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Abstract

Projection pursuit is an exploratory data-analytic method in multi-
variate (MV) analysis. It is similar to the well-known principal compo-

nents analysis (PCA) in that it can be used to �nd interesting structure
within a MV data set. However, unlike PCA, which �nds linear projec-
tions of maximum variance, projection pursuit �nds linear projections of
maximum non-normality, which sometimes is better at revealing structure
within a MV data set.

We describe how the negative Shannon entropy can be used for mea-
suring non-normality. As a result we can view projection pursuit with
the Shannon index as a method which �nds the projection with the max-
imum entropy. We outline the constrained optimising projection pursuit
algorithm and mention briey the role of sphering a MV data set.

Finally we illustrate the method as applied to the famous Lubischew
beetle data and mention how it can be applied to multispectral images.

1 Introduction

Multivariate data sets are becoming increasingly common, especially with the
advent of the computer, where rapid simultaneous collection of data is recorded
on many variables, often giving rise to an initially incomprehensible set. These
sets are usually written as a K �N data matrix X , where K is the number of
variables and N the number of observations recorded on each variable.

Sometimes the experimenter has some questions already in mind, which
hopefully the collected data can answer. Alternatively, we may just be inter-
ested in exploring the data set, formulating theories as we go. In both cases
exploratory data analysis (EDA) and common sense should be applied in copious
amounts to thoroughly investigate the general structure of the data.
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1.1 Exploratory Data Analysis

Most statistical packages allow us to freely explore multivariate data sets. We
should consider simple, easy to understand, methods before progressing onto
more complicated techniques. The simplest method is probably to draw a pair-
wise plot of all the variables.

There exist many exciting statistical packages with excellent graphical fa-
cilities, which are useful for exploring multidimensional data sets. A notable
example of such packages is S[1] which allows both the high quality plots that
we are already accustomed to (e.g. scatter-plots, histograms, normal probabil-
ity plots) and also more advanced facilities like 3D spinning plots which allow
the display of 3-dimensions of a data set at one time. By spinning the point
cloud, we can identify groups and interesting structure. A thorough examina-
tion of a reasonably-sized data set (say up to 10 variables and 500 observations)
is perfectly feasible using such graphical facilities.

1.2 Further Methods

After an EDA session, or if one really has too many variables, a dimension-

reducing technique may be appropriate. A common choice for this is principal
components analysis (see Mardia et. al [7] for example) which we will abbreviate
to PCA.

PCA involves performing an eigen-analysis on the variance (or correlation)
matrix of the multivariate data set. For a K variable data set we will have K
eigenvalues and K eigenvectors each of length K. The eigenvectors are usually
called the principal components of the data set and we use them to form new
variables out of the old by linear combination. The eigenvalues represent the
variation of the data set with respect to each principal component. We usually
plot the eigenvalues to aid in the selection of the target dimension. Usually
we look for a large drop in eigenvalues to indicate the desired cuto� point.
Sometimes we may have prior information or certain physical restrictions on
what the target dimensionality should be.

We can also look at plots of the data with respect to the new set of variables.
If the target dimension was 1 then we can view the new univariate data set as,
say, a histogram, or some other form of density estimate. For a 2D set then
a scatter-plot is indispensable. Dynamic graphics may again aid us in the 3D
case.

Although PCA is a method based on analysing the variance matrix, we note
that the data is eventually viewed by scatter-plots (or histograms). This is not
to say that the eigenvectors and eigenvalues are not useful, but at the end of
the day we look to the plots for identifying structure.
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2 Structure In Multivariate Data

We should begin by asking what we mean by structure in multivariate data set?
We include the following in our features of interest:

� outliers

� clusters

� linear structure

Many classical standard statistical procedures are badly derailed by outliers.
For instance an outlier can severely a�ect a variance matrix, which is the basis
for many statistical techniques. Much current statistical research is dedicated to
robustifying statistical methods against the a�ect of outliers. EDA can go some
way to identifying outliers. Once we have identi�ed an outlier we can perform
various actions, to be discussed below (Section 4.5), that mitigate its e�ects.

Of course, one could almost view an outlier to be a cluster of just one point,
but we would usually require a cluster to be a close collection of many points,
with some convenient de�nitions for \many" and \close". Clusters are very
interesting since they provide the basis of possible discrimination between groups
of individuals, and can lead to theories as to why groups of individuals should
be so discriminated.

Outliers and clusters can be thought of as examples of non-linear structure.
Linear structure is measured by correlation, and the correlation matrix for a
data set is a summary of the linear structure within a data set. Correlation,
with accompanying plots, can be essential in understanding how variables relate
to each other.

Of course there are other elements of structure that we haven't mentioned.
Correlation matrices and PCA deal with the linear structure admirably. With
plots, PCA may even go some way to identifying clusters. Although before we
apply these methods we should identify the destructive outliers and deal with
them in some way. The remaining parts of this article will consider attempts at
�nding non-linear structure.

3 Structure And Non-uniformity

It doesn't take long to convince oneself that structure can be viewed as a non-
uniform distribution of data points. Somehow then, we wish to �nd views of
the multivariate data set that are non-uniform, and therefore contain structure.
So given a particular view of a multivariate data set we would wish to be able
to measure how non-uniform it was, and use this measure to search for views
that were very non-uniform.
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3.1 Measuring Non-uniformity

We will look at the discrete case �rst of all. Suppose that you have a set of N
elements S = f1; : : : ; Ng. We can let the random variable U have the uniform

distribution on S de�ned by the probability mass function (pmf):

pU (n) =

�
1

N
n 2 S

0 otherwise
(1)

Given another random variable X , on the same sample space S, with prob-
ability mass pX we may wish to measure how non-uniform it is. One way we
can do this is to use the (negative) order-1 Shannon entropy:

I(pX ) =

n=NX
n=1

pX(n) log pX(n) (2)

This is a measure of how non-uniform pX is: we'll show later for a simple case
that this sum is least when pX is the uniform distribution. Hence we can obtain
a measure of how non-uniform pX is compared to pU by examining:

I(pX )� I(pU ) (3)

the larger this di�erence, the more non-uniform X .
As an interesting historical aside, R�enyi[9] derived a more general character-

isation of a measure of entropy called the entropy of order-� namely

1

1� �
log

 
n=NX
n=1

p�X(n)

!
(4)

which tends to the Shannon entropy as �! 1.

3.2 A Proof

The mathematics in this section is not di�cult but pass this section on a �rst
reading if you're not interested in the details of why the uniform distribution is
the minimiser of the entropy (2).

We only deal with the case N = 2 anyway! In this case the uniform distri-
bution is just the one usually used for modelling the toss of a fair coin (as long
as it doesn't land on its side!) namely pU (n) =

1

2
; n = 1; 2. For the density of

X we'll use the arbitrary distribution:

pX(n) =

�
p1 n = 1
p2 n = 2

(5)

and remember that, since this is a distribution, we must have

p1 + p2 = 1: (6)
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We must show that the uniform is the minimiser of (2). Therefore let's work
out the di�erence in entropies between the arbitrary and uniform:

I(pX )� I(pU ) =

n=2X
n=1

pX(n) log pX(n)�

n=2X
n=1

pU (n) log pU (n)

= p1 log p1 + p2 log p2 �
1

2
log 1

2
� 1

2
log 1

2

(7)

Now by (6) we can replace p2 by 1� p1 to get:

I(pX)� I(pU ) = p1 log p1 + (1� p1) log(1� p1) + log 2 (8)

Essentially the arbitrariness of the above expression is concentrated wholly on
p1. To �nd the required minimum we may just consider the behaviour of the
function

f(x) = x logx+ (1� x) log(1� x) + log 2 (9)

when x is in the interval [0; 1]. This function is plotted in Figure 1. One can
see that f(x) has a unique minimum at x = 1

2
. So the di�erence in entropies

in (8) is minimimised when and only when p1 =
1

2
, which of course means that

p2 =
1

2
as well, and thus X would have to be uniformly distributed. If it is felt

that this method of examining a plot lacks rigour then it is very easy to use
calculus methods on (9) to establish the result. The result does extend to the
more general case of N sample points.

3.3 Measuring Non-uniformity With Continuous Data

For dealing with continuous data the �rst thing we have to do is remember
we're dealing with a probability density function (pdf) instead of a pmf, and the
random variables X;U etc. will be measured on a continuous scale.

If we know that our data are bounded, say on the interval [a; b], then we can
rede�ne our entropy in (2) by

I(f) =

Z b

a

f(x) log f(x)dx (10)

and then by Section 3.2 it's believable that the continuous uniform density
on [a; b] is the minimising distribution. However we can obtain data that are
recorded on an in�nite domain. In this case our entropy becomes

I(f) =

Z
1

�1

f(x) log f(x)dx: (11)

It can be shown that the minimising distribution for (11) amongst all distribu-
tions of mean zero and variance one is the standard normal distribution. This
can be shown by an information theoretic or calculus of variations methods.
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3.4 Structure And Non-normality

By the previous section we identify structure with non-normality and we can
use the entropy de�ned by (11) to measure the non-normality of any density f .
(Although we may have to translate and scale f to have mean zero and unit
variance.)

4 Projections And Density Estimates

How does the previous section, dealing only with univariate quantities, relate
to multivariate statistics.

4.1 Projections

We can obtain a univariate view of the data by taking suitable linear combina-
tions of the original variables, or by forming a projection of the original data
matrix. For a K�N data matrix X we can form a linear projection Y by using
a K � 1 projection vector � in the following way:

Y = �TX (12)

where the superscript T denotes transpose. Note that Y is a N -dimensional
vector, and thus is a univariate shadow of what is going on in the higher dimen-
sional space.

4.2 Density Estimates

We can obtain some idea as to the spread of the observations of the univariate
data set Y by computing a density estimate. One could use histograms to do
this, but it's more convenient to use a technique called kernel density estimation

(see Silverman[10]).
Given density points Y1; : : : ; YN we can form the kernel density estimate

(KDE) for the density of Y by

f̂(x) =
1

Nh

n=NX
n=1

K(
x� Yn

h
): (13)

Although this formula looks quite complicated, it is in fact performing a
very simple task. Everywhere where there is a data point Yn the KDE places
a bump (kernel). The summation then adds up the e�ects of all the bumps to
produce a �nal estimate of density. Where the data points are more dense the
procedure will put more kernels close to each other, causing a greater value for
the �nal density after the summation.

We usually choose a smooth kernel function, and here we use the normal
density as our kernel. This gives the �nal density estimate many nice properties,
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one of the most important being the fact that we can di�erentiate the �nal
density as many times as we like.

We also have control over the value h which is called the bandwidth (or
window-width). This controls the width of the bump placed over each data-
point, and as a consequence controls how peaked the �nal density estimate is.
The choice of the value h is one of great research interest, and several methods
have been proposed as to how to choose the bandwidth automatically.

4.3 How Non-normal Is My Projection?

We are now at the stage where we can merge the idea of measuring non-normality
using the entropy (11) and that of the projection of a multivariate data set to
a univariate one.

In Figure 2 we have constructed an arti�cial bivariate data set. Notice that
the set splits clearly into two groups. In Figure 3 we have added a projection
vector (solid line) at approximately 45� to the axes. We have then projected
all the data points onto this vector. The projected data points are a univariate
data set and we can form a kernel density estimate of them as in Figure 4.

In Figure 5 we have added a projection vector at �45� to the axes, and
projected the data onto it. The corresponding kernel density estimate of the
projected data is shown in Figure 6.

The view that should be most interesting to us is that given in Figure 5.
The density estimate certainly shows the interesting structure. Notice that the
density estimate is a function of the projection vector, so we can write f̂�(x) to
reect this. Remember we can measure departures from normality by using the
entropy index, and in fact this becomes a function of the projection direction
as well

I(�) = I(f̂�) =

Z
1

�1

f̂�(x) log f̂�(x)dx (14)

We call I(�) the projection index.

4.4 Projection Pursuit

So we have a direct measure of how interesting a particular direction � is. It
doesn't take much to believe that I is in fact a di�erentiable function of the
components of �, so once you are at a particular direction, you have an indication
of how you should change direction to improve the interest of the projection.
This is in fact exactly what we do. We start at an initial position, compute the
index and its derivatives, work out which way to change the projection direction
to improve matters and move towards that better projection. In fact the exact
optimisation problem can be mathematically stated as

maxI(�) subject to �T� = 1 (15)
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The constraint on � at the end of this enforces the length of � to be 1, since it
is purely the direction of � that is interesting, not its length.

Details of how much to move in the chosen direction, and how we know
when we've got to the \best" projection, are left to a numerical optimisation
procedure. We have used steepest ascent, conjugate gradient and variable met-
ric optimisation methods, the details of which can be found in many texts on
numerical analysis (Press et al. [8] for example).

Figure 7 outlines the projection pursuit algorithm. The initial projection di-
rection can be chosen at random, or maybe from previous principal components
directions. The optimality condition is tested by examining for convergence of
the projection index and checking the size of its derivatives.

4.5 Other Considerations

We have deliberately omitted discussion of a technique called sphering (Tukey
and Tukey[11]). This is a preprocessing operation which transforms the data
to have zero mean and identity variance matrix. Due to the length constraint
on � the projected data will inherit this property. This incidentally makes the
computation of the projection index easier.

We can also project into 2 or 3 dimensions. We could project into more,
but this probably isn't useful. When we have many data points, the entropy
index is quite expensive to compute (especially when projecting into more than
1 dimension), so approximations have been developed to it. One is called the
moment index and based upon higher moments of the data set[5].

For details of these approximations, projection into more than one dimen-
sion, and how sphering �ts in, the reader is referred to Jones and Sibson[5].
Also useful on projection pursuit are the papers by Huber[4] and Friedman[2],
the latter author (with Tukey) coining the phrase projection pursuit in an early
paper[3].

We now turn our attention to the problem of outliers. The moment index
is sometimes attracted to projections with outliers in. Sometimes, however, we
are more interested in true clusters. We could remove the outliers and then
perform projection pursuit. We could also reduce the distance of the outliers by
a certain amount, and thus destroy their ability to unduly inuence the method.
Tukey in [5] suggested two ways of doing this.

5 Some Examples

We detail two real data sets to which we have applied the methods described
above.
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5.1 Lubischew Beetle Data

We review the work performed in Jones and Sibson's [5] paper on a set of data
collected on 74 beetles by Lubischew[6]. According to Lubischew, some species
may only be identi�ed by examination of the male copulative organs only; the
females remaining indistinguishable. Also some species have radical economic
consequences, making identi�cation essential. Lubischew goes on to describe
the use of discriminant functions in identifying species. The hope being that
a rule can be found to discriminate between beetles, based solely on external
characteristics such as lengths and angles of various body-parts. We use the data
in the paper to experiment with PCA and projection pursuit, and see if these
techniques can tell us anything. Each of the 74 male beetles has 6 measurements
taken on them leading to a 6� 74 data matrix.

First we should view the data with the original axes, as in Figure 8. We plot
the species labels as groups 1, 2 and 3. In this case, were we to obtain female
measurements (and assuming that the females were of approximately the same
dimensions as their male counterparts), we could plot them as well, and try to
identify which species they were. From Figure 8 we may conclude that although
certain variable combinations are able to discriminate between say group 3 and
not group 3, it would be di�cult to discriminate between all three groups at
once (although the plot of Variable 4 against 5 comes close).

We could perform a PCA, and plot the data with respect to the �rst two
principal components. This gives the picture in Figure 9. You can see the three
groups very nicely, although there may still be some confusion over groups 1
and 2.

We exhibit three projection pursuit solutions in Figures 10-12. The projected
data sets are on a di�erent scale to Figure 9, due to the sphering transformation
mentioned in Section 4.5. The projection in Figure 10 does less well than PCA,
with groups 1 and 2 very confused. Here the numerical optimisation routine
has found a local optima of the projection index. Sometimes local optima can
be interesting, so we're glad to �nd them.

Figure 11 is a more non-normal projection (having an negative entropy index
of 1.49 as opposed to 1.44 for Figure 10). The solution is perhaps, subjectively,
as good as the PCA solution. Figure 12 is very interesting in that the three
groups are very well separated. The projection was obtained not by the negative
entropy index, but an approximation called the moment index and mentioned
in Section 4.5 (see also Jones and Sibson[5]).

So clearly, for this data set at least, projection pursuit comes up with a very
interesting projection.

5.2 Multispectral Data

Often multivariate data sets relate to experiments where we record data for N
observations onK spectra. Projection pursuit can then be used in a PCA role in
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reducing the dimensionality of the data set. The multi-spectral data sets occur
in many areas of science, for example NIR spectroscopy and remote-sensing just
to name two. The author has, under the supervision of Professor R. Sibson,
been experimenting with the application of projection pursuit to multispectral
images obtained using equipment similar to the Thematic Mapper aboard the
LANDSAT series of satellites with interesting results.

6 Conclusions

We hope that this article has explained the principles behind projection pursuit
and how it makes use of the Shannon entropy to reach its goal. We also hope
that we have put across the value of projection pursuit for exploratory data
analysis and that we will, by means of this article, promote the use of the
method, not as a replacement for PCA or any other statistical method, but as
a complementary method.

A library of FORTRAN subroutines to perform projection pursuit is avail-
able from the author.

Finally the author would like to acknowledge Professor R. Sibson for stim-
ulating his interest in projection pursuit and making many helpful suggestions,
and Mr J. Stander for many helpful comments concerning this article.
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