniques. We also note that Haar-Fisz estimation
was first proposed by Fryzlewicz and Nason (2004), albeit in the non-multiplicative context of
Poisson intensity estimation.

3 Wavelet-Fisz spectral density estimation

3.1 Preparing the asymptotic set-up

In order to demonstrate asymptotic mean-square consistency of our proposed estimator, we
embed our approach into the appropriate framework for theory, i.e. using orthonormal wavelets
defined as continuous square-integrable functions over a unit interval. For what follows we mean
our wavelet bases to be 2π−periodic and defined on the [−π, π] in the (periodised) frequency
domain, as both our target function to estimate and our estimators themselves are 2π−periodic.
In order to keep our presentation sufficiently simple, we will use a notation with a “classical”
wavelet basis; details of how to periodise it can be found in, e.g., Daubechies (1992).

Assumption 3.1 {φ0,k}k ∪ {ψj,k}j≥0;k are chosen to form an orthonormal basis of L2[−π, π],
where the functions φ and ψ satisfy, for any r > m (with m ≥ 1 given by Theorem 3.1 below),

(i) φ and ψ are in Cr (which implies that they have finite total variation over [−π, π]),

(ii)
∫
φ(x) dx = 1, and (iii)

∫
ψ(x)xl dx = 0 for 0 ≤ l ≤ r.

As usual in multiscale wavelet theory, we use the notation gj,k(x) := 2j/2 g(2j x − k), where
g = ψ, φ, so that the scaled and shifted functions ψj,k and φ0,k are all normalised to square-
integrate to one. The indices j and k are “scale” and “location” parameters, respectively.

To set up the notation for our wavelet threshold spectral estimator, let

f̂(ω) =
∑

k

α̃k φ0,k(ω) +
∑

(j,k)∈JN

ρ(.)(α̃j,k, λj,k) ψj,k(ω) , (3)

where ρ(.)(α, λ) is the hard or soft threshold rule applied to the coefficient α using threshold
λ, and the empirical and true wavelet coefficients are defined as α̃j,k =

∫
ψj,k(ω)IN (ω)dω,

α̃k =
∫
φ0,kIN (ω)dω, αj,k =

∫
ψj,k(ω)f(ω)dω and αk =

∫
φ0,kf(ω)dω, respectively.
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As in Neumann (1996), we define JN = {(j, k) | 2j ≤ C N1−δ} for some δ > 0; thus, the

estimator f̂(ω) includes a growing number of coarsest scales j, and excludes a growing number
of finest scales. This implies that the number of wavelet coefficients used for thresholding is of
order N1−δ, which is less than O(N), and is done to ensure that a certain uniform asymptotic
normality effect holds. The parameter δ is chosen so that

∑
(j,k)/∈JN

α2
j,k = O(N−2m/(2m+1)),

which is the appropriate rate of convergence to zero of the squared bias due to the encountered
approximation error. As will be seen from equation (4) below, the choice of 0 < δ ≤ 1/3 and an
arbitrary C <∞ is sufficient, for our special case of m ≥ 1, p ≥ 1 as considered in Theorem 3.1.

3.2 Construction of the wavelet-Fisz thresholds

As thoroughly motivated in Section 2.2, we use estimated thresholds which are “local averages”
of the periodogram. More specifically, we propose the choice λ̂j,k = θ̂j,k

√
2 log(#JN ), where

θ̂j,k = cN
∫ π
−π

κj,k(ω) IN (ω)dω. With this choice, our estimator becomes

f̃(ω) =
∑

k

α̃k φ0,k(ω) +
∑

(j,k)∈JN

ρ(.)(α̃j,k, λ̂j,k) ψj,k(ω) .

For technical reasons, we take cN =
√

2π/N H4/H2
2 =: cN−1/2. The κj,k are nonnegative

functions on L2[−π, π] which are normalised to integrate to one, and hence can be viewed as
“local averaging” the periodogram IN (ω). Specifically, we set κj,k(ω) to be the “mod-wavelets”,
defined as follows: κj,k(·) := 2j κ(2j · −k), where κ(ω) := |ψ(ω)|/

∫
|ψ(ω)|dω. This choice of

κj,k is motivated by the derivation of the “noise-free reconstruction thresholds”, see Section 4.
In Section 2.2, emphasis was laid on the fact that, heuristically, the standard deviation of

the wavelet coefficients (which thresholds should be proportional to) is “at the level” of the
spectral density at the corresponding location, and is thus best estimated via local averaging of
the periodogram. Our estimated thresholds λ̂j,k do precisely that: since

∫
κj,k(ω)dω = 1, the

parameters θ̂j,k can be interpreted as local weighted averages of the periodogram at scale j and
location k. In practice, the above integrals are replaced by sums, as in (7) below.

3.3 Near-optimal rate of mean-square convergence

Assume that the spectral density f lies in a ball F of a Besov space Bmp,q (with m, p ≥ 1). For
details on Besov spaces in the wavelet thresholding context see e.g. Donoho et al. (1995). In
this context, it is known that for the wavelet coefficients αj,k of f in any ball F of Bmp,q,

sup
f∈F

∑

j>J

2j−1∑

k=0

α2
j,k = O (2−2J(m+1/2−1/(min(p,2))) , (4)

which is of order O(N− 2m
2m+1 ) if 2−J = O(N− 2

3 ) (see Theorem 8 in, again, Donoho et al. (1995)),
for the range of parameters m ≥ 1, p ≥ 1 considered in Theorem 3.1. This suggests choosing
0 < δ ≤ 1/3 in the definition of JN = {(j, k) | 2j ≤ C N1−δ}. Theoretically, a large δ would
be possible in the case of higher Besov regularity (m > 1) but, as in practice the parameter
m is unknown, we prefer to select a smaller δ to prevent “too much truncation”, which, in our
experience, hampers practical performance of the method. (We have found C = 1 and δ = 0.1
to be a good practical choice.) We now state our main theorem.

Theorem 3.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Let Bmp,q(C) be a Besov
ball of radius C < ∞ with m, p ≥ 1 (recall that by Assumption 3.1(iii), we have, in particular,
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∫
ψ(u)uldu = 0 for 0 ≤ l ≤ m). We have

sup
f∈Bm

p,q(C)

IE

∫ π

−π

|f̃(ω) − f(ω)|2dω = O
(
(log N/N)2m/(2m+1)

)
. (5)

The proof, additional theoretical results and implementation details, can be found in the
accompanying technical report, available as Technical Report 08:05, 2008, The University of
Bristol Statistics Group Research Reports series at URL http://www.stats.bris.ac.uk and
also via

http://www.maths.bris.ac.uk/~mapzf/wfspec/wfspec.pdf

The methodology of the proof is not dissimilar to that used by Neumann (1996).

Theorem 3.1 shows that our estimator f̃ enjoys the same optimality properties as the anal-
ogous estimators in the “function + i.i.d. Gaussian noise” setting. We mention that it is
well-known that linear estimators cannot achieve the optimal rate of MSE convergence (not
even up to a logarithmic term) when p < 2.

4 Noise-free reconstruction thresholds

Although our wavelet-Fisz estimator f̃ enjoys good theoretical properties (by Theorem 3.1) it

often oversmooths in practice. This is not surprising as the thresholds λ̂j,k contain the same
logarithmic term as the universal thresholds in Gaussian regression which also tend to over-
smooth. Below we propose an alternative wavelet-Fisz thresholding estimator which performs
better in practice. The f̃ estimator essentially consists in “testing” whether each empirical
wavelet coefficient

∫
ψj,k(ω)IN (ω) exceeds the quantity tj,N

∫
|ψj,k(ω)|IN (ω) for a given choice

of tj,N . Our new estimator follows the same principle, but constructs different tj,N as follows.
Our new estimator is constructed to possess the following noise-free reconstruction property:

if the truth f(ω) is a constant function of ω, then, with high probability, our estimate is also
constant and equal to the empirical mean of {IN (ωk)}Nk=1. The noise-free reconstruction prop-
erty guarantees that asymptotically, no noise survives the estimation procedure and thus the
resulting estimate is visually appealing and does not display spurious spikes.

For the noise-free reconstruction property to hold, we require that, for a constant spectral
density f , all empirical wavelet coefficients fall below their corresponding thresholds with a high
probability. I.e. we require that

P




⋃

j,k

{∫
ψj,k(ω)IN (ω) > t̃j,N

∫
|ψj,k(ω)|IN (ω)

}

→ 0 as N → ∞. (6)

Below, we describe a set of approximations to (6), which facilitate the computation. Define

ξj,l,k = ψj,lIN (2π(l/N + k/2j) − π) and Ξj,k =
∑Lj

l=1 ξj,l,k/
∑Lj

l=1 |ξj,l,k|. We first note that in
practice, the integrals in (6) are replaced by sums, which gives the condition

P
(
∪j,k

{
Ξj,k > t̃j,N

})
→ 0 as N → ∞, (7)

where, as in Section 2.2, ψj are discrete wavelet vectors and Lj are their support lengths. By
the Bonferroni inequality (7) is implied by

∑

j,k

P
(
Ξj,k > t̃j,N

)
→ 0 as N → ∞. (8)
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Denote Y +
j,k :=

∑
l:ψj,l>0 ξj,l and Y −

j,k := −∑l:ψj,l<0 ξj,l. Note that the distribution of each Y +
j,k

(similarly, each Y −
j,k) is asymptotically the same, since IN (ωk) is asymptotically a sequence of

independent exp. variables centred at f . We rewrite (8) as

∑

j,k

P
(
Y +
j,k/Y

−
j,k > (1 + t̃j,N )/(1 − t̃j,N )

)
→ 0 as N → ∞. (9)

By the Satterthwaite approximation (see, e.g. Johnson and Kotz (1975)), Y +
j,k and Y −

j,k are

approximately independently distributed as β1jχ
2
ν1j

and β2jχ
2
ν2j

, for appropriate values of the
constants β·j and ν·j. Thus (9) can be approximated as

∑

j

2j
(

1 − Fν1j ,ν2j

(
β2j(1 + t̃j,N )

β1j(1 − t̃j,N )

))
→ 0 as N → ∞, (10)

where Fa,b(·) is the cdf of the F distribution with a, b degrees of freedom. To derive t̃j,N , we
now mimick standard Gaussian universal thresholding, where the speed of convergence of the
quantity analogous to (10) is 1

2{π log2(N/2)}−1/2, and the analogues of the probabilities

αj(N) := Fν1j ,ν2j

(
β2j(1 + t̃j,N )

β1j(1 − t̃j,N )

)
(11)

are constant across scales; that is αj(N) = α(N). To find t̃j,N , we first solve
∑
j 2j(1−α(N)) =

1
2{π log2(N/2)}−1/2 for α(N), and then obtain each t̃j,N numerically from (11).

This method requires computation of the ‘mod wavelet’ coefficients of IN . We compute
these coefficient (and a TI-version of them) using a fast O(N logN) algorithm building on the
approximative ideas for powers of wavelets in Barber et al. (2002), see technical report.

We mention that the idea of noise-free reconstruction in the context of volatility estimation
via Haar wavelet thresholding was considered in Section 3.2 of Fryzlewicz et al. (2006).

5 Simulations

In this section, we compare the empirical performance of our wavelet-Fisz estimator to both the
unshifted and 32-shift cycle shifted method of Neumann (1996), to the method of Gao (1993),
as well as to the kernel smoothing of IN (ω) with optimally chosen global, and locally varying,
bandwidth. (The 32-shift cycle-spun estimate from Neumann (1996) is equivalent to full cycle-
spinning since the primary resolution l = 3 as noted there.) For the latter two methods, we have
used the routines glkerns and lokerns from the R package lokern. Further implementational
issues are discussed more fully in our associated technical report.

We apply these methods to two “test processes”. Process A is from Neumann (1996) and
defined by XA

t = Yt + 1
2Zt, where Yt + 1

5Yt−1 + 9
10Yt−2 = εt + εt−2, and {εt}, {Zt} are iid

N(0, 1) variables. Process B is the MA(2) process XB
t = εt + εt−1 − εt−2. For both N = 1024.

Neumann’s process A has a sharp spectral peak whereas process B’s spectrum is much smoother.
Gao (1993) estimates the log-spectral density. In this simulation study, we correct the bias of

his estimator using the Euler-gamma constant, and then exponentiate it to obtain the spectral
density estimate. Both Gao’s and our wavelet-Fisz estimator use translation-invariant (TI)
hard thresholding with all resolution levels thresholded. We use the “noise-free” version of our
estimator. With both Neumann’s estimators we set the pilot estimator to be the true spectrum
and so that results reported are somewhat better than those that could be obtained in practice.

Tapering often introduces substantial correlation in the periodogram. Empirically, we found
that the wavelet-Fisz and Gao’s estimators’ performance is not much affected by tapering. How-
ever, the glkerns and lokerns performance deteriorates notably when tapering is introduced.
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This is because the optimal bandwidth choice for these methods is based on cross-validation
which often does not work well for correlated data. Thus, we only report the untapered results.
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Figure 1: Both: True spectral density for process A (dotted). Left: glkerns (dashed) and lokerns

(solid) estimate. Right: Gao’s method (dashed) and wavelet-Fisz (solid).

Figure 1 shows the true spectral density for process A and sample reconstructions using the
four methods tested. Gao’s method and wavelet-Fisz use Daubechies’ “Least Asymmetric 5”
wavelet. The glkerns method oversmooths the peak, which is not surprising because it is a
linear method which is not capable of estimating both smooth and inhomogeneous regions well.
The method of Gao also oversmooths the peak, which is due to the magnification of the slight
oversmooth of the peak of the log-spectral density after exponentiating the estimate.

The lokerns and wavelet-Fisz methods perform the best. Wavelet-Fisz reconstructs the
peak better than lokerns and it also flatter in the tails. On the other hand, lokerns does
a better job at reconstructing the region immediately to the right of the peak. The ISE of
wavelet-Fisz is around 12% lower than that of lokerns for this sample. It is also 39% lower
than the ISE of Gao’s method and 41% lower than that of glkerns.

We have also computed the ISE averaged over 100 sampled paths for all 6 methods (and a
selection of wavelet bases for Gao’s, Neumann’s and wavelet-Fisz) for processes A and B. Table
1 shows percentage improvements in ISE of the wavelet-Fisz method over its competitors for
process A. Wavelet-Fisz is always the best option for this ‘peaked’ spectral density, sometimes
substantially so. Note that, in practice, Neumann’s estimator would be worse since here we set
the pilot estimate equal to the actual spectrum (although with an estimated pilot estimator the
results are not dramatically worse).

A similar table of results was produced for process B in Table 2. For the smooth spectrum
the wavelet-Fisz method outperforms Gao’s by about 8%, and Neumann’s methods by 10–25%.
The wavelet-Fisz method is not more than 6% worse than the glkerns and lokerns methods
and, for Haar wavelets, is nearly 10% better.

Overall, the performance of our wavelet-Fisz estimator is extremely good on the ‘peaky’
spectrum. For a smooth spectrum our estimator is better than Gao’s and Neumann’s and
comparable to glkerns and lokerns. To choose the ‘best’ wavelet to use, one might consider
using a cross-validatory approach for wavelet selection such as that proposed by Nason (2002).
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Table 1: Peaked process A spectrum simulation. % by which the wavelet-Fisz ISE (mean over 100
sample paths) is less than that of the five competitors. (Neumann CS=32 shift estimate).

Spectral estimation method
Wavelet glkerns lokerns Gao Neumann Neumann CS

Haar 26 20 18 40 7
DaubExPhase 7 8 0.4 28 48 43
DaubLeAsymm 5 22 15 21 56 50

Table 2: Smooth process B spectrum simulation. % by which the wavelet-Fisz ISE (mean over 100
sample paths) is less than that of the five competitors. (Neumann CS=32 shift estimate).

Spectral estimation method
Wavelet glkerns lokerns Gao Neumann Neumann CS

Haar 9 9 9 13 11
DaubExPhase 7 -4 -4 9 25 23
DaubLeAsymm 5 -6 -6 7 23 21
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