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Abstract

This paper describes a wavelet method for the estimation of
density and hazard rate functions from randomly right censored data.
We adopt a nonparametric approach in assuming that the density
and hazard rate have no specific parametric form. The method is
based on dividing the time axis into a dyadic number of intervals
and then counting the number of events within each interval. The
number of events and the survival function of the observations are
then separately smoothed over time via linear wavelet smoothers, and
then the hazard rate function estimators are obtained by taking the
ratio. We prove that the estimators possess pointwise and global
mean square consistency, obtain the best possible asymptotic MISE
convergence rate and are also asymptotically normally distributed.
We also describe simulation experiments that show these estimators
are reasonably reliable in practice. The method is illustrated with two
real examples. The first uses survival time data for patients with liver
metastases from a colorectal primary tumour without other distant
metastases. The second is concerned with times of unemployment for
women and the wavelet estimate, through its flexibility, provides a
new and interesting interpretation.



1 Introduction

In life testing, medical follow up and other studies, the observation of the
occurrence of the event of interest (called a failure) may be prevented by
the previous occurrence of another event (called a censoring event). Such
is the case for example in a clinical trial with fixed study time and random
patient entry time, a clinical trial in which patients are lost to follow-up, or a
clinical trial in which there are multiple causes of failure but interest centres
on only one of them. In all these studies, interest focuses on estimating the
underlying distribution density and hazard rate of the time to occurrence of
the primary failure event.

In the above settings, popular methods for performing density and
hazard rate estimation include kernel and nearest neighbour smoothing
on the time axis (Beran 1981, Dabrowska 1987, Gray 1992). Penalized
likelihood methods, such as those described by O’Sullivan (1988), Antoniadis
(1989), Antoniadis and Grégoire (1990) have also been developed for hazard
estimation. In all these methods, the programming to implement reasonably
fast algorithms is not trivial. Kooperberg and Stone (1992) developed
an approach based on MARS type adaptive regression spline models. A
major limitation of their implementation is that their method tends to be
computationally intensive.

Another traditional approach to density and hazard rate estimation is
by orthogonal series (Kronmal and Tarter, 1968, Tanner and Wong, 1984).
Recently, wavelet shrinkage curve estimation has become a well-known
and mathematically sound technique for adaptively estimating functions.
Optimal rates of convergence have been thoroughly examined for different
observation schemes and L, loss by many authors. Software for fast wavelet
smoothing is effectively implemented in many popular packages (see Nason
and Silverman, 1994, and Buckheit and Donoho, 1995). Most current wavelet
methods focus on density estimation or on ordinary regression (see e.g.
Donoho and Johnstone, 1994, 1995, Donoho et al., 1995, and Nason, 1996).
This paper explores the possibility of applying an ordinary nonparametric
wavelet smoother to the problem of estimating the density and hazard
function of right censored data. The goal is to take advantage of fast wavelet
methods and software for nonparametric regression and to simplify the task
of implementing software for the more complex problem of hazard smoothing.

To briefly describe the proposed method, let X, X,,...,X, denote
lifetimes (times to failure) for the n subjects under study, and let
C1,Cy, ... ,C, be the corresponding censoring times. The observed random
variables are then Z; and 9; where

Z; = min(X;, C;) and ;= Iixi<ci)s

where I, denotes the indicator of event A. So §; = 1 indicates that the i*®



subject’s observed time is not censored. We assume throughout this paper
that:

(i) X1, Xs,..., X, are nonnegative and i.i.d. with common continuous cdf
F and continuous density f,

ii) C1,Cs, ..., (), are nonnegative and i.i.d. with common continuous cdf
g
G and continuous density g,

(iii) lifetimes and censoring times are independent.

The hazard rate function is given by

AE) = % Ft) < 1.

In the censored case if G(t) < 1, we have
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If we let
L(t) = P{Z; < t},

we see that

1= L(t) = (1 — F§)(1 - (1)), o)
Let

1) = - a), (3)

be the density of those observations still to fail and substitute (2) and (3)
into (1) to obtain

At = L L) < 1. (4)

Expression (4) is the key formula underlying our method. We will first
estimate the subdensity of the observed failures f*(¢). Dividing this estimate
by an appropriate estimator of the probability 1—L(t) of follow-up continuing
to ¢, will provide an estimate of the hazard rate function A(¢).

To estimate the subdensity f*, divide the time axis into a dyadic number
of small intervals, count the number of events (0 or 1) for each case in each
interval and divide these by the interval widths. Treating the contributions
of each case to each interval as if they were independent observations, regress
the number of events on ¢ using a nonparametric wavelet smoother to obtain
an estimate of the subdensity. We can summarize our subdensity estimation
procedure by the following steps:



Step 1 Choose A > 0 and bin the observed failures into K +1 bins of length
A.

Step 2 Use a wavelet regression estimate on the binned data to obtain an
estimate of the subdensity, i.e. choose a resolution j(n), compute
the wavelet coefficients of the binned data at scale j(n) and take the
resultant wavelet transform as a smooth estimate of f*.

An estimator of the hazard rate function will then be formed by dividing
the subdensity estimate by an empirical wavelet estimator of the probability
of remaining at risk.

An immediate advantage of our method over other methods is its speed
and its ease of computation. Wavelet estimators can be computed through an
O(n) algorithm, i.e. above step 2 requires O(K) computations. The binning
in step 1 can be done particularly fast and simply. Hence, the number of
evaluations necessary to compute our subdensity estimator certainly is linear
in the number of observations n.

It is perhaps worth pointing out that our approach differs from other
orthogonal series approaches to density estimation, since the binning process
allows us to adapt nonparametric wavelet regression methods to estimation
of a density. Existing wavelet density estimation methods such as those
developed by Donoho et al. (1995) are based on thresholding empirical
wavelet coefficients.  For moderate sample sizes the resultant density
estimates can have a very rough appearance (see Tribouley, 1995).

The general formulation and some theoretical properties of the method
are discussed in the following section. Simulation results are given in Section
3, and some real examples are given in Section 4.

2 Estimation of the hazard rate function

2.1 Notation and model set-up

Before introducing our estimator we need some preliminaries. Define
Trp =sup{t : F(t) <1}

Te =sup{t : G(t) < 1}
Ty, =sup{t : L(t) < 1} = min{Tr, T}
Estimates will only be computed over a finite interval [0,7] where 7 is
assumed to satisfy 7 < T7. Note that, if Z; denotes the sth order statistic

of the sequence Z;, it is easy to show that Ty, = Z,) — T, a.s as n — oo
(see Carbonez et al., 1995). So in practice we take 7 = Z,).



Let N be an integer that may depend on n and define a dyadic grid
(evaluation points)
kT

_ . _ _ oN
=gw k=0 K=2"-1,

i

with A = 727" the interpoint distance on the grid. The time axis is the
interval [0, 7] divided into K + 1 intervals of length A centred on t; with
endpoints

A

To = — Tk:tk—g,kzl,...,K;TK+1:T.

55
The kth interval is denoted by Jy: so J, = [1k, k1], £ =0,... , K — 1 and
Ji = [Tk, 7]. Now using the observations, a data set of (K + 1)n records is
created, consisting of (Y, tx) where

Y;k:IJk(Zz)éz izl,...,n;kzO,...,K,

is the indicator that a noncensored event for subject ¢ falls within the time
interval Ji. Finally, let U, be the proportion of failures observed to fail in
the interval Ji, in other words:

1 n
Uk:ﬁ;‘ym, k=0,...,K.

Note that Uy /A are crude estimators of the subdensity values f*(tx), defining
a histogram-type estimator at K + 1, a power of 2, dyadic points. These will
be further smoothed by a discrete fast wavelet method. Computationally,
such a histogram method has the advantage that it reduces the number of
points for smoothing from n to K + 1. Such binning to improve speed in
smoothing for the i.i.d. case has been discussed for example by Hérdle (1991),
Hirdle and Scott (1992).

Later we shall prove large sample properties for our estimator. In
preparation for this we first investigate the moments of the variables Uy.

Lemma 1
Assume that the subdensity f* is continuously differentiable on [0, ]. Then,
as A — 0 for n — oo we have:

FEUy/Al = f*(te) + O(A), (5)
Var[Uy /A] = f;%) +0(n), (6)

and
CoMt /B 0N = L +0 (2). ke @

The assertions of Lemma 1 are fairly minor modifications of standard
results for kernel density estimates and their proof is therefore omitted.
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2.2 Estimating the subdensity f* of observed failures

To obtain our estimate of f* we will smooth the binned (equally spaced) data
Uk/A via an appropriate linear wavelet smoother. An immediate advantage
of our approach over other methods is its speed and its ease of computation.
Wavelet estimators can be computed using an O(n) algorithm, i.e. the above
smoothing step only requires O(K) computations. The binning process
can be performed particularly quickly and simply. Hence, the number of
evaluations necessary to compute our estimator is certainly linear in the
number of observations n which is much faster than kernel or logspline
estimation algorithms.

Our wavelet estimator will be based on wavelets on the interval because
our problem is confined to an interval. Wavelets and multiresolution
analyses of L?([0, 7]) have been introduced and explicitly constructed recently
by Cohen et al. (1993). Their construction uses “interior” and “edge”
orthonormal scaling functions at every resolution, so that the total number
is exactly 2/ at resolution j.

The idea underlying such an approach is to express any function f €
L?([0,7]), with appropriate allowance for end effects, in the form

270 —1 270 —1
FO) =" iorbinn®) + D> Biwtbia(t)
k=0 Jj>jo k=0

for collections of functions {¢;, x} and {1 x} which form an orthogonal basis
for L([0, 7]). The ¢, are defined by

Gjoi (1) = 202 (200 — k)

for some function ¢ with [ ¢(x) dz = 1 called the scaling function; these allow
approximation of f at resolution jo. The {1} are generated in a similar
way from a mother wavelet v, and represent the detail in f at resolutions
finer than j.

The edge scaling functions are adapted in such a way that all the
polynomials on [0, 7] of degree less than an integer, depending on the number
of vanishing moments of the generating scaling function, can be written as
linear combinations of the scaling functions at any fixed scale. As on the
whole real line, no explicit analytic expression for the scaling functions and
for the wavelets is available. But for practical applications all that is really
needed are the filter coefficients and the multiresolution framework. A list
of suitable coefficients is available in the paper of Cohen et al. (1993).

From now on, ¢ and v will denote the scaling function and the mother
wavelet on [0, 7] associated with an r-regular multiresolution analysis of
L*([0,7]). We recall that a multiresolution analysis is said to be r-regular
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(r > 0) if ¢ is an element of the Holder space C", and if both ¢ and its
derivatives have a fast decay,

|0%(x)] < Cpre(1 + |z])™™, Vme N, 0<a<r,

for some sequence of finite constants C;, Cs, ... . One can prove that if
a multiresolution analysis is r-regular, the wavelet 1 is also in C" and has
vanishing moments up to the order r (see e.g. Daubechies (1992), Corollary
5.2)

/ s*p(z)de =0 for 0<k<r
0

The converse is generally false, and the number of vanishing moments is
usually larger than the regularity of the multiresolution analysis. The
smoother wavelets provide not only orthonormal bases for L?([0, 7]), but also
unconditional bases for function spaces consisting of more regular functions.

An advantage of having a high number of vanishing moments for v is
that the fine scale wavelet coefficients of a function are essentially zero
where the function is smooth. Since [ @(z)dx = 1, the same thing can
never happen for the < f, ¢;, >, but it is possible to construct compactly
supported orthonormal wavelets such that the scaling function ¢ has L
vanishing moments, i.e.

/ngﬁ(x)dx =1,

0

/Txkqﬁ(x)dx = 0 1<k<L,
0

/ka(x)dx =0 0<k<L.
0

Such wavelets were constructed by Daubechies (1992) and were named
coifiets after Ronald Coifman who asked for their construction.

We will assume hereafter that the scaling function ¢ is a coiflet of order
L = 2q with L > m + 1, where m is the assumed order of differentiability of
f. Let V; and W, be the approximation and detail spaces associated with the
multiresolution analysis of L?([0,7]) generated by ¢. Since for some integer

Jo
L2([07 T]) = V}o D (@jZJOWj) )

the function f* admits the following generalized Fourier expansion in L?:

270 -1 27 -1
fr(t) = Z < [ Bjok > Djok(t) + Z Z < f* 50 > jat),
k=0 Jj>jo £=0

with < f,g > defined by [ f(t)g(t) dt.
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Finally let us mention some approximation properties of regular wavelets
that will be used in the sequel of this paper (for a detailed account see
Mallat (1989)).

If f belongs to the Sobolev space H°([0,7]) and the multiresolution analysis
is r-regular, then

1f = Pifllee < o(277™067) as j — 00, (8)

where P; f denotes the projection of f onto the approximation space V.

The nested structure of a multiresolution analysis leads to an efficient
tree-structured algorithm for the decomposition of functions in Vi for which
the fine-scale theoretical wavelet coefficients < f*, ¢ > are given. However,
when a function is given in sampled form, one typically does not have
access to the fine scale integrals < f*, ¢n >, which are needed to initialize
the fast wavelet transform. In applications it is widely assumed that the
< f* énn > 27N2f*(k/2N), but such an approximation is rarely justified.
When ¢ is a regular enough coiflet, the accuracy of this approximation can
be controlled by the following lemma (the proof may be found in Antoniadis,
1996).

Lemma 2
Given an m-differentiable function r, let rU}(k) = 29/2 < r ¢;, >. With
L > m + 1, the following uniform (in k; 0 < k < 27) bound holds:

r{j}(k) —r (%) ‘ < Cy279m

where C is a constant only depending on the coiflet ¢ and its support length.

By Lemma 2 one is therefore able to approximate the coefficients
< f* éng > by 27N2f5(#), 0 < k <2V — 1, with an error O(27N/22-Nm),
Therefore, a reasonable estimate of the projection IIy f* of f* onto the finest
available scale NV is

K
. - U,
Falt) =223 ZEonal) Q
k=0
where ¢y (1) = 2V/2¢(2Nt — k) are the finest scale scaling functions. This
follows by observing that IF(Uy/A) ~ f*(t;). More precisely, we have:

Lemma 3
Assume that the subdensity f* is m-times continuously differentiable on
[0,7]. Then, as A — 0 for n — oo we have:

E[f3(t)] =Txf*(t) + O(A) (10)
and

Varlf (1)) = O{(nA)™"} + O(n™"). (11)



Proof. The proof may be found in the appendix.

The above calculations suggest that the observed binned values U, are
equivalent to a “raw” estimator fj“v, which now lies in the Sobolev space
H™([0, 7]) by the m-regularity of ¢. Combining the results of Lemma 3 gives
the point-wise consistency of the estimator fi(t). This estimator, while
presenting a very small bias on [0, 7], leads to an oscillatory solution almost
interpolating the binned data. It is easy to see that the best convergence rate
for the mean integrated squared error (MISE) for f3(t) is O(n=2/3) obtained
by choosing A = n~ /3. In order to smooth the data with a better rate, we
will associate with each sample size n a resolution j(n) < N and estimate
the unknown function f* by

fn:PVj(n)f]tf) (12)

the orthogonal projection of f]’(, onto the “smoother” approximation space
Vin)- The parameter j(n) governs the smoothness of our estimator. It is
important to choose it judiciously because it controls the trade-off between
fidelity to the data and the smoothness of the resulting solution. Too small a
value of j(n) leads to an over-smoothed, biased solution. From a theoretical
viewpoint, in the derivation of asymptotic results, the smoothing parameter
must tend to infinity at the correct rate as the amount of information in
the data grows to infinity. The following theorem addresses some of the
asymptotic properties of f,, defined by equation (12).

Theorem 1 X
Under the assumptions imposed on f* in this section, the MISE of f, defined

by T
RW:ELA{ﬁU%JﬂﬂFﬁ}

satisfies, as n — 0o, A — 0 and j(n) — oo with n277(" — oo,

. 9i(n)
mgoawwﬂ+om%+o< ).

n

The first term O(272(M™) + O(A2) in the upper bound of the risk
R,, corresponds to an upper bound on the squared integrated bias of the
estimator fn, while the second term (’)(2]:)) is an upper bound on its
variance. From these expressions it is easily seen that a small value of j(n)
causes large bias, whilst a large value of j(n) can cause large variance.
Proof. The proof appears in the appendix.

Note that according to Theorem 1, an optimal choice for j(n) and N

(or A) is j(n) = gzooglogy(n) and N > 37— logy(n). In Ibragimov and

Khasminski (1982), Stone (1982) and Nussbaum (1985) it has been proved



that the best global convergence rate in the MISE sense of any nonparametric
estimator of a density in the class of m-smooth functions that we consider
(m >1),is O(n ") with u = 528 It is clear that, with regular enough
coiflets, our estimator asymptotically attains this best possible convergence
rate.

The asymptotic normality of fn(t) for any dyadic point of the interval

[0, 7] of the form k/29 with ¢ integer, is shown by the following theorem.

Theorem 2
Under the same assumptions as in Theorem 1, and assume that for n — oo
nA — 00, nA®> = 0 and nA277/M@m=1) _ 0. Then for any dyadic point

t € [0, 7] VnA (fn(t) - f*(t)) converges in distribution to a zero mean

Gaussian random variable with variance f*(t)w? where w? = 3¢ $*(k).

Proof. The proof appears in the appendix.

2.3 Estimating the probability L(¢) of follow-up
continuing to t

In order to be able to estimate the hazard rate function we need an
appropriate and consistent estimator [Ajn(t) of the cumulative distribution
function L(t).

Given the set of i.i.d. observations Zi,...,Z, from the common
distribution function L, the standard nonparametric estimator of L is the
empirical distribution function L,, defined by

1 n
Ln(t) = - Z Liz<.
im1

This estimator L,, of L was proved by Dvoretsky, Kiefer and Wolfowitz (1956)
to be asymptotically minimax among the collection of all distribution
functions. Therefore, in the absence of additional information about the
shape of L the empirical distribution function L, is the optimal estimator
for L in the asymptotically minimax sense. Although L, is asymptotically
optimal, it does not take fully into account the smoothness of L (i.e., the
existence of a density for L). It therefore seems reasonable to consider a
continuous estimator of L which is better adapted to this situation. Thus,
in relatively general situations, an estimator of the form

L) = 23w -2) rep (13)

where {H,} is a sequence of continuous cdfs required to converge weakly
to cdf of the delta distribution centred at 0 has been suggested in the
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literature (see Winter, 1973, 1979, Puri and Ralescu, 1986, Yukish, 1989).
Such estimators arise quite naturally as integrals of density estimators of the

kernel type. The estimator that we are going to use in this paper will be
defined by

Ly(t) = /Otgn(x) dr, te€l0,7]

where /,, is a traditional histogram type estimator of the density ¢ of L.
This estimator of L is nothing else than an integrated Haar transform of
the data and may be viewed as a wavelet estimator of the survival function.
The interest in such an estimator is primarily due to its simple structure as
averages over independent random variables. The question of whether using
a different smoother for L, could give an improved hazard rate function
estimator has not been investigated.

Let ¢(t) = Ijp-(t) be the indicator function of [0,7] and denote by ¢,
the translated and dilated functions

dix(t) = 29202t — k).

It is not difficult to see that, as j tends to oo, 2j/2¢j,0(t) converges to the
delta distribution centred at 0, and therefore ®;¢(t) = 2//2 [ ¢;(z)dx is
a sequence of continuous cdf converging weakly to the cdf of the delta
distribution centred at 0. Let j(n) be a sequence of scales such that
j(n) — oo as n — co. Put f,(t) = 230" 23(”)/2q55(n)70(t — Z;) and define
L(t) = Ly @50t — Zi). Since by our assumptions L is continuously
differentiable on [0, 7], the results of section 3 in Winter (1979) apply. More
precisely we have

Proposition 1 (Winter (1979))
Suppose that lim,_,., 277 {n/loglogn}'/? = 0. Then

sup |E{Ly(t)} — L(t)| = o({2n/loglogn}~'/?)

te[0,7]

sup Var(L,(t)) < sup Var(L,(t))

te[0,7] te[0,7]
and L, has the Chung-Smirnov property, that is
lim sup ({Qn/ loglogn}'? sup |L,(t) — L(t)|) <1, a.s.
n—00 t€[0,7]

The first assertion of Proposition 1 follows from the proof of Theorem 3.3
in Winter (1979). The second assertion is a consequence of his Lemma 2.3
(b) and the Chung-Smirnov property is given by his Theorem 3.3.
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If the resolution j(n) is chosen to be N, the log of the number of bins
that we have used for estimating the subdensity f*, then it is easy to see
that the computation of L, can be performed in O(N) operations. Note also
that under the assumptions of Proposition 1, our estimate L, is mean square
consistent with a rate O({2n/loglogn}1).

2.4 Estimating the hazard rate

Our estimator of A(¢) is defined to be

where L, (t) has been defined in the previous section. Our purpose here is
to study the large sample properties for \,(¢). More precisely we have the
following Proposition whose proof is given in the appendix:

Proposition 2
Under the assumptions made in this section, if j(n) = g-l=logy(n) and
N > 57 logy(n), then as n — oo, and for any t € [0, 7],

E[(Au(t) = A1))*] = O(n~2m/Em+1),

Proof. The proof is given in the appendix (recall also that 7 < T},).

The weak consistency of the hazard rate function estimator is a direct
consequence of the above proposition. Moreover, since both fn and L, are
consistent and because \ is a continuous function of these two quantities
in [0,7], from the proof of Proposition 2 it follows that the asymptotic
distribution and the MISE of j\n are the same as those of

Falt) = (1) S (1)

L—L(t)  (1-L(®)?

Since f* is continuous on [0, 7] and since (1—L(t)) is uniformly bounded away
from 0 on [0, 7], and because the MISE of L, is asymptotically smaller than
that of fn, it follows, by the asymptotic normality of fn, that for any dyadic
point in [0, 7], j\n(t) is asymptotically normal. Moreover the asymptotic rate
of the MISE of ), is the same as that of fn which is given by Theorem 1.
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3 Simulations

An advantage of using simulated data for examples involving censoring is
that one knows not only the true density function from which the data were
generated, but also the actual values of the sample data before the censoring
took place. All simulations were run in S, using the built-in random number
generators and the WaveThresh package of Nason. A well-known shortcoming
of any orthogonal series estimator (including wavelets) is that except for
rather special smoothers they are not guaranteed to be nonnegative. In the
simulations f,(t) and L, (t) were replaced by

fo() = max(f,(t),0) and L (t) = max(L,(t),0).

Such a procedure defines estimates that have a smaller mean squared errors
than the original ones (see Efromovitch, 1989). Moreover, since the hazard
estimates are very unstable and have little meaning when few subjects were
left at risk, hazard estimates were only computed at points where L(¢) > 0.5.
Indeed, one should be wary about extrapolation beyond the range of the
data. In particular when all observations beyond a certain point are censored
conclusions about the right tail of the density may be unreliable. In binning
the data interval lengths were chosen according to the rules suggested by the
theorems of the previous section, that is by taking A = n~'/2. The resolution
j(n) was chosen by folded cross-validation (see Nason 1996).

3.1 Simulation 1

Figure 1 shows the wavelet estimates for the observed failure subdensities
and the hazard rate functions for a traditional censoring scheme.

We generated a sample Y;, 1 < ¢ < n, from the Gamma distribution
with shape parameter 5 and scale parameter 1 and an independent sample
C;, 1 < i < n, from the exponential distribution with mean 6 (the mean
was chosen so as to yield about 50% censoring). The results reported in
this subsection are based on samples of size n = 200. In binning the data,
we used an interval length A = 0.07. The resolution j(n) was obtained by
folded cross validation with an average value of 2 across simulations. Scaling
functions corresponding to coiflets with four zero moments were used.

The solid line in the left panel of Figure 1 is the subdensity estimate fl
based on A;, where A; = X, if X; < C;. The dotted line represents the true
underlying subdensity f;. Similarly, the right panel of Figure 1 displays the
corresponding estimated hazard rate function A1
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Figure 1: Wavelet estimate for the subdensity of observed failures for a
traditional censoring scheme described in section 3.1. The solid line is the
density estimate based on the actual data of size n = 200 with 50% censoring)
and the dotted line is the true Gamma density. The right panel displays the
wavelet estimate (solid line) for the observed failure hazard rate for the same
data with the dotted line representing the true hazard rate.

3.2 Simulation 2

The censoring scheme for Figure 2 is the same as the one for Figure 1.
Here the X;s were generated from the bimodal density f, that was used in
Kooperberg and Stone (1992):

fo=0.8g + 0.2h,

where ¢ is the (lognormal) density of exp(Z/2), with Z having the standard
normal distribution, and A is the normal density with mean 2 and standard
deviation 0.17. The C;s were generated from the exponential distribution
with mean 2.5. The sample size of the simulated data is n = 200. The solid
lines in Figure 2 represent the estimates. The dotted line represents the true
density fo (left panel) and hazard rate function Ay (right panel).

From Figure 1 we observe that it is possible in practice to recover well the
underlying density of interest from information that is available in studies
with right censored data. Even for the bimodal density, our method of density
estimation does a decent job. For sample sizes of the order n = 100, however,
the estimate for the height of the second mode was not very accurate. Further
examination suggested that this appears to be caused primarily by sampling
variation (the number of data points close to the second mode, ignoring
censoring, is binomial with parameters n = 100 and p = 0.2). Although the
total percentage of censoring is typically less than 40%, about 55% of the
cases in the range of the second mode get censored. Nevertheless, when the
sample size is large this censoring has almost no influence on the fit.
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Figure 2: Wavelet estimate for the bimodal subdensity of observed failures
described in section 3.2. The solid line is the subdensity estimates based
on the actual data of size n = 200 and the dotted line is the true bimodal
subdensity. The right panel displays the wavelet estimate (solid line) for
the observed failure hazard rate for the same data with the dotted line
representing the true hazard rate.

3.3 Mean-squared errors

To end this section, we summarize some simulation results on the mean
square errors of our estimators. The first set of simulations examined the
average mean squared error of the subdensity estimator as a function of the
size A, estimating the optimal j(n) by folded cross-validation.

Samples of size n = 200 and n = 500 were generated from the two different
true hazard functions whose subdensities were shown in Figures 1 and 2.

The estimators used K = 16; 32; 64. The average mean squared errors
AMSE(f*) and AMSE()) were estimated by averaging the average squared
errors

ASE(f7) = K'Y (fulte) = f7(t))®  ASEQ) = K'Y (Aulte) = AMta))?

for each sample and averaging over the samples. Because the mean squared
error of the estimator can be especially important at large ¢ with small risk
sets, this risk (denoted by AMSE2) was also calculated restricting the sum
over time to points with ¢, < 6 for the density f; and t;, < 2.5 for the
bimodal density f,. The results on the estimated subdensities from a total
of 200 repetitions for each of the 2 models are given in Table 1 for each
sample size n = 200 and n = 500.

Table 2 summarizes the results for the hazard rate estimates on the same
simulated samples used to obtain the results of table 1.

Pointwise MSEs for the subdensity and the hazard rates were also
tabulated at the points t = 0.5, ¢ = 0.75, t = 1.5 and ¢ = 3. Not surprisingly,
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Table 1: Average mean squared errors (x107°) for subdensity estimation
based on 200 repetitions of the simulations given in section 3.1 and 3.2 for
sample sizes n = 200 and n = 500.

Subdensity f; Subdensity f,
Bins K| n=200 [n=500 n=200 |n=500
16 25.7 17.6 671 603
AMSE 32 18.8 9.7 408 266
64 18.4 6.7 369 263
16 20.5 13.6 550 464
AMSE2 32 15.3 7.6 340 210
64 14.6 5.2 300 210

Table 2: Average mean squared errors (x 1073) for hazard function estimation
based on 200 repetitions of the simulations given in section 3.1 and 3.2 for
sample sizes n = 200 and n = 500. The figures are based on the same data

used to form table 1

Hazard \; Hazard )\,
Bins K| n=200 |n=500] n=200 |n=>500

16 64.4 55.4 3050 3090
AMSE 32 78.6 55.4 4060 1820

64 112.0 99.5 2080 1970

16 5.8 5.9 182 295
AMSE2 32 2.6 2.1 152 66

64 2.5 1.6 48 32
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Figure 3: Wavelet (solid), Logspline (dashed) and Local polynomial (dotted)
density and hazard rate estimates from the Liver Metastase data set. The
bottom tick marks show the location of observed failures and the top ones
show the location of censored observations.

the resolutions which minimize these pointwise MSEs vary considerably
with where the point is located. Given this wide variation, the complexity
of developing a true locally adaptive method for resolution selection, and
given that cross-validation is not always reliable in individual samples, in
exploratory analysis the best approach may be to examine several estimates
using a relatively small range of resolutions.

The simulation results show that the number of intervals used has little
effect on performance, at least for the fairly smooth models considered here.
Similar results held for other configurations examined.

4 Examples

4.1 Liver metastases

As an example consider the data analyzed by Haupt and Mansmann (1995),
giving survival times for patients with liver metastases from a colorectal
primary tumour without other distant metastases. The survival times are
measured in months. In this data set there are 363 uncensored and 259
censored observations. In order to compare our wavelet estimator (solid line)
we also report on the figures the logspline subdensity estimator (dashed line)
and the local polynomial estimator (dotted line) implemented in locfit (see
Loader, 1995). Each estimation method uses a global data driven choice
for the smoothing parameters (for pointers to an archive and for more
details on this choice for logspline and locfit the reader is referred to the
papers by Kooperberg and Stone, 1992 and Loader, 1995). The wavelet
estimators (density and hazard rate) were computed as described in the
previous sections, using 64 bins during the binning process and a resolution
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j(n) = 2 chosen by folded cross validation. The logspline estimator was
calculated by specifying that the density equals zero to the left of 0, using
a BIC penalty and stepwise knot deletion. Four knots were selected for
the spline that is fitted to the log-density. The local polynomial estimator
was used with its default values and the fitted density had 1.167 equivalent
degrees of freedom. Both logspline and locfit were applied on the un-binned
data.

The left panel in Figure 3 gives estimated densities for observed failures,
while the right one displays the corresponding hazard rate estimators.

The increasing risk at about 14 months is evident. On the hazard rates
plot of figure 3 one can see that the estimates seem reliable on a smaller
interval than the one that extends beyond 40 months. The wavelet estimate
exhibits some boundary effects due to the fact that few only cases are still
at risk after 40 months. Note also that the “constancy” in the hazard rate
at later follow-up times observed in the logspline hazard rate estimate is
supported by the wavelet estimator. The pronounced increase of the wavelet
estimator is probably due to a boundary effect that is also noticeable to a
lesser extent by the locfit estimator.

4.2 Employment example

Our second example is concerned with the unemployment dynamics of a
population of 632 women. This data set has also been studied by Bonnal and
Fougere (1990) using parametric methods. For a given individual the survival
time is the time from when the individual is first unemployed until that
person obtains employment. If an individual is still unemployed at the end
of the study then that person is right censored (so time to employment is after
the end of the study). In this data set there are 272 censored observations.
We estimated the subdensities and hazard rates using our wavelet method,
locfit and logspline. The wavelet estimators (density and hazard rate) were
computed using 64 bins during the binning process and a resolution j(n) = 3
chosen by folded cross validation. The locfit and logspline procedures were
used with their default settings, resulting in 2.01 fitted degrees of freedom
and 5 knots, respectively.

Figure 4 reproduces the results. In Figure 4 it can be seen that the
automatic logspline estimator, being based on only 5 knots, is oversmoothed.
This is probably due to the placement and the selected number of knots.

One can reach very different conclusions by using each of the different
estimators. According to the logspline hazard rate estimator, the
instantaneous rate for transition from unemployment to work increases
during a first period of about 3 months (90 days) and then decreases
monotonically. For the locfit estimator after this first period, the rate seems
to wander around a constant level, i.e. a women unemployed for a long period
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Figure 4: Wavelet (solid), Logspline (dashed) and Local polynomial (dotted)
subdensities and hazard rate estimates for the unemployment data. The
bottom tick marks show the location of observed failures and the top ones
show the location of censored observations.

has the same chance as a recently unemployed women to find work. The
results of the wavelet estimator are interpretable and interesting. The wavelet
estimator indicates an increase in the hazard rate during the first three and
half months with a strong decrease after (i.e. women are much more likely to
find work in this period), reaching a fluctuating level after 360 days. During
the months that follow one can discern some particular periods with a local
increase of the hazard rate (the modes in the locfit hazard estimator are also
apparent but less so). These increases may be related to other factors such as
the end of indemnities for unemployment for proportions of the population.

In light of the example and the simulations and much additional
experience with our density and hazard rate estimation method, we are
convinced that the current implementation is of considerable practical value
in data analysis. It is sufficiently accurate and flexible to handle peaks in the
middle of the data (see Figure 2). However, it does not work very well far out
in the tails (see Figure 3). A moderate amount of censoring has very little
effect on the accuracy of estimation and the procedure can deal effectively
with a high proportion of censoring. Moreover, the estimation procedure is
rather insensitive to the choice of the initial binning width. Further, the
comparison among the three methods of estimation is not totally fair since
the wavelet resolution level is cross-validated while the others just use default
smoothing parameters.

Conclusion

This paper introduced a wavelet-based method to estimate the density and
hazard rate functions for right censored survival time data. We showed
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that our estimators possess pointwise and global mean-square consistency.
Moreover we demonstrated that the estimators asymptotically obtain the
best possible convergence rate in terms of MISE and also that they are
asymptotically normally distributed.

Through simulations we demonstrate that the estimators perform well
and provide some evidence to show that they are fairly insensitive to the
number of bins. Two examples are presented that compare our estimator to
established estimators. The comparisons reveal that the wavelet estimators
compete favourably with the existing methods and their added flexibility
provided new and useful interpretations of survival data.
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Appendix

Proof of Lemma 3

Given the expectation of the U given by Lemma 1 we have:

EU(0] = 2738 [T onat) =2 Y17 0) + O owalt)

k=0

K K
2NN (1) dwalt) + OA)272 S b ().
om0 k=0

Using the fact that sup, >, [¢(t—Fk)| = M, where M is a constant depending
only on the scaling function ¢, and since ¢y () = 2V/2¢(2Vt — k), it is easy
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to see that sup, 272" ¢y x(t)] = M. Therefore
K

Blfxt)] = 2V Z fr(te)onk(t) + O(A)
k=0

K
= > {< " ovn > +APO(A™) Yo i(t) + O(A) by Lemma 2

k=0

K
= D0 < Fbwe > dwalt) + O™ 1 O(A),

where m is the order of differentiability of f*.
To prove expression (11) note that

Var[f5 (1)) = 2~ NZW«( >¢Nk )+2- NZ Z cov< 4) On () o .o(t)

k=0 £=0,0+£k

By Lemma 1 we have

Ve Fs()] = - Nz{ >} Fan)
4o N ;é OZMC { [(te) + O(An~ )] PNk (t)On,e(t)

Since f* is uniformly bounded on [0, 7] and since A = O(277) it follows that:
K
varlfi (0] < G Z () + O(A/n) Y oyt
k=0
+C'25 Z Z O k(1) P e (t)] + O(A? /n) Z Z PNk () P (2)]-

ko ke ko ke

Using the fact that ¢ is at least m-regular in the sense of Meyer (1990), we
have

Zdwk 0@2Y) and Y Y lowa(t)] one(t) = O2°Y).

ko kAl
where O does not depend on ¢. It then follows that
Var[fy (1)) = O {(nd) '} + O(n™"),
which completes the proof. n
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Proof of Theorem 1
Write
E(t) = falt) —~f*(t) = T () () — £7(t)
= i) (fA) (@) = i) (f7) (8) + Ty (F7)(E) = f7(8) = S(2) + A(¢)

with S denoting the stochastic error and A the approximation error of the
estimate. Using the above expression, the fact that m > 1 and the results of
Lemma 3 we have:

E[E{@)] = E[S()] + A(t) = L) Iy (f%))(2) + O(A) = ILiw) (f*) (1) + A(1).
Now, since Vj,) C Vy, it follows that
FE[E(t)] = O(A) + A(t).

Using the fact || T (f*) = f*|la = 0(27™®™) (see (8)), the squared integrated
bias of fn behaves like .
O(A?) + O(272mim),

As for the variance part of the MISE, say V', observe first that

2i(n)_1

k=0
2i(n)_1 (2N -1

3 U
SO SR DIEREY YRS gt
=0

k=0

It therefore follows that
- - a U, — E(Uy)
H](n)(fN)(t)_Hj(n)(E(fN(t))) - Z 2 N/ Z A < ONL Dj(n) e > ¢j(n),k(t)'
k ‘

Using Parseval’s relation we have:

/{Hj(n)(ffv)(t) — i) E(f3)(t)) } dt =27 NZ {Z ﬂ < O Djn) >} :
(14)

Taking expectations in both sides of (14) and using the results of Lemma 1
yields

_ 2
22 NZE{ L (Uk)) } < ON o Pj(my e >
U, U,
+ Z 2N Z Z Co { k h < ONgs Din)e >< ON by Di(n),e B15)

k  h#k
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By Lemma 1 the first part in the right hand side of (15) is equal to

(n™N} < vk Bin) (16)

Now, observe that

Z < Ok Dimye >7= TN (D5m,0) 12 = [ djemell3 = 1. (17)
k

Therefore, using again the fact that f* is uniformly bounded, we see that
(16) behaves like:

9i(n) , 9i(n)
@, ( ) +0(A2MWp )y =0 < ) : (18)

n n

The second term in (15) is equal to

22 NZZ{——f te) F (L) +O(AR™ Y} < b Pjmye >< Oy Pimy e >

k  h#k

Now, by using (17)

DN < v Gitnye >< O B > < DD | < Bviks Dinye > || < Sy bignye > |
k h

ko htk
2
= <Z| < ONky Pin),e > |)
K

< 2Y) < b by >7= 2V ||y alls = 2V
k

Finally, it is easy to see that (16) behaves like

9i(n) A2i(n) 9i(n)
)+ O( ) =0(—),

n n n

and this, together with (17), completes the proof. &

Proof of Theorem 2

First write
VA (folt) = £1(1) = VaA(fu(t) = E[fa(t)]) + VRA(E[f ()] — f*(1).

By the proof of Theorem 1 it is known that



From Walter (1992), Theorem 4.1, p. 937, it follows that
sup [Ty (f) = flloo = O(277Mm=1/2)),
f€EHMm

It follows that (ILj¢n)(f*)(¢) — f*(t)) = O(277™m=1/2)) and consequently
E[fu(t)] = f*() = O(A) + 027/ Mm=1/2),
Consider now the following expansion

VaR(fu(t) - EL(0) ~ S
VnA(fa(t) = f3(6) + VaA(fi () = Efy (1) + VaA(Efy () = Efa(1))
= I+ II+1I] say.

The key argument in our proof is that IT is asymptotically Gaussian while
the terms I and IIT are vanishing as n goes to infinity.

Let us first show that I and III tend to zero. This basically follows from
Walter’s result quoted above. For the term I we have

Ja(t) = Fi () = Wiy () (1) = i (1) = O277M=1/2),

and the convergence follows from the assumptions of the theorem. For the
term III we observe that

Efy(t) = Bf.0)] < B |f3(t) = fa(t)] = 0@ 70019),

where we have used the fact that Walter’s result implies that |IT;,yf — f| <
K271m(m=1/2) where K does not depend on f.

Finally, it remains to show that, given our assumptions, fj{,(t) is
asymptotically Gaussian. The proof will rely on the decomposition

VnA(fu(t) — Efy(t) ZMZ ik — pr)o(2Vt — k ):ZZnia

where pr = F(Yi).

It is important to note that, since ¢ is compactly supported, the sum over
k only involves a finite number (depending on ¢) of terms. From arguments
similar to those used in the proof of Lemma 3, we obtain

Var[Z,;] = (Zf te) (2Nt — k) + O(A)) :

By continuity of f and since ¢ is dyadic, it follows that

Var[VnA(fx (1) — Efy () Z ¢*(k

k=—00
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Note that when ¢ is non dyadic the sum over k£ is not asymptotically
stable (see Antoniadis et al., (1994) for a similar remark when estimating

a regression function by wavelet methods). To obtain asymptotic normality

it remains to check the Lindeberg condition. Setting Uy; = Z,;/(VarZ,;)'/?,

this amounts in showing that
E{U Yy, 5y} — 0.
By the Cauchy-Schwarz and Chebyshev inequalities, we have
E {ng’IlUni|>s\/ﬁ} < {E(Uni)4}1/2 (ev/n)~".
Straightforward calculations yield

E(z) =05

and E(U},) = O(n?)E(Z};). Therefore,

1
E{U1y o.nit=0 ;
{ N | Uni| > \/_} (m)

and this completes the proof. m

Proof of Proposition 2
Let us first note that
Mlt) = [B(a(®) + 1) = B B - La(@))

~ ~ -1

< {1+ (B(L0) - LONEQ - L))

By the Chung-Smirnov property of L, and using Taylor’s theorem it follows
that

A

Sult) = B(fu() B~ L)} + {falt) ~ B (0)}HEQ ~ L))
~{B(L.0) - L)} BGL0) (B0 - L)~
0 [|fa(t) = B(fa(t)] + | B(La(t) — La(t)]] .

Now, using again Taylor’s formula, we have

E(fu(1))
E(1— Ly(t) !

= (FO+BE0) - £0]) - L)

X {1 . E(Lln(_t)i(_t)w) +o (|E(£n(t)) . L(t)|)} .




From the above expressions and the fact that A(t) = f*(¢)/(1— L(t)), routine
calculations show that the mean squared error (and the MISE as well) of A, (%)
is the same as the one of

fult) = (1) fr(t)

1—L(t)  (1-L@))? [L(t) = La(8)]] - (19)

The assertion of the proposition is now easily seen to be a consequence
of Theorem 1 and Proposition 1 and the fact that (1 — L(¢)) is uniformly
bounded away from 0 on [0, 7] by definition of 7. =
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