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Abstract

We suggest a new approach to wavelet threshold estimation of spectral densities of stationary

time series. It is well known that choosing appropriate thresholds to smooth the periodogram is

difficult because non-parametric spectral estimation suffers from problems similar to curve esti-

mation with a highly heteroscedastic and non-Gaussian error structure. Possible solutions that

have been proposed are plug-in estimation of the variance of the empirical wavelet coefficients

or the log-transformation of the periodogram.

In this paper we propose an alternative method to address the problem of heteroscedasticity

and non-normality. We estimate thresholds for the empirical wavelet coefficients of the (tapered)

periodogram as appropriate linear combinations of the periodogram values similar to empirical

scaling coefficients. Our solution permits the design of “asymptotically noise-free reconstruction

thresholds”, paralleling classical wavelet theory for nonparametric regression with Gaussian

white noise errors. Our simulation studies show promising results that clearly improve the

classical approaches mentioned above. In addition, we derive theoretical results on the near-

optimal rate of convergence of the minimax mean-square risk for a class of spectral densities,

including those of very low regularity.

Key words: spectral density estimation, wavelet thresholding, wavelet-Fisz, periodogram,

Besov spaces, smoothing.

1 Introduction

The estimation of spectral densities is a fundamental problem in both theoretical and applied

time series analysis. Priestley (1981) provides a comprehensive introduction to the spectral

analysis of time series. Typically, inference in the spectral domain is based on the periodogram

of the data xt. Often, a data taper is applied prior to computing the periodogram, in order

to reduce leakage (Dahlhaus (1983)). It is well known that the (tapered) periodogram is an

inconsistent estimator of the spectral density and needs to be smoothed to achieve consistency.

Depending on the theoretical properties of the underlying stationary stochastic process Xt

and the associated spectral density f(ω), various periodogram smoothing techniques have been

proposed. For spectral densities with a high degree of regularity, linear smoothing techniques

∗Author for correspondence.
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(e.g. kernel smoothing) are appropriate. They are covered extensively in the literature: we

refer the reader, for example, to the monographs of Brillinger (1981), Koopmans (1995) and

Shumway and Stoffer (2000). The application of multiple tapers leads to, both leakage-reduced

and smoothed, multitaper spectrum estimators, see e.g. Cristan and Walden (2002) and the

references therein.

However, it is well known that linear smoothing methods are incapable of achieving the opti-

mal mean-square rate of convergence in cases where the smoothness of the underlying regression

function is distributed in an inhomogeneous fashion over the domain of interest. Thus, in the

case of irregular spectral densities, smoothing the periodogram using a nonlinear method might

be more suitable. An interesting example of a highly irregular spectral density (which satisfies

all our technical assumptions specified later in the paper) is given e.g. in Neumann (1994),

Section 8, item 2. Nonlinear methods will also have benefits for spectra with multiple (sharp)

peaks and troughs. We note that two nonlinear methods for spectral density estimation were

recently proposed by Comte (2001) and Davies and Kovac (2004).

In the “function + iid Gaussian noise” regression model, wavelet thresholding, first proposed

by Donoho and Johnstone (1994), has become the nonlinear smoothing method of choice for

many theoreticians and practitioners if the regression function is of low regularity. Thus, the

idea of smoothing the periodogram using a nonlinear wavelet method might seem appealing.

However, the periodogram approximately follows a multiplicative regression set-up where the

variance of the “noise” is not constant over frequencies but is proportional to the level of the

underlying spectral density. This represents a hurdle for nonlinear wavelet thresholding, where

the variance of the noise needs to be either known or easily estimable. To tackle this problem,

two main approaches have been proposed in the literature.

The first approach consists in taking the logarithmic transform of the periodogram to stabilize

the variance and transform the model from multiplicative to additive, and only then proceeding

with the wavelet smoothing. This idea was first proposed by Gao (1993, 1997). Moulin (1994)

derived wavelet thresholds for the logged periodogram using saddle point estimation techniques.

Pensky and Vidakovic (2003) derived thresholds for the log-periodogram using the Bayesian

paradigm but also demonstrated their frequentist mean-square properties. The “price” for

using the log transform is that it flattens out the data, often obscuring interesting features, such

as peaks or troughs. Also, the resulting exponentiated estimators of the spectrum are biased,
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and even after the bias correction, their mean-square properties are not easy to establish.

The second approach (Neumann, 1996) consists in pre-estimating the variance of the peri-

odogram via kernel smoothing, so that it can be supplied to the wavelet estimation procedure.

As with other plug-in estimators, the question of the choice of the pre-estimation procedure and

its parameters arises. Also, kernel pre-estimation may not be appropriate in cases where the

underlying spectral density is of low regularity.

To overcome the drawbacks of the above log-based and plug-in estimators, we propose a new

nonlinear wavelet smoothing technique for the periodogram, where thresholds for the empirical

wavelet coefficients are constructed as appropriate local weighted l1 norms of the periodogram,

as opposed to the l2 norm used in Neumann (1996). As explained in Section 2, the use of the

l1 norm is motivated by the fact that, asymptotically, the mean of the periodogram is equal to

its standard deviation. Also, unlike Neumann (1996), we avoid the kernel pre-estimation of the

spectral density. Our approach yields a rapidly computable, mean-square consistent estimator

which performs well in practice. Also, it permits the construction of noise-free reconstruction

thresholds which produce visually appealing estimates and offer particularly impressive empirical

performance.

The paper is organised as follows. In the next section we recall the set-up of nonparamet-

ric estimation of spectral densities and give a non-technical motivation for our new approach.

Section 3 contains our main theoretical achievements where we show near-optimal rates of con-

vergence of the mean-square risk of our new spectral estimator over a class of spectral densities

which also includes those of low regularity. The following section addresses the construction

of so-called “noise-free reconstruction thresholds” which are designed to work better in non-

asymptotic settings. In a simulation section we compare our new approach with some of the

established estimation methods mentioned above. Proofs, and additional theoretical results that

complete them, are in the Appendix.

2 Set-up and motivation

In this introductory section, we both establish the technical assumptions for our set-up and give,

by a simplified presentation of the spectral estimation problem, the essential motivation for our

new approach. It is only in Section 3 that we turn to a more formal asymptotic treatment of
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wavelet estimation of spectral densities.

2.1 Problem set-up

Assume that we observe a sample path {Xt}Nt=1 of a real-valued, zero-mean, second-order sta-

tionary process {Xt}∞t=1. Our aim is to estimate the spectral density

f(ω) =
1

2π

∞∑

s=−∞

cov(Xt, Xt+s) exp(−iωs), ω ∈ [−π, π].

Throughout the paper, we restrict our interest to processes whose spectral densities satisfy the

following assumption.

Assumption 2.1 The spectral density f(ω) satisfies

(i) f(ω) ≥ µ > 0,

(ii) f is of finite total variation over [−π, π],

(iii) f is continuous.

Assumption 2.1(i) is essential in obtaining strong asymptotic normality of the empirical wavelet

coefficients of the periodogram of Xt. Technically-minded readers may wish to refer to formula

(20) at this point. Assumption 2.1(ii) is a mild smoothness assumption on f .

We also place the following technical assumption on the process itself.

Assumption 2.2 Assume

sup
1≤t1<∞

(
∞∑

t2,...,tk=1

| cum(Xt1 , . . . , Xtk)|
)

≤ Ck(k!)1+γ ,

for all k = 2, 3, . . ., where C is a generic positive constant and γ ≥ 0.

As in Neumann (1996), Assumption 2.2 implies asymptotic normality of the (appropriately

scaled) local cumulative sums of Xt. The supremum on the left-hand side guarantees that the

asymptotic normality is, in a sense, uniform over time t. By Remark 3.1 in Neumann (1996),

if Xt is α-mixing at an appropriate rate and its marginal distribution is Gaussian, exponential,

gamma, or inverse Gaussian, then γ can be set equal to zero. For heavier-tailed distributions, a

positive value of γ might be required.
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Our nonparametric estimator will be based on the periodogram of the (possibly tapered)

observations

IN (ω) = (2πH
(N)
2 )−1

∣∣∣∣∣

N∑

s=1

h
( s
N

)
Xs exp(−iωs)

∣∣∣∣∣

2

,

where H
(N)
k =

∑N
s=1 h

k(s/N) and the taper function h(x) : [0, 1] → R satisfies the following

assumption.

Assumption 2.3 The taper function h is of bounded variation and satisfies H :=
∫ 1

0
h2(x)dx >

0.

With this assumption, we obtain, in particular, that H
(N)
2 ∼ NH . Note that h(x) ≡ 1 yields

the non-tapered periodogram. We refer the reader to Dahlhaus (1983) for a discussion of some

interesting properties of tapered periodograms. A classical example of a non-trivial taper func-

tion is the so-called Hanning window (see e.g. Priestley, 1981, Section 7.4.1). It is well known

to reduce leakage effects which occur in spectra with a high dynamic range.

It is well known that the (tapered) periodogram is an inconsistent estimator of the spectral

density and thus needs to be smoothed to achieve consistency. The next section describes our

wavelet-Fisz method for smoothing IN (ω).

2.2 Spectrum estimation via wavelets: motivation and existing ap-

proaches

We base our motivation on the following well known fact of spectral estimation theory (see

e.g. Brockwell and Davis, 1987, Section 10.3). Periodogram ordinates IN (ωk), computed at

the Fourier frequencies ωk = 2πk/N − π, k = N/2, . . . , N , are asymptotically independent and

exponentially distributed with means f(ωk) (except, in most cases, the “edge” frequencies 0 and

π, but we shall ignore this fact for the time being).

Motivated by this observation, we choose to demonstrate the basic mechanics of our estima-

tion procedure on the following simplified model:

Jn(ωk) = f(ωk) ek, (1)

where {ek}nk=1 is a sequence of iid variables distributed as Exp(1). In the model (1) we are now

6



faced with the problem of estimating the means f(ωk) of Jn(ωk). The model (1) is considered

merely for pedagogical purposes: our rigorous results in Section 3 concern estimation in the full

model specified in Section 2.1. The quantity modelled in (1) is labelled as Jn to avoid confusion

with IN .

As mentioned in the Introduction, we base our estimation theory on wavelets. Since the sem-

inal work of Donoho and Johnstone (1994), nonlinear estimation techniques based on wavelets

have become a popular and extensively studied tool for non-parametric regression. Many of them

combine excellent finite-sample performance, linear computational complexity, and optimal (or

near-optimal) asymptotic mean-square error behaviour over a variety of function smoothness

classes. A general overview of wavelet methods in statistics can be found, for example, in

Vidakovic (1999).

A convenient starting point for wavelet estimation is the formulation of the regression prob-

lem at hand in a “function + noise” setting, where the noise has mean zero and its variance is

either known or can easily be estimated. Note that the logarithmic transformation transforms

the model (1) from multiplicative to additive:

log Jn(ωk) = log f(ωk) + E log ek + εk, (2)

where εk = log ek−E log ek has mean zero and a variance independent of k. Thus, many authors

(some references are given in the Introduction) considered wavelet estimation of the log-spectral

density in the logged model (2). However, one drawback of using the log transformation is

that it flattens out the data, often obscuring interesting features, e.g. spectral peaks which

indicate hidden periodicities of the process. Also, the mean-square properties of the resulting

exponentiated estimator of the spectral density f are not easy to establish.

To avoid these problems, it might be beneficial to work with the model (1) directly, without

the prior logarithmic transform. The model (1) can be rewritten as

Jn(ωk) = f(ωk) + ε̃k,

where ε̃k = f(ωk)(ek − 1). Applying the Discrete Wavelet Transform (DWT), a multiscale

7



orthonormal linear transform, gives

ϑ̃j,k = ϑj,k + ε̃j,k, j = 0, . . . , log2 n− 1, k = 1, . . . , 2j,

and k = 1 for j = −1, where j and k are (respectively) scale and location parameters, and ϑ̃j,k,

ϑj,k and ε̃j,k are the wavelet coefficients of Jn(ωk), f(ωk) and ε̃k, respectively. For a large class

of functions f , the sequence ϑj,k is sparse, with most ϑj,k’s being equal, or close, to zero, which

motivates the use of simple thresholding estimators ϑ̂j,k which estimate ϑj,k by zero if and only

if the corresponding empirical wavelet coefficient ϑ̃j,k falls below certain threshold in absolute

value. This ensures that a large proportion of the noise ε̃j,k gets removed. The inverse DWT of

the thresholded coefficients ϑ̂j,k then yields an estimate f̂ of the original function f .

Drawing inspiration from the “universal” threshold theory first developed by Donoho and

Johnstone (1994) in the Gaussian regression case, Neumann (1996) estimates ϑj,k by ϑ̂j,k =

ϑ̃j,kI(|ϑ̃j,k| > tj,k), where the thresholds tj,k are set equal to

tj,k = σ̃j,k
√

2 log n (3)

with σ̃j,k = {var(ε̃j,k)}1/2. In the simplified model (1), each σ̃j,k is of the form

σ̃j,k =





Lj∑

l=1

ψ2
j,lf

2(ωl+τ )





1/2

, (4)

where τ is a shift parameter dependent on j and k, ψj are discrete wavelet vectors (as described,

for example, in Nason et al. (2000)), and Lj are their support lengths. Obviously, f2 is unknown,

and Neumann (1996) overcomes this by pre-estimating f(ωk) via kernel smoothing, and using

the pre-estimate to obtain estimates of σ̃j,k which are then used in (3). Although simple and

intutive, this approach generates a number of questions.

Firstly, as mentioned in Section 2.1, the spectral density f may not be smooth as apart from

continuity (as a consequence of Assumption 2.2) we only impose the total variation constraint

on f . In this case, pre-estimating f via kernel smoothing might not be suitable in practice as

“irregularities” in f , such as cusps (discontinuous derivatives), sharp peaks or troughs, will be

smoothed out. This is then likely to affect the performance of the final estimator f̂ . Also, as
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with any other non-parametric plug-in estimator, the kernel estimator would demand a choice

of smoothing parameter, which might not be easy to select optimally (most likely by a local

bandwidth selection procedure, and hence costly).

2.3 Motivation for our wavelet-Fisz approach

To circumvent the drawbacks of the plug-in procedure, it may be advantageous to pre-estimate

f(ωk) in (4) by the inherently local estimate Jn(ωk), for most scales j coarser than the obser-

vation scale. To the best of our knowledge, this approach has not been considered in literature.

With this approach, the estimated σ̃j,k is simply a local weighted l2 norm of {Jn(ωk)}k.

Our wavelet-Fisz methodology is inspired by this observation, but instead of the local

weighted l2 norm, it estimates thresholds using a local weighted l1 norm of {Jn(ωk)}k. The

heuristic reason for this is as follows. As the wavelet vectors ψj are compactly supported and

well localised, and the function f(ω) is likely to be “mostly smooth” (possibly with occasional

irregularities), the hope is that for most values of j and k, the function f(ω) can be well ap-

proximated by a constant over the support of ψj . Denoting the approximating constant by

fj,k, and using the fact that ‖ψ2
j‖2 = 1, formula (4) implies that σ̃j,k is approximately equal to

fj,k. Thus, estimating σ̃j,k is approximately equivalent to estimating the constant fj,k, which is

simply the local mean of an iid exponential sample. Because the maximum likelihood estimator

of the mean (= standard deviation) of an iid exponential sample is the sample mean, rather

than the sample standard deviation, we propose to estimate thresholds as a local weighted l1

norm of {Jn(ωk)}k, rather than the local l2 norm. Another way to think of this is that since

fj,k (≈ σ̃j,k) is the value of a spectral density, it is the most naturally pre-estimated by a local

average of the periodogram, which is an l1-type estimate. Because of the above link to maximum

likelihood estimation, the hope is that this provides a ‘better’ estimator. In fact, this argument

can be extended to spectral densities which are Lipschitz-continuous. Indeed, it can be shown

that for such spectral densities, estimating (squared) thresholds t2j,k using our l1-based estimator

asymptotically reduces the Mean-Square Error (in comparison to the l2-estimator) by 20%.

The added benefit of using the local l1 norm, as opposed to l2, is that it permits the con-

struction of noise-free reconstruction thresholds, as detailed in Section 4. In addition, as with

many other l1-based estimators, our threshold estimators are less sensitive to outliers than the l2
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estimators, as well as involving lower moments of the periodogram, which makes then potentially

less variable.

The idea of using a local weighted l1 norm also underlies the Haar-Fisz estimation theory,

introduced by Fryzlewicz and Nason (2006) and Fryzlewicz et al. (2006) for other multiplicative

models, namely for wavelet spectrum and locally stationary volatility estimation, respectively.

The fundamental novelty of our approach is that we use general wavelets, as opposed to the

Haar wavelets used in the latter work. This generalisation is essential as it permits us to include

some commonly encountered spectral densities (such as those corresponding to AR processes) in

our estimation theory, which would not have been possible had we just used Haar wavelets (we

remind the readers that Haar wavelet estimators produce piecewise-constant reconstructions,

and since spectral densities corresponding to AR processes are continuous, it is “more optimal”

to use continuous wavelets to estimate them). On the other hand, more general wavelets require

the use of different proof techniques. We also note that Haar-Fisz estimation was first proposed

by Fryzlewicz and Nason (2004), albeit in the non-multiplicative context of Poisson intensity

estimation.

3 Wavelet-Fisz spectral density estimation

3.1 Preparing the asymptotic set-up

In order to demonstrate asymptotic mean-square consistency of our proposed estimator, we

embed our approach into the appropriate framework for theory, i.e. using orthonormal wavelets

defined as continuous square-integrable functions over a unit interval. For the remainder, we

mean our wavelet bases to be 2π−periodic and defined on the [−π, π] in the (periodised) fre-

quency domain, as both our target function to estimate and our estimators themselves are

2π−periodic. In order to keep our presentation sufficiently simple, we will use a notation with a

“classical” wavelet basis; details of how to periodise it can be found in, e.g., Daubechies (1992).

Assumption 3.1 {φ0,k}k ∪ {ψj,k}j≥0;k are chosen to form an orthonormal basis of L2[−π, π],

where the functions φ and ψ satisfy, for any r > m (with m ≥ 1 given by Theorem 3.1 below),

(i) φ and ψ are in Cr, which implies, in particular, that they have finite total variation over

[−π, π],
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(ii)
∫
φ(x) dx = 1,

(iii)
∫
ψ(x)xl dx = 0 for 0 ≤ l ≤ r.

As usual in multiscale wavelet theory, we use the notation gj,k(x) := 2j/2 g(2j x − k), where

g = ψ, φ, so that the scaled and shifted functions ψj,k and φ0,k are all normalised to square-

integrate to one. The indices j and k are “scale” and “location” parameters, respectively.

To set up the notation for our wavelet threshold spectral estimator, let

f̂(ω) =
∑

k

α̃k φ0,k(ω) +
∑

(j,k)∈JN

ρ(.)(α̃j,k, λj,k) ψj,k(ω) , (5)

where ρ(.)(α, λ) denotes either the hard or the soft threshold rule applied to the coefficient α us-

ing the threshold λ, and the empirical wavelet coefficients are defined as α̃j,k =
∫
ψj,k(ω)IN (ω)dω

and α̃k =
∫
φ0,kIN (ω)dω. The corresponding true coefficients are defined by αj,k =

∫
ψj,k(ω)f(ω)dω

and αk =
∫
φ0,kf(ω)dω.

As in Neumann (1996), we define JN = {(j, k) | 2j ≤ C N1−δ} for some δ > 0 ; thus, the

estimator f̂(ω) includes a growing number of coarsest scales j, and excludes a growing number

of finest scales. This implies that the number of wavelet coefficients used for thresholding is of

order N1−δ, which is less than O(N), and is done to ensure that a certain uniform asymptotic

normality effect holds, see formula (20) in the Appendix. The parameter δ is chosen so that
∑

(j,k)/∈JN
α2
j,k = O(N−2m/(2m+1)), which is actually the appropriate rate of convergence to

zero of the squared bias due to the encountered approximation error. As will be seen from

equation (9) below, the choice of 0 < δ ≤ 1/3 and an arbitrary C < ∞ is sufficient, for our

special case of m ≥ 1, p ≥ 1 as considered in Theorem 3.1.

3.2 Construction of the wavelet-Fisz thresholds

As thoroughly motivated in Section 2.3, we use estimated thresholds which are “local averages”

of the periodogram. More specifically, we propose the choice

λ̂j,k = θ̂j,k
√

2 log(#JN ) , (6)
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where

θ̂j,k = cN

∫ π

−π

κj,k(ω) IN (ω)dω. (7)

With this choice, our estimator becomes

f̃(ω) =
∑

k

α̃k φ0,k(ω) +
∑

(j,k)∈JN

ρ(.)(α̃j,k, λ̂j,k) ψj,k(ω) . (8)

For technical reasons outlined in Section A.1, we take cN =
√

2π/N H4/H2
2 =: cN−1/2.

The κj,k are nonnegative functions on L2[−π, π] which are normalised to integrate to one,

and therefore can be viewed as providing “local averaging” of the periodogram IN (ω). More

specifically, we set κj,k(ω) to be the “mod-wavelets”, defined as follows: κj,k(·) := 2j κ(2j ·−k),

where κ(ω) := |ψ(ω)|/
∫
|ψ(ω)|dω. This choice of κj,k is motivated by the derivation of the

“noise-free reconstruction thresholds”, see Section 4.

In Section 2.3, emphasis was laid on the fact that, heuristically, the standard deviation of the

wavelet coefficients (which thresholds should be proportional to) is “at the level” of the spectral

density at the corresponding location, and is thus best estimated via local averaging of the

periodogram. We note that our estimated thresholds λ̂j,k do precisely that: since
∫
κj,k(ω)dω =

1, the parameters θ̂j,k can be interpreted as local weighted averages of the periodogram at scale

j and location k. Note that in practice, the above integrals are replaced by sums, as in formula

(12) below.

3.3 Near-optimal rate of mean-square convergence

The near-optimal mean-square convergence rate of our coordinatewise thresholded wavelet spec-

tral estimator f̃ is formulated in Theorem 3.1 below. As the rate of convergence will be faster

the higher the regularity of the target function to estimate, we assume that the spectral density

f lies in a ball F of a quite general function space: a Besov space Bmp,q (with m, p ≥ 1). This

means a slightly more general set-up than a Sobolev regularity for f , in that f is assumed to

have m generalised derivatives in Lp, with the parameter q allowing for additional spatial inho-

mogeneity. For these function balls, the optimal rate of mean-square convergence, the so-called

“minimax rate”, is N− 2m
2m+1 . More details on Besov spaces in the context of wavelet thresholding

can be found, e.g., in Donoho et al. (1995). In this context, it is known that for the wavelet
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coefficients αj,k of f in any ball F of Bmp,q,

sup
f∈F

∑

j>J

2j−1∑

k=0

α2
j,k = O (2−2J(m+1/2−1/(min(p,2))) , (9)

which is of order O(N− 2m
2m+1 ) if 2−J = O(N− 2

3 ) (see Theorem 8 in, again, Donoho et al. (1995)),

for the range of parameters m ≥ 1, p ≥ 1 considered in Theorem 3.1. This suggests choosing

0 < δ ≤ 1/3 in the definition of JN = {(j, k) | 2j ≤ C N1−δ}. Theoretically, a large δ would

be possible in the case of higher Besov regularity (m > 1) but, as in practice the parameter

m is unknown, we prefer to select a smaller δ to prevent “too much truncation”, which, in our

experience, hampers practical performance of the method.

We now state our main theorem.

Theorem 3.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Let Bmp,q(C) be a Besov

ball of radius C < ∞ with m, p ≥ 1 (recall that by Assumption 3.1(iii), we have, in particular,
∫
ψ(u)uldu = 0 for 0 ≤ l ≤ m). We have

sup
f∈Bm

p,q(C)

IE

∫ π

−π

|f̃(ω) − f(ω)|2dω = O
(
(log N/N)2m/(2m+1)

)
. (10)

Theorem 3.1 shows that our data-driven wavelet threshold estimator f̃ achieves near- mini-

maxity in the mean-square sense over a large class of function spaces, and hence enjoys the same

optimality properties as the analogous estimators in the “function + i.i.d. Gaussian noise” set-

ting. We mention that it is well-known that linear estimators cannot achieve the optimal rate

of MSE convergence (not even up to a logarithmic term) when p < 2.

4 Noise-free reconstruction thresholds

Although our wavelet-Fisz estimator f̃ enjoys good theoretical properties as stated in Theorem

3.1, in practice it often oversmooths. This is not surprising as the thresholds λ̂j,k contain the

same logarithmic term as the universal thresholds in Gaussian regression, and the latter tend

to oversmooth. The aim of this section is to propose an alternative wavelet-Fisz thresholding

estimator of f which performs better in practice.

The new estimator is constructed to possess the following noise-free reconstruction property:
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if the true function f(ω) is a constant function of ω, then, with high probability, our estimate of

f is also constant and equal to the empirical mean of {IN (ωk)}Nk=1. The noise-free reconstruction

property guarantees that asymptotically, no noise survives the estimation procedure and thus

the resulting estimate is visually appealing and does not display spurious spikes.

To set the scene, we recall that our estimation procedure described in Section 3 essentially

consists in “testing” whether each empirical wavelet coefficient
∫
ψj,k(ω)IN (ω) exceeds the quan-

tity tj,N
∫
|ψj,k(ω)|IN (ω), for a particular choice of tj,N . Our new noise-free estimator follows

the same principle, but uses a different set of tj,N ’s, which we construct as follows.

For the noise-free reconstruction property to hold, we require that for a constant spectral

density f , all empirical wavelet coefficients fall below their corresponding thresholds, with a

high probability. In other words, we require that

P



⋃

j,k

{∫
ψj,k(ω)IN (ω) > t̃j,N

∫
|ψj,k(ω)|IN (ω)

}
→ 0 as N → ∞. (11)

Deriving t̃j,N from (11) in an exact manner is possible, although computationally inefficient.

Below, we describe a set of approximations to (11), which facilitate the computation, although

obviously yield a slightly different set of t̃j,N . Simulations described in Section 5.2 demonstrate

good practical performance of the approximate noise-free thresholding estimator.

We first note that in practice, the integrals in (11) are replaced by sums, which gives the

condition

P



⋃

j,k

[ ∑Lj

l=1 ψj,l IN{2π(l/N + k/2j) − π}
∑Lj

l=1 |ψj,l| IN{2π(l/N + k/2j) − π}
> t̃j,N

]
→ 0 as N → ∞, (12)

where, as in Section 2.2, ψj are discrete wavelet vectors and Lj are their support lengths. By

the Bonferroni inequality, (12) is implied by

∑

j,k

P

( ∑Lj

l=1 ψj,l IN{2π(l/N + k/2j) − π}
∑Lj

l=1 |ψj,l| IN{2π(l/N + k/2j) − π}
> t̃j,N

)
→ 0 as N → ∞. (13)

Denote Y +
j,k :=

∑
l:ψj,l>0 ψj,l IN (2π(l/N + k/2j) − π) and Y −

j,k := −∑l:ψj,l<0 ψj,l IN (2π(l/N +

k/2j) − π). Note that the distribution of each Y +
j,k (similarly, each Y −

j,k) is asymptotically the
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same, since IN (ωk) is asymptotically a sequence of independent exponential variables centred

at f . We rewrite (13) as

∑

j,k

P

(
Y +
j,k

Y −
j,k

>
1 + t̃j,N

1 − t̃j,N

)
→ 0 as N → ∞. (14)

Note that by Satterthwaite approximation (see e.g. Johnson and Kotz (1975)), Y +
j,k and Y −

j,k are

approximately independently distributed as β1jχ
2
ν1j

and β2jχ
2
ν2j

, for appropriate values of the

constants β·j and ν·j. Thus (14) can be approximated as

∑

j

2j
(

1 − Fν1j ,ν2j

(
β2j(1 + t̃j,N )

β1j(1 − t̃j,N )

))
→ 0 as N → ∞, (15)

where Fa,b(·) is the cdf of the F distribution with a, b degrees of freedom. To derive t̃j,N , we

now mimick standard Gaussian universal thresholding, where the speed of convergence of the

quantity analogous to (15) is 1
2{π log2(N/2)}−1/2, and the analogues of the probabilities

αj(N) := Fν1j ,ν2j

(
β2j(1 + t̃j,N )

β1j(1 − t̃j,N )

)
(16)

are constant across scales; that is αj(N) = α(N). To find t̃j,N , we first solve

∑

j

2j(1 − α(N)) =
1

2
{π log2(N/2)}−1/2

for α(N), and then obtain each t̃j,N numerically from (16).

We mention that the idea of noise-free reconstruction in the context of volatility estimation

via Haar wavelet thresholding was considered in Section 3.2 of Fryzlewicz et al. (2006).

5 Implementation and simulations

5.1 Implementation

We now outline some implementational details of our wavelet-Fisz spectral density estimator.

The algorithm for computing the estimator proceeds as follows.

1. Given the data {Xt}Nt=1, compute the (tapered) periodogram IN (ωk) at the Fourier fre-

15



quencies ωk = 2πk/N − π, k = N/2, . . . , N . Note that we do not need to compute IN (ωk)

at the negative Fourier frequencies as IN (ω) = IN (−ω).

2. Given a wavelet basis ψ, compute the standard discrete decimated (or non-decimated)

wavelet transform of IN (ωk) using a fast algorithm described by Mallat (1989) (or Coif-

man and Donoho (1995)). Basing the estimator on the non-decimated wavelet transform

corresponds to averaging the estimator based on the decimated transform over all possible

cyclic shifts of the data, and is well known to reduce the mean-square error and reduce the

Gibbs effect, which is why we use the non-decimated (aka: translation-invariant) version

of our estimator in the simulations reported below.

3. Compute the thresholds λ̂j,k from Section 3 or t̃j,N from Section 4. To construct λ̂j,k, we

need to choose the set JN . We have empirically found that the choice C = 1, δ = 0.01

(as a default “small” value) yields good practical performance of the estimator. Both λ̂j,k

and t̃j,k require the computation of the equivalent of the discrete wavelet transform but

computed using the mod-wavelets κj,k instead of the wavelets ψj,k. The latter part of this

Section explains how it is done.

4. Threshold the empirical wavelet coefficients of IN (ωk) via hard or soft thresholding, for

(j, k) ∈ JN if λ̂j,k are used, or for all j, k if t̃j,N are used.

5. Invert the wavelet transform to get an estimate of f at the Fourier frequencies.

Computing the mod-wavelet transform. An easy way to implement (7) would be to compute the

discrete mod-wavelets, κj, one for each scale j by computing ψj using existing software and then

taking absolute values. One can then filter IN (ω) one scale at a time. For the decimated algo-

rithm, the computational complexity would be O(N log2 N); for the non-decimated algorithm,

it would be O(N2 log2 N).

One of the key advantages of wavelet methods is their efficiency. For decimated transforms

we usually ‘expect’ O(N) algorithms and for non-decimated we would like O(N log2 N). Our

mod-wavelet transform can achieve these complexities if we adopt an approximation approach

similar to the one proposed by Herrick (2000) and subsequently used in Barber et al. (2002)

although here it is based on adapting the forward wavelet transform, not the inverse. The idea
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is to represent κj,k in terms of scaling functions at a finer scale as follows:

κj,0(ω) ≈
∑

ℓ

ej+m0,ℓφj+m0,ℓ(ω), (17)

where j+m0 is some fixed number of scales finer than j which controls the level of approximation

(m0 = 3 is typically very good but higher values are even better). The ej+m0,ℓ sequence is a

finite support filter of length 2m0(bψ − aψ) + (bφ − aφ) where (aψ, bψ) is the finite support

interval for the wavelet ψ and similarly for φ. The ej,ℓ sequence can easily be precomputed by

the appropriate inner product of κ and φ.

Then the mod-wavelet transform of some function f(ω) can, after some algebra, be approx-

imated by ∫
f(ω)κj,k(ω) dω ≈

∑

ℓ

ej+m0,ℓ−2m0kcj+m0,ℓ, (18)

where cj,k are the standard discrete father wavelet coefficients produced by the (non-)decimated

wavelet transform. Hence the mod-(non-)decimated wavelet coefficients can be produced by

first performing the standard (non-)decimated wavelet transform and then computing the finite

sum (18) for each coefficient.

Non-negative spectral estimates. We note here that for ease of exposition, our estimator does

not incorporate any safeguards to ensure non-negativity. One such safeguard would simply be

to truncate the estimator at zero. Another way to proceed could be to employ the method of

information projection, used, for example, by Antoniadis and Bigot (2006). The objective of this

type of regularisation is simple: to find a function, which is a member of a suitable “exponential

family” and is thus guaranteed to be positive, which best approximates the unregularised (plain)

estimate in a given norm. This could be incorporated into our method, with some effort.

However, one drawback of this kind of regularisation is that it requires computationally intensive

iteration using a Newton-Raphson type algorithm which is described in detail in Section 6 of

Antoniadis and Bigot (2006).

5.2 Simulations and comparison with existing estimators

In this section, we compare the empirical performance of our wavelet-Fisz estimator to both the

unshifted and 32-shift cycle shifted method of Neumann (1996), to the method of Gao (1993),
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as well as to the kernel smoothing of IN (ω) with optimally chosen global, and locally varying,

bandwidth. (The 32-shift cycle-spun estimate from Neumann (1996) is equivalent to full cycle-

spinning since the primary resolution l = 3 as noted there.) For the latter two methods, we

have used the routines glkerns and lokerns (respectively) from the R package lokern.

We apply these methods to two “test processes”. Process A, the first test process, is the

same as in Neumann (1996) and is defined by XA
t = Yt + 1

2Zt, where

Yt +
1

5
Yt−1 +

9

10
Yt−2 = εt + εt−2, (19)

and {εt}, {Zt} are independent Gaussian white noise processes with mean zero and variance

one. All our simulations are based on sample paths of size N = 1024. Process B is a simple

MA(2) process XB
t = εt + εt−1 − εt−2. Neumann’s test process A is designed to possess a sharp

spectral peak whereas the second test process B’s spectrum is much smoother.

Note that Gao (1993) estimates the log-spectral density. In this simulation study, we correct

the bias of his estimator using the Euler-gamma constant, and then exponentiate it to obtain

an estimate of the spectral density. Both Gao’s and our wavelet-Fisz estimator use translation-

invariant hard thresholding with all resolution levels thresholded (results for soft thresholding are

worse and we do not report them). We use the “noise-free” version of our estimator, described

in Section 4. With both Neumann’s estimators we set the pilot estimator to be equal to the true

spectrum and so that results reported are somewhat better than those that could be obtained

in practice.

Tapering often introduces substantial correlation in the periodogram ordinates. Empirically,

we have found that the performance of the wavelet-Fisz and Gao’s estimators is not much

affected by tapering. However, the performance of glkerns and lokerns deteriorates notably

when tapering is introduced. This is due to the fact that the optimal bandwidth selection in

both these methods is based on cross-validation which often does not perform well if the data

are correlated. Thus, we only report simulation results for the untapered periodogram.

Figure 1 shows the true spectral density for process A and sample reconstructions using

four methods tested. Gao’s method and wavelet-Fisz use Daubechies’ “Least Asymmetric 5”

wavelet. The glkerns method oversmooths the peak, which is not surprising given that it is a

linear method which is not capable of estimating both smooth and inhomogeneous regions of
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Figure 1: Top: true spectral density for process A (solid); reconstructions using glkerns (dotted)
and lokerns (dashed). Bottom: true spectral density (solid); reconstructions using Gao’s method
(dotted) and wavelet-Fisz (dashed). See text for details.
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the spectral density well. The method of Gao also oversmooths the peak, which is due to the

magnification of the slight oversmooth of the peak of the log-spectral density after exponentiating

the estimate.

The lokerns and wavelet-Fisz methods perform the best. Wavelet-Fisz reconstructs the

peak better than lokerns and it also flatter in the tails. On the other hand, lokerns does

a better job at reconstructing the region immediately to the right of the peak. The ISE of

wavelet-Fisz is around 12% lower than that of lokerns for this sample. It is also 39% lower

than the ISE of Gao’s method and 41% lower than that of glkerns.

We have also computed the ISE averaged over 100 sampled paths for all 6 methods (and a

selection of wavelet bases for Gao’s, Neumann’s and wavelet-Fisz) for processes A and B. Table

1 shows percentage improvements in ISE of the wavelet-Fisz method over its competitors for

process A. Wavelet-Fisz is always the best option for this ‘peaked’ spectral density, sometimes

substantially so. (Although lokerns comes close when wavelet-Fisz uses Daubechies Extremal

Phase wavelet with 7 vanishing moments). Note that, in practice, Neumann’s estimator would

be worse since here we set the pilot estimate equal to the actual spectrum (although with an

estimated pilot estimator the results are not dramatically worse).

A similar table of results was produced for process B in Table 2. For the smooth spectrum

the wavelet-Fisz method outperforms Gao’s by about 8%, and Neumann’s methods by 10–25%.

The wavelet-Fisz method is not more than 6% worse than the glkerns and lokerns methods

and, for Haar wavelets, is nearly 10% better.

Overall, the performance of our wavelet-Fisz estimator appears to be extremely good on the

‘peaky’ spectrum. For a smooth spectrum our estimator is better than Gao’s and Neumann’s

and comparable to glkerns and lokerns. Even though are results seem robust one might be

interested in selecting the ‘best’ wavelet to use. A detailed discussion of this question is beyond

the scope of the current paper but, for non-tapered data at least, one might consider using a

cross-validatory approach for wavelet selection such as that proposed by Nason (2002).
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Table 1: Peaked process A spectrum simulation. Percentage by which the ISE of wavelet-Fisz
(averaged over 100 sample paths) is lower than that of the five competitors. (Neumann CS=32
shift cycle-spun estimate).

Spectral estimation method
Wavelet glkerns lokerns Gao Neumann Neumann CS

Haar 26 20 18 40 7
DaubExPhase 7 8 0.4 28 48 43
DaubLeAsymm 5 22 15 21 56 50

Table 2: Smooth process B spectrum simulation. Percentage by which the ISE of wavelet-Fisz
(averaged over 100 sample paths) is lower than that of the five competitors. (Neumann CS=32
shift cycle-spun estimate).

Spectral estimation method
Wavelet glkerns lokerns Gao Neumann Neumann CS

Haar 9 9 9 13 11
DaubExPhase 7 -4 -4 9 25 23
DaubLeAsymm 5 -6 -6 7 23 21

A Proofs

A.1 Auxiliary results

Bias, variance and cumulants of α̃j,k. We first establish the bias, variance and higher cumulants

of α̃j,k. We recall that Hp :=
∫ 1

0 h
p(x) dx .

Lemma A.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. The following hold uni-

formly over (j, k) ∈ JN .

(a) IE α̃j,k = αj,k + O(2j/2 log N/N)

(b) σ2
j,k := var(α̃j,k) = 2π/N H4/H

2
2

∫ π
π
{f(ω)}2 ψj,k(ω) [ψj,k(ω)+ψj,k(−ω)] dω+ o(N−1) +

O(2−jN−1)

(c) |cump(α̃j,k/σj,k)| ≤ Cp (p!)2+2γ N−1 (2j/2 log N/N)−(p−2) for p ≥ 3.

For the proof we refer the reader to Neumann (1996), Proposition 3.1.

Strong asymptotic normality of α̃j,k. The technique for proving the near-optimal rate of mean-

square convergence of (f̂ and) f̃ is based on the following strong form of asymptotic normality
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of the empirical wavelet coefficients α̃j,k:

P (±(α̃j,k − αj,k)/σj,k ≥ x)

1 − Φ(x)
→ 1, (20)

uniformly over (j, k) ∈ JN , x ≤ ∆γ , with ∆γ = o(∆1/(3+4γ)) and ∆ = O(N δ/2/ log N), where δ

is as described in the last paragraph of Section 3.1. Note that Φ(x) is the cdf of the standard

normal. The proof of (20) relies, amongst others, on the asymptotic behaviour of the cumulants

of α̃j,k of order two and higher, as specified in Lemma A.1. For details, we refer again to

Neumann (1996).

A.2 ‘Theoretical’ estimator f̂

The proof of the near-optimal rate of convergence of the estimator f̃ proceeds via proving, first,

a similar result for the ‘theoretical’ estimator f̂ defined in formula (5), with a particular choice

of λj,k. In fact, we define λj,k to be ‘theoretical counterparts’ of the estimated thresholds λ̂j,k

of formula (6):

λj,k = θj,k
√

2 log(#JN ), (21)

with

θj,k = cN

∫ π

−π

κj,k(ω)f(ω)dω. (22)

Note that since
∫
κj,k(ω)dω = 1, the parameters θj,k can be interpreted as local weighted l1

norms of f at scale j and location k.

Mean-square convergence of f̂ . We now state a theorem on the mean-square convergence of our

‘bona fide’ estimator f̂ defined in (5).

Assumption A.1 Let σ2
j,k = var(α̃j,k) (see Lemma A.1 for the exact formula for σ2

j,k), and let

m be as in the statement of Theorem A.1. Thresholds λj,k are such that

∑

(j,k)∈JN

(
λj,k
σj,k

+ 1

)
φ(λj,k/σj,k) = O(N1/(2m+1)) (23)

sup
(j,k)∈JN

λj,k = O(N−1/2
√

log N), (24)

where φ is the standard normal density.
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Note that by Lemma A.2 (with αN = 1), our thresholds λj,k, defined in formula (21),

satisfy Assumption A.1. Heuristically speaking, Assumption A.1 controls the distance between

the thresholds λj,k and the benchmark “universal” thresholds λNj,k = σj,k
√

2 log(#JN ), used,

for example, by Neumann (1996). This is needed as the latter are motivated by the universal

threshold theory in the Gaussian regression case, and our thresholds λj,k also rely on asymptotic

Gaussianity arguments.

Theorem A.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Let λj,k be any thresholds

satisfying Assumption A.1; for example, those defined in formula (21). Let Bmp,q(C) be a Besov

ball of radius C <∞ with m, p ≥ 1. We have

sup
f∈Bm

p,q(C)

IE

∫ π

−π

|f̃(ω) − f(ω)|2dω = O
(
(log N/N)2m/(2m+1)

)
. (25)

For the proof of this theorem we refer to Neumann (1996), as it is parallel to the proof of

Theorem 5.1 therein.

Choice of cN . Finally, we motivate the choice cN =
√

2π/N H4/H2
2 in formulae (7) and (22).

A desired property of θj,k, required so that (23) may hold, is that θj,k should be “almost equal”

to σj,k for fine-scale coefficients. From Lemma A.1(b), we observe that

σj,k ≤
√

2πH4

N H2
2

f j,k

√
1 +

∫ π

−π

|ψj,k(ω)ψj,k(−ω)|dω + o(N−1) +O(2−jN−1) , (26)

where f j,k = sup{f(ω) : ω ∈ supp(ψj,k)} (for later purposes, we also denote f
j,k

= inf{f(ω) :

ω ∈ supp(ψj,k)}). Further we note that
∫ π
−π

|ψj,k(ω)ψj,k(−ω)| dω = 0 except for a finite (and

the same) number of k at each scale j for which 0 ∈ supp{ψj,k}. This motivates setting cN to

be equal to cN =
√

2π/N H4/H2
2 =: cN−1/2.

A.3 Proof of Theorem 3.1

Instead of Theorem 3.1, we prove the more general Theorem A.2 below.

Theorem A.2 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Let λ̂j,k be any thresholds

satisfying Assumption A.2; for example, those defined in formula (6). Let Bmp,q(C) be a Besov

ball of radius C < ∞ with m, p ≥ 1 (recall that by Assumption 3.1(iii), we have, in particular,
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∫
ψ(u)uldu = 0 for 0 ≤ l ≤ m). We have

sup
f∈Bm

p,q(C)

IE

∫ π

−π

|f̃(ω) − f(ω)|2dω = O
(
(log N/N)2m/(2m+1)

)
. (27)

The “logic” of the proof of Theorem A.2 is like the proof of Theorem 6.1 of Neumann (1996).

It works via showing the analogous result for our ‘bona fide’ estimator f̂ defined in (5), based

on thresholds λj,k which are required to satisfy Assumption A.1.

In the remainder of this section, we demonstrate that if λj,k are as defined in (21), then our

random thresholds λ̂j,k, defined in formula (6), satisfy Assumption A.2.

Assumption A.2 Let λj,k be any thresholds satisfying Assumption A.1, and let m be as in the

statement of Theorem A.2. Thresholds λ̂j,k are such that

(i) There exists a ν < 1/(2m + 1) and a positive sequence αN approaching 1 from below as

N → ∞ such that
∑

(j,k)∈JN

P(λ̂j,k < αN λj,k) = O(Nν);

(ii) There exists a constant C̃ <∞ such that

∑

(j,k)∈JN

P(λ̂j,k > C̃ N−1/2
√

log N) = O(N− 2m
2m+1 ).

Essentially, Assumption A.2 requires that the random thresholds λ̂j,k are not “too far off”, in

an appropriate sense, from the theoretical thresholds λj,k.

To show that our data-driven wavelet-Fisz thresholds (6) fulfil Assumption A.2, we specify

what we call, respectively, “low” and “high” deterministic thresholds. We propose

λ
(l)
j,k = αNθj,k

√
2 log(#JN )

λ
(u)
j,k = C̃ N−1/2

√
log N,

with an αN → 1−, and with an appropriate constant C̃ specified below. Both λ
(l)
j,k and λ

(u)
j,k

need to satisfy Assumption A.1.
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Lemma A.2 Suppose that Assumptions 2.1 and 2.3 hold. If C̃ ≥ c
√

2 supω f(ω), then ∀ j, k λ
(u)
j,k ≥

supj,k λ
(l)
j,k, and both λ

(l)
j,k and λ

(u)
j,k satisfy Assumption A.1.

Proof. It is easy to check that if C̃ ≥ c
√

2 supω f(ω), then ∀ j, k λ
(u)
j,k ≥ supj,k λ

(l)
j,k. We now

check (23) for λ
(l)
j,k. The factor λ

(l)
j,k/σj,k + 1 only contributes a logarithmic term so we skip it.

Denote ZN = JN ∩ {(j, k) : 0 ∈ supp(ψj,k)}. We have




∑

ZN

+
∑

JN\ZN



φ(λ
(l)
j,k/σj,k) = O(M log N) +

∑

JN\ZN

φ(λ
(l)
j,k/σj,k),

where M is a constant. It remains to investigate the sum on the RHS. Recalling that H
(N)
p :=

∑N
t=1 h

p(t/N) and using (26), we bound λ
(l)
j,k/σj,k from below as follows:

λ
(l)
j,k

σj,k
≥

αNcN
−1/2f

j,k

√
2 log(#JN )

√
2πH

(N)
4

(H
(N)
2 )2

f j,k + o(N−1) +O(2−jN−1)

.

We introduce βN = cN−1/2/

√
2πH

(N)
4 /(H

(N)
2 )2, noting that βN → 1. The above bound can be

rewritten as

αNβNf j,k

√
2 log(#JN )

f j,k + o(N−1/2) +O(2−jN−1/2)
≥

αNβNf j,k

√
2 log(#JN )

f j,k
+ o(N−1/2) +O(2−jN−1/2) =

αNβNf j,k

√
2 log(#JN )

f j,k

(
1 + o((N log N)−1/2) +O(2−j(N log N)−1/2)

)
=:

αN β̃Nf j,k

√
2 log(#JN )

f j,k
,

where the first inequality holds by the convexity of u(x) = 1/(a2 + x) for small x; note that

β̃N → 1. Denoting µ = inf f(ω), we have

f
j,k

f j,k
≥

f
j,k

f
j,k

+ TV(f)|supp(ψj,k)
≥ µ

µ+ TV(f)|supp(ψj,k)
,
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where the last inequality follows from the fact that v(x) = x/(x+a2) is increasing on [0,∞). As

in Neumann (1996), the proof of Lemma 6.1 (ii), we have
∑

k TV(f)|supp(ψj,k) ≤ O(1)TV(f)

and thus for a sequence dN → 0, at each scale j we have

#{k : TV(f)|supp(ψj,k) > dN} = O(d−1
N ). (28)

Denote DN = JN ∩ ZcN ∩ {(j, k) : TV(f)|supp(ψj,k) > dN}. Note that by (28), at each scale j

at most O(d−1
N ) coefficients are in DN . Denote further EN = JN ∩ ZcN ∩Dc

N . Let J∗ − 1 be the

finest scale in JN . We have

∑

JN\ZN

φ(λ
(l)
j,k/σj,k) =

(
∑

DN

+
∑

EN

)
φ(λ

(l)
j,k/σj,k) = O(d−1

N log N)+

J∗−1∑

j=0

2j∑

k=1

φ

(
αN β̃Nµ

√
2 log(#JN )

µ+ dN

)
≤ O(d−1

N log N) + (2π)−1/2
J∗−1∑

j=0

2
j−J∗α2

N β̃
2
N

“

µ
µ+dN

”2

= O(d−1
N log N) +O((#JN )

1−α2
N β̃

2
N

“

µ
µ+dN

”2

) = O(d−1
N log N) + o(N1/(2m+1)),

for any m > 0. The last equality follows from the fact that 1− α2
N β̃

2
N

(
µ

µ+dN

)2

→ 0. Choosing

dN = log−1 N (say), we have that (23) is satisfied irrespective of the smoothness parameter m.

Because the thresholds λ
(u)
j,k are higher than λ

(l)
j,k, (23) also holds for λ

(u)
j,k . Obviously, (24) holds

for λ
(u)
j,k , which implies that it also holds for λ

(l)
j,k, since λ

(l)
j,k are lower than λ

(u)
j,k . �

To continue the proof of Theorem A.2, we show that our random thresholds (6) satisfy

Assumption A.2. In order to do so, we show that our “estimators” θ̂j,k fulfil a strong form of

asymptotic normality, paralleling the one in (20) for α̃j,k.

Proposition A.1 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 hold. Denote s2j,k = var(θ̂j,k).

We have

P (±(θ̂j,k − θj,k)/sj,k ≥ x)

1 − Φ(x)
→ 1,

uniformly over (j, k) ∈ JN , x ≤ ∆γ , where ∆γ = o(∆1/(3+4γ)) and ∆ = O(N δ/2/ log N).

Proof. We start with some clarifying remarks as to the orders of magnitude of θ̂j,k, θj,k and

sj,k. As each κj,k integrates to one in L1, we have θj,k = O(N−1/2) uniformly over j, k.
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The bias in estimating θj,k by θ̂j,k is of order O(2j log N/N3/2). Its derivation completely

parallels the proof of Lemma A.1(a), which is Proposition 3.1(i) in Neumann (1996): IEθ̂j,k =

θj,k +O(cN2j log N/N).

The variance s2j,k can be derived using Lemma 6 in Dahlhaus (1983), which is analogous to

the proof of Lemma A.1(b):

s2j,k = c2N [c2N

∫ π

−π

f2(ω)κj,k(ω)(κj,k(ω) + κj,k(−ω))dω + o(2j N−1) +O(N−1)] .

With the normalisation
∫
κj,k(ω) dω = 1 , we remark that the first term in brackets is of order

O(2j/N), which is easy to see since κj,k(ω) = 2j κ(2jω − k) .

With this observation, one gets the following auxiliary results, useful for the remainder:
∫
κ2
j,k(ω) dω = 2j and supk supω κj,k(ω) = O(2j). Thus, we note that the overall order of the

leading term of sj,k is 2j/2N−1. By Assumption 2.1(i), we have a uniform lower bound on sj,k,

which ensures that c−1
N sj,k ≥ c̃ (2j/N)1/2.

However, as we are going to study the ratios of θ̂j,k/sj,k and of the bias divided by sj,k, the

normalisation of each of the quantities θ̂j,k, θj,k and sj,k by the factor cN (which is of order

N−1/2) will cancel out. For example, for the bias treatment considered in Theorem A.1, we get

IE{(θ̂j,k − θj,k)/sj,k} = O

(
2j log N/N

(2j/N)1/2

)
= O((2j/N)1/2 log N) . (29)

Note that since 2j ≤ C N1−δ, the rescaled bias converges to zero.

The key property to make the strong asymptotic normality work is the treatment of all

higher-order cumulants of θ̂j,k/sj,k. We first parallel Lemma A.1(c):

cump(θ̂j,k) = O(cpN (p!)2+2γ 2j/N (2j/N log N)p−2) , (30)

for all p ≥ 3. This immediately entails the result for the cumulants rescaled by the standard

deviation sj,k:

cump(θ̂j,k/sj,k) ≤ C(p, γ) (N−δ/2 log N)p−2 ,

uniformly over (j, k) ∈ JN for all p ≥ 3, with a bounded constant C(p, γ). The proof of this

last result is straightforward if we observe that the normalisation by the inverse of sj,k leads
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to the division of the order of equation (30) by the factor of cpN (2j/N)p/2. (Compare also

the order of the leading term of sj,k shown to be 2j/2N−1). Elementary calculations give the

order for the normalised cumulant as ((2j/N)1/2 log N)p−2, which, however, is clearly of order

(N−δ/2 log N)p−2.

We close by noting that one can choose ∆ = N δ/2/ log N to control the bias in formula (29)

above. This completes the proof of Proposition A.1, which is similar to the proof of Neumann

(1996), Theorem 4.1. �

With this strong form of asymptotic normality, we now verify that our random thresholds

(6) satisfy Assumption A.2.

Verifying Assumption A.2(i):

Define ∆δ = (N δ/2/ log N)1/(3+4γ)/ log N (note that it satisfies the requirement for ∆γ of

Proposition A.1) and let Z be standard normal. All Ci’s are positive constants. Assump-

tion A.2(i) writes as follows:

∑

(j,k)∈JN

P (λ̂j,k < λ
(l)
j,k) =

∑

(j,k)∈JN

P ((θj,k − θ̂j,k)/sj,k > θj,k(1 − αN )/sj,k) ≤

∑

(j,k)∈JN

P ((θj,k − θ̂j,k)/sj,k > min(θj,k(1 − αN )/sj,k,∆δ)) ≤

C1

∑

(j,k)∈JN

P (Z > min(θj,k(1 − αN )/sj,k,∆δ)) ≤

C1

∑

(j,k)∈JN

P (Z > θj,k(1 − αN )/sj,k) + C1

∑

(j,k)∈JN

P (Z > ∆δ) =: I + II.

Recalling the orders of θj,k and sj,k, and denoting b = exp(C2
2/2), we bound I as follows:

C1

∑

(j,k)∈JN

P (Z > C22
(J−j)/2(1 − αN ) ≤ C3

∑

(j,k)∈JN

exp(−C2
22J−j(1 − αN )2/2) =

C3

J∗∑

j=0

2jb−(1−αN)22J−j ≤ C3b−(1−αN )22J−J∗

J∗∑

j=0

2j ≤ C42
J∗

b−(1−αN )22J−J∗

.
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Recalling that 2J
∗

= N1−δ, and logging the above bound we obtain (1−δ) logbN−(1−αN)2N δ.

To ensure that it is bounded in N (say ≤ C5), we need to take

αN ≤ 1 −
√

(1 − δ) logbN − C5

N δ
.

Turning now to II, we have 2J
∗

P (Z > ∆δ) ≤ N1−δ exp(−∆2
δ/2). Logging this, we get (1 −

δ) log N −N δ/(3+4γ)/(2 log2+2/(3+4γ)N), which tends to −∞, which means that II → 0.

Verifying Assumption A.2(ii):

∑

(j,k)∈JN

P (λ̂j,k > λ
(u)
j,k ) ≤

∑

(j,k)∈JN

P (θ̂j,k > C6) =

∑

(j,k)∈JN

P ((θ̂j,k − θj,k)/sj,k > (C6 − θj,k)/sj,k) ≤

∑

(j,k)∈JN

P ((θ̂j,k − θj,k)/sj,k > C7N
1/22(J−j)/2) ≤

∑

(j,k)∈JN

P ((θ̂j,k − θj,k)/sj,k > ∆δ) ≤ C8

∑

(j,k)∈JN

P (Z > ∆δ) ≤ C8N
1−δ exp(−∆2

δ/2).

This implies that we need to show N1−δ exp(−N δ/(3+4γ)/(2 log2+2/(3+4γ)N)) ≤ N−2m/(2m+1).

But this is asymptotically true, which becomes obvious once both sides are logged.

The remainder of the proof of Theorem A.2 is like the proof of Theorem 6.1 of Neumann

(1996).
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