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Abstract

This paper describes a wavelet method for the estimation of

density and hazard rate functions from randomly right censored data.

We adopt a nonparametric approach in assuming that the density

and hazard rate have no speci�c parametric form. The method is

based on dividing the time axis into a dyadic number of intervals

and then counting the number of events within each interval. The

number of events and the survival function of the observations are

then separately smoothed over time via linear wavelet smoothers, and

then the hazard rate function estimators are obtained by taking the

ratio. We prove that the estimators possess pointwise and global

mean square consistency, obtain the best possible asymptotic MISE

convergence rate and are also asymptotically normally distributed.

We also describe simulation experiments that show these estimators

are reasonably reliable in practice. The method is illustrated with two

real examples. The �rst uses survival time data for patients with liver

metastases from a colorectal primary tumour without other distant

metastases. The second is concerned with times of unemployment for

women and the wavelet estimate, through its exibility, provides a

new and interesting interpretation.
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1 Introduction

In life testing, medical follow up and other studies, the observation of the
occurrence of the event of interest (called a failure) may be prevented by
the previous occurrence of another event (called a censoring event). Such
is the case for example in a clinical trial with �xed study time and random
patient entry time, a clinical trial in which patients are lost to follow-up, or a
clinical trial in which there are multiple causes of failure but interest centres
on only one of them. In all these studies, interest focuses on estimating the
underlying distribution density and hazard rate of the time to occurrence of
the primary failure event.

In the above settings, popular methods for performing density and
hazard rate estimation include kernel and nearest neighbour smoothing
on the time axis (Beran 1981, Dabrowska 1987, Gray 1992). Penalized
likelihood methods, such as those described by O'Sullivan (1988), Antoniadis
(1989), Antoniadis and Gr�egoire (1990) have also been developed for hazard
estimation. In all these methods, the programming to implement reasonably
fast algorithms is not trivial. Kooperberg and Stone (1992) developed
an approach based on MARS type adaptive regression spline models. A
major limitation of their implementation is that their method tends to be
computationally intensive.

Another traditional approach to density and hazard rate estimation is
by orthogonal series (Kronmal and Tarter, 1968, Tanner and Wong, 1984).
Recently, wavelet shrinkage curve estimation has become a well-known
and mathematically sound technique for adaptively estimating functions.
Optimal rates of convergence have been thoroughly examined for di�erent
observation schemes and L2 loss by many authors. Software for fast wavelet
smoothing is e�ectively implemented in many popular packages (see Nason
and Silverman, 1994, and Buckheit and Donoho, 1995). Most current wavelet
methods focus on density estimation or on ordinary regression (see e.g.
Donoho and Johnstone, 1994, 1995, Donoho et al., 1995, and Nason, 1996).
This paper explores the possibility of applying an ordinary nonparametric
wavelet smoother to the problem of estimating the density and hazard
function of right censored data. The goal is to take advantage of fast wavelet
methods and software for nonparametric regression and to simplify the task
of implementing software for the more complex problem of hazard smoothing.

To briey describe the proposed method, let X1; X2; : : : ; Xn denote
lifetimes (times to failure) for the n subjects under study, and let
C1; C2; : : : ; Cn be the corresponding censoring times. The observed random
variables are then Zi and �i where

Zi = min(Xi; Ci) and �i = I[Xi�Ci];

where IA denotes the indicator of event A. So �i = 1 indicates that the ith
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subject's observed time is not censored. We assume throughout this paper
that:

(i) X1; X2; : : : ; Xn are nonnegative and i.i.d. with common continuous cdf
F and continuous density f ,

(ii) C1; C2; : : : ; Cn are nonnegative and i.i.d. with common continuous cdf
G and continuous density g,

(iii) lifetimes and censoring times are independent.

The hazard rate function is given by

�(t) =
f(t)

1� F (t)
; F (t) < 1:

In the censored case if G(t) < 1, we have

�(t) =
f(t)(1�G(t))

(1� F (t))(1�G(t))
; F (t) < 1: (1)

If we let
L(t) = IPfZi � tg;

we see that

1� L(t) = (1� F (t))(1�G(t)): (2)

Let

f �(t) = f(t)(1�G(t)); (3)

be the density of those observations still to fail and substitute (2) and (3)
into (1) to obtain

�(t) =
f �(t)

1� L(t)
; L(t) < 1: (4)

Expression (4) is the key formula underlying our method. We will �rst
estimate the subdensity of the observed failures f �(t). Dividing this estimate
by an appropriate estimator of the probability 1�L(t) of follow-up continuing
to t, will provide an estimate of the hazard rate function �(t).

To estimate the subdensity f �, divide the time axis into a dyadic number
of small intervals, count the number of events (0 or 1) for each case in each
interval and divide these by the interval widths. Treating the contributions
of each case to each interval as if they were independent observations, regress
the number of events on t using a nonparametric wavelet smoother to obtain
an estimate of the subdensity. We can summarize our subdensity estimation
procedure by the following steps:
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Step 1 Choose � > 0 and bin the observed failures into K+1 bins of length
�.

Step 2 Use a wavelet regression estimate on the binned data to obtain an
estimate of the subdensity, i.e. choose a resolution j(n), compute
the wavelet coe�cients of the binned data at scale j(n) and take the
resultant wavelet transform as a smooth estimate of f �.

An estimator of the hazard rate function will then be formed by dividing
the subdensity estimate by an empirical wavelet estimator of the probability
of remaining at risk.

An immediate advantage of our method over other methods is its speed
and its ease of computation. Wavelet estimators can be computed through an
O(n) algorithm, i.e. above step 2 requires O(K) computations. The binning
in step 1 can be done particularly fast and simply. Hence, the number of
evaluations necessary to compute our subdensity estimator certainly is linear
in the number of observations n.

It is perhaps worth pointing out that our approach di�ers from other
orthogonal series approaches to density estimation, since the binning process
allows us to adapt nonparametric wavelet regression methods to estimation
of a density. Existing wavelet density estimation methods such as those
developed by Donoho et al. (1995) are based on thresholding empirical
wavelet coe�cients. For moderate sample sizes the resultant density
estimates can have a very rough appearance (see Tribouley, 1995).

The general formulation and some theoretical properties of the method
are discussed in the following section. Simulation results are given in Section
3, and some real examples are given in Section 4.

2 Estimation of the hazard rate function

2.1 Notation and model set-up

Before introducing our estimator we need some preliminaries. De�ne

TF = supft : F (t) < 1g

TG = supft : G(t) < 1g
TL = supft : L(t) < 1g = minfTF ; TGg:

Estimates will only be computed over a �nite interval [0; � ] where � is
assumed to satisfy � < TL. Note that, if Z(i) denotes the ith order statistic
of the sequence Zi, it is easy to show that TLn = Z(n) ! TL a:s as n ! 1
(see Carbonez et al., 1995). So in practice we take � = Z(n).
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Let N be an integer that may depend on n and de�ne a dyadic grid
(evaluation points)

tk =
k�

2N
; k = 0; : : : ; K = 2N � 1;

with � = �2�N the interpoint distance on the grid. The time axis is the
interval [0; � ] divided into K + 1 intervals of length � centred on tk with
endpoints

�0 = ��

2
; �k = tk � �

2
; k = 1; : : : ; K; �K+1 = �:

The kth interval is denoted by Jk: so Jk = [�k; �k+1[, k = 0; : : : ; K � 1 and
JK = [�K; � ]. Now using the observations, a data set of (K + 1)n records is
created, consisting of (Yik; tk) where

Yik = IJk(Zi)�i i = 1; : : : ; n; k = 0; : : : ; K;

is the indicator that a noncensored event for subject i falls within the time
interval Jk. Finally, let Uk be the proportion of failures observed to fail in
the interval Jk, in other words:

Uk =
1

n

nX
i=1

Yik; k = 0; : : : ; K:

Note that Uk=� are crude estimators of the subdensity values f �(tk), de�ning
a histogram-type estimator at K +1, a power of 2, dyadic points. These will
be further smoothed by a discrete fast wavelet method. Computationally,
such a histogram method has the advantage that it reduces the number of
points for smoothing from n to K + 1. Such binning to improve speed in
smoothing for the i.i.d. case has been discussed for example by H�ardle (1991),
H�ardle and Scott (1992).

Later we shall prove large sample properties for our estimator. In
preparation for this we �rst investigate the moments of the variables Uk.

Lemma 1
Assume that the subdensity f � is continuously di�erentiable on [0; � ]. Then,
as �! 0 for n!1 we have:

IE[Uk=�] = f �(tk) +O(�); (5)

Var[Uk=�] =
f �(tk)
n�

+O(n�1); (6)

and

Cov[Uk=�; U`=�] = � 1

n
f �(tk)f �(t`) +O

�
�

n

�
; k 6= `: (7)

The assertions of Lemma 1 are fairly minor modi�cations of standard
results for kernel density estimates and their proof is therefore omitted.
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2.2 Estimating the subdensity f � of observed failures

To obtain our estimate of f � we will smooth the binned (equally spaced) data
Uk=� via an appropriate linear wavelet smoother. An immediate advantage
of our approach over other methods is its speed and its ease of computation.
Wavelet estimators can be computed using an O(n) algorithm, i.e. the above
smoothing step only requires O(K) computations. The binning process
can be performed particularly quickly and simply. Hence, the number of
evaluations necessary to compute our estimator is certainly linear in the
number of observations n which is much faster than kernel or logspline
estimation algorithms.

Our wavelet estimator will be based on wavelets on the interval because
our problem is con�ned to an interval. Wavelets and multiresolution
analyses of L2([0; � ]) have been introduced and explicitly constructed recently
by Cohen et al. (1993). Their construction uses \interior" and \edge"
orthonormal scaling functions at every resolution, so that the total number
is exactly 2j at resolution j.

The idea underlying such an approach is to express any function f 2
L2([0; � ]), with appropriate allowance for end e�ects, in the form

f(t) =
2j0�1X
k=0

�j0;k�j0;k(t) +
X
j�j0

2j0�1X
k=0

�j;k j;k(t)

for collections of functions f�j0;kg and f j;kg which form an orthogonal basis
for L2([0; � ]). The �j0;k are de�ned by

�j0;k(x) = 2j0=2�(2j0x� k)

for some function � with
R
�(x) dx = 1 called the scaling function; these allow

approximation of f at resolution j0. The f j;kg are generated in a similar
way from a mother wavelet  , and represent the detail in f at resolutions
�ner than j0.

The edge scaling functions are adapted in such a way that all the
polynomials on [0; � ] of degree less than an integer, depending on the number
of vanishing moments of the generating scaling function, can be written as
linear combinations of the scaling functions at any �xed scale. As on the
whole real line, no explicit analytic expression for the scaling functions and
for the wavelets is available. But for practical applications all that is really
needed are the �lter coe�cients and the multiresolution framework. A list
of suitable coe�cients is available in the paper of Cohen et al. (1993).

From now on, � and  will denote the scaling function and the mother
wavelet on [0; � ] associated with an r-regular multiresolution analysis of
L2([0; � ]). We recall that a multiresolution analysis is said to be r-regular
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(r � 0) if � is an element of the H�older space Cr, and if both � and its
derivatives have a fast decay,

j@��(x)j � Cm(1 + jxj)�m; 8m 2 IN; 0 � � � r;

for some sequence of �nite constants C1, C2, : : : . One can prove that if
a multiresolution analysis is r-regular, the wavelet  is also in Cr and has
vanishing moments up to the order r (see e.g. Daubechies (1992), Corollary
5.2) Z �

0

xk (x)dx = 0 for 0 � k � r:

The converse is generally false, and the number of vanishing moments is
usually larger than the regularity of the multiresolution analysis. The
smoother wavelets provide not only orthonormal bases for L2([0; � ]), but also
unconditional bases for function spaces consisting of more regular functions.

An advantage of having a high number of vanishing moments for  is
that the �ne scale wavelet coe�cients of a function are essentially zero
where the function is smooth. Since

R
�(x)dx = 1, the same thing can

never happen for the < f; �j;k >, but it is possible to construct compactly
supported orthonormal wavelets such that the scaling function � has L
vanishing moments, i.e.Z �

0

�(x) dx = 1 ;Z �

0

xk�(x) dx = 0 1 � k � L ;Z �

0

xk (x) dx = 0 0 � k � L :

Such wavelets were constructed by Daubechies (1992) and were named
coiets after Ronald Coifman who asked for their construction.

We will assume hereafter that the scaling function � is a coiet of order
L = 2q with L > m+ 1, where m is the assumed order of di�erentiability of
f . Let Vj andWj be the approximation and detail spaces associated with the
multiresolution analysis of L2([0; � ]) generated by �. Since for some integer
j0

L2([0; � ]) = Vj0 � (�j�j0Wj) ;

the function f � admits the following generalized Fourier expansion in L2:

f �(t) =
2j0�1X
k=0

< f �; �j0;k > �j0;k(t) +
X
j�j0

2j�1X
`=0

< f �;  j;` >  j;`(t);

with < f; g > de�ned by
R �
0
f(t)g(t) dt.
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Finally let us mention some approximation properties of regular wavelets
that will be used in the sequel of this paper (for a detailed account see
Mallat (1989)).
If f belongs to the Sobolev space H�([0; � ]) and the multiresolution analysis
is r-regular, then

kf � PjfkL2 � o(2�jmin(�;r)) as j !1 ; (8)

where Pjf denotes the projection of f onto the approximation space Vj.
The nested structure of a multiresolution analysis leads to an e�cient

tree-structured algorithm for the decomposition of functions in VN for which
the �ne-scale theoretical wavelet coe�cients < f �; �N;k > are given. However,
when a function is given in sampled form, one typically does not have
access to the �ne scale integrals < f �; �N;k >, which are needed to initialize
the fast wavelet transform. In applications it is widely assumed that the
< f �; �N;k >' 2�N=2f �(k=2N), but such an approximation is rarely justi�ed.
When � is a regular enough coiet, the accuracy of this approximation can
be controlled by the following lemma (the proof may be found in Antoniadis,
1996).

Lemma 2
Given an m-di�erentiable function r, let rfjg(k) = 2j=2 < r; �j;k >. With
L > m + 1, the following uniform (in k; 0 � k � 2j) bound holds:����rfjg(k)� r

�
k

2j

����� � C1 2
�jm;

where C1 is a constant only depending on the coiet � and its support length.

By Lemma 2 one is therefore able to approximate the coe�cients
< f �; �N;k > by 2�N=2f �(tk), 0 � k � 2N � 1, with an error O(2�N=22�Nm).
Therefore, a reasonable estimate of the projection �Nf

� of f � onto the �nest
available scale N is

~f �N(t) = 2�N=2
KX
k=0

Uk
�
�N;k(t) (9)

where �N;k(t) = 2N=2�(2Nt � k) are the �nest scale scaling functions. This
follows by observing that IE(Uk=�) ' f �(tk). More precisely, we have:

Lemma 3
Assume that the subdensity f � is m-times continuously di�erentiable on
[0; � ]. Then, as �! 0 for n!1 we have:

IE[ ~f �N(t)] = �Nf
�(t) +O(�) (10)

and

Var[ ~f �N(t)] = Of(n�)�1g+O(n�1): (11)
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Proof. The proof may be found in the appendix.
The above calculations suggest that the observed binned values Uk, are

equivalent to a \raw" estimator ~f �N , which now lies in the Sobolev space
Hm([0; � ]) by the m-regularity of �. Combining the results of Lemma 3 gives
the point-wise consistency of the estimator ~f �N(t). This estimator, while
presenting a very small bias on [0; � ], leads to an oscillatory solution almost
interpolating the binned data. It is easy to see that the best convergence rate
for the mean integrated squared error (MISE) for ~f �N (t) is O(n�2=3) obtained
by choosing � = n�1=3. In order to smooth the data with a better rate, we
will associate with each sample size n a resolution j(n) < N and estimate
the unknown function f � by

f̂n = PVj(n)
~f �N ; (12)

the orthogonal projection of ~f �N onto the \smoother" approximation space
Vj(n). The parameter j(n) governs the smoothness of our estimator. It is
important to choose it judiciously because it controls the trade-o� between
�delity to the data and the smoothness of the resulting solution. Too small a
value of j(n) leads to an over-smoothed, biased solution. From a theoretical
viewpoint, in the derivation of asymptotic results, the smoothing parameter
must tend to in�nity at the correct rate as the amount of information in
the data grows to in�nity. The following theorem addresses some of the
asymptotic properties of f̂n, de�ned by equation (12).

Theorem 1
Under the assumptions imposed on f � in this section, the MISE of f̂n de�ned
by

Rn = IE

�Z �

0

n
f̂n(t)� f �(t)

o2

dt

�

satis�es, as n!1, �! 0 and j(n)!1 with n2�j(n) !1,

Rn � O(2�2j(n)m) +O(�2) +O
�
2j(n)

n

�
:

The �rst term O(2�2j(n)m) + O(�2) in the upper bound of the risk
Rn corresponds to an upper bound on the squared integrated bias of the
estimator f̂n, while the second term O(2j(n)

n
) is an upper bound on its

variance. From these expressions it is easily seen that a small value of j(n)
causes large bias, whilst a large value of j(n) can cause large variance.
Proof. The proof appears in the appendix.

Note that according to Theorem 1, an optimal choice for j(n) and N
(or �) is j(n) = 1

2m+1
log2(n) and N � m

2m+1
log2(n). In Ibragimov and

Khasminski (1982), Stone (1982) and Nussbaum (1985) it has been proved
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that the best global convergence rate in the MISE sense of any nonparametric
estimator of a density in the class of m-smooth functions that we consider
(m � 1), is O(n�u) with u = 2m

2m+1
. It is clear that, with regular enough

coiets, our estimator asymptotically attains this best possible convergence
rate.

The asymptotic normality of f̂n(t) for any dyadic point of the interval
[0; � ] of the form k=2q with q integer, is shown by the following theorem.

Theorem 2
Under the same assumptions as in Theorem 1, and assume that for n!1
n� ! 1, n�3 ! 0 and n�2�j(n)(2m�1) ! 0. Then for any dyadic point

t 2 [0; � ]
p
n�
�
f̂n(t)� f �(t)

�
converges in distribution to a zero mean

Gaussian random variable with variance f �(t)w2 where w2 =
Pk=+1

k=�1 �2(k).

Proof. The proof appears in the appendix.

2.3 Estimating the probability L(t) of follow-up

continuing to t

In order to be able to estimate the hazard rate function we need an
appropriate and consistent estimator L̂n(t) of the cumulative distribution
function L(t).

Given the set of i.i.d. observations Z1; : : : ; Zn from the common
distribution function L, the standard nonparametric estimator of L is the
empirical distribution function Ln de�ned by

Ln(t) =
1

n

nX
i=1

I[Zi�t]:

This estimator Ln of L was proved by Dvoretsky, Kiefer and Wolfowitz (1956)
to be asymptotically minimax among the collection of all distribution
functions. Therefore, in the absence of additional information about the
shape of L the empirical distribution function Ln is the optimal estimator
for L in the asymptotically minimax sense. Although Ln is asymptotically
optimal, it does not take fully into account the smoothness of L (i.e., the
existence of a density for L). It therefore seems reasonable to consider a
continuous estimator of L which is better adapted to this situation. Thus,
in relatively general situations, an estimator of the form

L̂n(t) =
1

n

nX
i=1

Hn(t� Zi); t 2 [0; � ] (13)

where fHng is a sequence of continuous cdfs required to converge weakly
to cdf of the delta distribution centred at 0 has been suggested in the
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literature (see Winter, 1973, 1979, Puri and Ralescu, 1986, Yukish, 1989).
Such estimators arise quite naturally as integrals of density estimators of the
kernel type. The estimator that we are going to use in this paper will be
de�ned by

L̂n(t) =

Z t

0

^̀
n(x) dx; t 2 [0; � ]

where ^̀
n is a traditional histogram type estimator of the density ` of L.

This estimator of L is nothing else than an integrated Haar transform of
the data and may be viewed as a wavelet estimator of the survival function.
The interest in such an estimator is primarily due to its simple structure as
averages over independent random variables. The question of whether using
a di�erent smoother for L̂n could give an improved hazard rate function
estimator has not been investigated.

Let �(t) = I[0;� ](t) be the indicator function of [0; � ] and denote by �j;k
the translated and dilated functions

�j;k(t) = 2j=2�(2jt� k):

It is not di�cult to see that, as j tends to 1, 2j=2�j;0(t) converges to the

delta distribution centred at 0, and therefore �j;0(t) = 2j=2
R t
0
�j;0(x)dx is

a sequence of continuous cdf converging weakly to the cdf of the delta
distribution centred at 0. Let ~j(n) be a sequence of scales such that
~j(n) ! 1 as n ! 1. Put ^̀

n(t) =
1
n

Pn
i=1 2

~j(n)=2�~j(n);0(t � Zi) and de�ne

L̂n(t) =
1
n

Pn
i=1�~j(n);0(t � Zi). Since by our assumptions L is continuously

di�erentiable on [0; � ], the results of section 3 in Winter (1979) apply. More
precisely we have

Proposition 1 (Winter (1979))
Suppose that limn!1 2�~j(n)fn= log logng1=2 = 0. Then

sup
t2[0;� ]

jIEfL̂n(t)g � L(t)j = o(f2n= log logng�1=2)

sup
t2[0;� ]

Var(L̂n(t)) � sup
t2[0;� ]

Var(Ln(t))

and L̂n has the Chung-Smirnov property, that is

lim sup
n!1

 
f2n= log logng1=2 sup

t2[0;� ]
jL̂n(t)� L(t)j

!
� 1; a:s:

The �rst assertion of Proposition 1 follows from the proof of Theorem 3.3
in Winter (1979). The second assertion is a consequence of his Lemma 2.3
(b) and the Chung-Smirnov property is given by his Theorem 3.3.
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If the resolution ~j(n) is chosen to be N , the log of the number of bins
that we have used for estimating the subdensity f �, then it is easy to see
that the computation of L̂n can be performed in O(N) operations. Note also
that under the assumptions of Proposition 1, our estimate L̂n is mean square
consistent with a rate O(f2n= log logng�1).

2.4 Estimating the hazard rate

Our estimator of �(t) is de�ned to be

�̂n(t) =
f̂n(t)

1� L̂n(t)
;

where L̂n(t) has been de�ned in the previous section. Our purpose here is
to study the large sample properties for �̂n(t). More precisely we have the
following Proposition whose proof is given in the appendix:

Proposition 2
Under the assumptions made in this section, if j(n) = 1

2m+1
log2(n) and

N � m
2m+1

log2(n), then as n!1, and for any t 2 [0; � ],

IE[(�̂n(t)� �(t))2] = O(n�2m=(2m+1)):

Proof. The proof is given in the appendix (recall also that � < TL).

The weak consistency of the hazard rate function estimator is a direct
consequence of the above proposition. Moreover, since both f̂n and L̂n are
consistent and because �̂ is a continuous function of these two quantities
in [0; � ], from the proof of Proposition 2 it follows that the asymptotic
distribution and the MISE of �̂n are the same as those of"

f̂n(t)� f �(t)
1� L(t)

� f �(t)
(1� L(t))2

[L(t)� L̂n(t)]

#
:

Since f � is continuous on [0; � ] and since (1�L(t)) is uniformly bounded away
from 0 on [0; � ], and because the MISE of L̂n is asymptotically smaller than
that of f̂n, it follows, by the asymptotic normality of f̂n, that for any dyadic
point in [0; � ], �̂n(t) is asymptotically normal. Moreover the asymptotic rate
of the MISE of �̂n is the same as that of f̂n which is given by Theorem 1.
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3 Simulations

An advantage of using simulated data for examples involving censoring is
that one knows not only the true density function from which the data were
generated, but also the actual values of the sample data before the censoring
took place. All simulations were run in S, using the built-in random number
generators and the WaveThresh package of Nason. A well-known shortcoming
of any orthogonal series estimator (including wavelets) is that except for
rather special smoothers they are not guaranteed to be nonnegative. In the
simulations f̂n(t) and L̂n(t) were replaced by

f̂+(t) = max(f̂n(t); 0) and L̂+(t) = max(L̂n(t); 0):

Such a procedure de�nes estimates that have a smaller mean squared errors
than the original ones (see Efromovitch, 1989). Moreover, since the hazard
estimates are very unstable and have little meaning when few subjects were
left at risk, hazard estimates were only computed at points where L(t) > 0:5.
Indeed, one should be wary about extrapolation beyond the range of the
data. In particular when all observations beyond a certain point are censored
conclusions about the right tail of the density may be unreliable. In binning
the data interval lengths were chosen according to the rules suggested by the
theorems of the previous section, that is by taking � = n�1=2. The resolution
j(n) was chosen by folded cross-validation (see Nason 1996).

3.1 Simulation 1

Figure 1 shows the wavelet estimates for the observed failure subdensities
and the hazard rate functions for a traditional censoring scheme.

We generated a sample Yi, 1 � i � n, from the Gamma distribution
with shape parameter 5 and scale parameter 1 and an independent sample
Ci, 1 � i � n, from the exponential distribution with mean 6 (the mean
was chosen so as to yield about 50% censoring). The results reported in
this subsection are based on samples of size n = 200. In binning the data,
we used an interval length � = 0:07. The resolution j(n) was obtained by
folded cross validation with an average value of 2 across simulations. Scaling
functions corresponding to coiets with four zero moments were used.

The solid line in the left panel of Figure 1 is the subdensity estimate f̂1
based on Ai, where Ai = Xi if Xi � Ci. The dotted line represents the true
underlying subdensity f1. Similarly, the right panel of Figure 1 displays the
corresponding estimated hazard rate function �̂1.
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Figure 1: Wavelet estimate for the subdensity of observed failures for a
traditional censoring scheme described in section 3.1. The solid line is the
density estimate based on the actual data of size n = 200 with 50% censoring)
and the dotted line is the true Gamma density. The right panel displays the
wavelet estimate (solid line) for the observed failure hazard rate for the same
data with the dotted line representing the true hazard rate.

3.2 Simulation 2

The censoring scheme for Figure 2 is the same as the one for Figure 1.
Here the Xis were generated from the bimodal density f2 that was used in
Kooperberg and Stone (1992):

f2 = 0:8g + 0:2h;

where g is the (lognormal) density of exp(Z=2), with Z having the standard
normal distribution, and h is the normal density with mean 2 and standard
deviation 0.17. The Cis were generated from the exponential distribution
with mean 2.5. The sample size of the simulated data is n = 200. The solid
lines in Figure 2 represent the estimates. The dotted line represents the true
density f2 (left panel) and hazard rate function �2 (right panel).

From Figure 1 we observe that it is possible in practice to recover well the
underlying density of interest from information that is available in studies
with right censored data. Even for the bimodal density, our method of density
estimation does a decent job. For sample sizes of the order n = 100, however,
the estimate for the height of the second mode was not very accurate. Further
examination suggested that this appears to be caused primarily by sampling
variation (the number of data points close to the second mode, ignoring
censoring, is binomial with parameters n = 100 and p = 0:2). Although the
total percentage of censoring is typically less than 40%, about 55% of the
cases in the range of the second mode get censored. Nevertheless, when the
sample size is large this censoring has almost no inuence on the �t.
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Figure 2: Wavelet estimate for the bimodal subdensity of observed failures
described in section 3.2. The solid line is the subdensity estimates based
on the actual data of size n = 200 and the dotted line is the true bimodal
subdensity. The right panel displays the wavelet estimate (solid line) for
the observed failure hazard rate for the same data with the dotted line
representing the true hazard rate.

3.3 Mean-squared errors

To end this section, we summarize some simulation results on the mean
square errors of our estimators. The �rst set of simulations examined the
average mean squared error of the subdensity estimator as a function of the
size �, estimating the optimal j(n) by folded cross-validation.

Samples of size n = 200 and n = 500 were generated from the two di�erent
true hazard functions whose subdensities were shown in Figures 1 and 2.

The estimators used K = 16; 32; 64. The average mean squared errors
AMSE(f �) and AMSE(�) were estimated by averaging the average squared
errors

ASE(f �) = K�1X
k

(f̂n(tk)� f �(tk))
2 ASE(�) = K�1X

k

(�̂n(tk)� �(tk))
2

for each sample and averaging over the samples. Because the mean squared
error of the estimator can be especially important at large t with small risk
sets, this risk (denoted by AMSE2) was also calculated restricting the sum
over time to points with tk � 6 for the density f1 and tk � 2:5 for the
bimodal density f2. The results on the estimated subdensities from a total
of 200 repetitions for each of the 2 models are given in Table 1 for each
sample size n = 200 and n = 500.

Table 2 summarizes the results for the hazard rate estimates on the same
simulated samples used to obtain the results of table 1.

Pointwise MSEs for the subdensity and the hazard rates were also
tabulated at the points t = 0:5, t = 0:75, t = 1:5 and t = 3. Not surprisingly,
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Table 1: Average mean squared errors (�10�5) for subdensity estimation
based on 200 repetitions of the simulations given in section 3.1 and 3.2 for
sample sizes n = 200 and n = 500.

Subdensity f1 Subdensity f2
Bins K n = 200 n = 500 n = 200 n = 500
16 25.7 17.6 671 603

AMSE 32 18.8 9.7 408 266
64 18.4 6.7 369 263
16 20.5 13.6 550 464

AMSE2 32 15.3 7.6 340 210
64 14.6 5.2 300 210

Table 2: Average mean squared errors (�10�3) for hazard function estimation
based on 200 repetitions of the simulations given in section 3.1 and 3.2 for
sample sizes n = 200 and n = 500. The �gures are based on the same data
used to form table 1

Hazard �1 Hazard �2
Bins K n = 200 n = 500 n = 200 n = 500
16 64.4 55.4 3050 3090

AMSE 32 78.6 55.4 4060 1820
64 112.0 99.5 2080 1970
16 5.8 5.9 182 295

AMSE2 32 2.6 2.1 152 66
64 2.5 1.6 48 32
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Figure 3: Wavelet (solid), Logspline (dashed) and Local polynomial (dotted)
density and hazard rate estimates from the Liver Metastase data set. The
bottom tick marks show the location of observed failures and the top ones
show the location of censored observations.

the resolutions which minimize these pointwise MSEs vary considerably
with where the point is located. Given this wide variation, the complexity
of developing a true locally adaptive method for resolution selection, and
given that cross-validation is not always reliable in individual samples, in
exploratory analysis the best approach may be to examine several estimates
using a relatively small range of resolutions.

The simulation results show that the number of intervals used has little
e�ect on performance, at least for the fairly smooth models considered here.
Similar results held for other con�gurations examined.

4 Examples

4.1 Liver metastases

As an example consider the data analyzed by Haupt and Mansmann (1995),
giving survival times for patients with liver metastases from a colorectal
primary tumour without other distant metastases. The survival times are
measured in months. In this data set there are 363 uncensored and 259
censored observations. In order to compare our wavelet estimator (solid line)
we also report on the �gures the logspline subdensity estimator (dashed line)
and the local polynomial estimator (dotted line) implemented in loc�t (see
Loader, 1995). Each estimation method uses a global data driven choice
for the smoothing parameters (for pointers to an archive and for more
details on this choice for logspline and loc�t the reader is referred to the
papers by Kooperberg and Stone, 1992 and Loader, 1995). The wavelet
estimators (density and hazard rate) were computed as described in the
previous sections, using 64 bins during the binning process and a resolution
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j(n) = 2 chosen by folded cross validation. The logspline estimator was
calculated by specifying that the density equals zero to the left of 0, using
a BIC penalty and stepwise knot deletion. Four knots were selected for
the spline that is �tted to the log-density. The local polynomial estimator
was used with its default values and the �tted density had 1.167 equivalent
degrees of freedom. Both logspline and loc�t were applied on the un-binned
data.

The left panel in Figure 3 gives estimated densities for observed failures,
while the right one displays the corresponding hazard rate estimators.

The increasing risk at about 14 months is evident. On the hazard rates
plot of �gure 3 one can see that the estimates seem reliable on a smaller
interval than the one that extends beyond 40 months. The wavelet estimate
exhibits some boundary e�ects due to the fact that few only cases are still
at risk after 40 months. Note also that the \constancy" in the hazard rate
at later follow-up times observed in the logspline hazard rate estimate is
supported by the wavelet estimator. The pronounced increase of the wavelet
estimator is probably due to a boundary e�ect that is also noticeable to a
lesser extent by the loc�t estimator.

4.2 Employment example

Our second example is concerned with the unemployment dynamics of a
population of 632 women. This data set has also been studied by Bonnal and
Foug�ere (1990) using parametric methods. For a given individual the survival
time is the time from when the individual is �rst unemployed until that
person obtains employment. If an individual is still unemployed at the end
of the study then that person is right censored (so time to employment is after
the end of the study). In this data set there are 272 censored observations.
We estimated the subdensities and hazard rates using our wavelet method,
loc�t and logspline. The wavelet estimators (density and hazard rate) were
computed using 64 bins during the binning process and a resolution j(n) = 3
chosen by folded cross validation. The loc�t and logspline procedures were
used with their default settings, resulting in 2.01 �tted degrees of freedom
and 5 knots, respectively.

Figure 4 reproduces the results. In Figure 4 it can be seen that the
automatic logspline estimator, being based on only 5 knots, is oversmoothed.
This is probably due to the placement and the selected number of knots.

One can reach very di�erent conclusions by using each of the di�erent
estimators. According to the logspline hazard rate estimator, the
instantaneous rate for transition from unemployment to work increases
during a �rst period of about 3 months (90 days) and then decreases
monotonically. For the loc�t estimator after this �rst period, the rate seems
to wander around a constant level, i.e. a women unemployed for a long period
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Figure 4: Wavelet (solid), Logspline (dashed) and Local polynomial (dotted)
subdensities and hazard rate estimates for the unemployment data. The
bottom tick marks show the location of observed failures and the top ones
show the location of censored observations.

has the same chance as a recently unemployed women to �nd work. The
results of the wavelet estimator are interpretable and interesting. The wavelet
estimator indicates an increase in the hazard rate during the �rst three and
half months with a strong decrease after (i.e. women are much more likely to
�nd work in this period), reaching a uctuating level after 360 days. During
the months that follow one can discern some particular periods with a local
increase of the hazard rate (the modes in the loc�t hazard estimator are also
apparent but less so). These increases may be related to other factors such as
the end of indemnities for unemployment for proportions of the population.

In light of the example and the simulations and much additional
experience with our density and hazard rate estimation method, we are
convinced that the current implementation is of considerable practical value
in data analysis. It is su�ciently accurate and exible to handle peaks in the
middle of the data (see Figure 2). However, it does not work very well far out
in the tails (see Figure 3). A moderate amount of censoring has very little
e�ect on the accuracy of estimation and the procedure can deal e�ectively
with a high proportion of censoring. Moreover, the estimation procedure is
rather insensitive to the choice of the initial binning width. Further, the
comparison among the three methods of estimation is not totally fair since
the wavelet resolution level is cross-validated while the others just use default
smoothing parameters.

Conclusion

This paper introduced a wavelet-based method to estimate the density and
hazard rate functions for right censored survival time data. We showed
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that our estimators possess pointwise and global mean-square consistency.
Moreover we demonstrated that the estimators asymptotically obtain the
best possible convergence rate in terms of MISE and also that they are
asymptotically normally distributed.

Through simulations we demonstrate that the estimators perform well
and provide some evidence to show that they are fairly insensitive to the
number of bins. Two examples are presented that compare our estimator to
established estimators. The comparisons reveal that the wavelet estimators
compete favourably with the existing methods and their added exibility
provided new and useful interpretations of survival data.
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Appendix

Proof of Lemma 3

Given the expectation of the Uk given by Lemma 1 we have:

IE[ ~f �N (t)] = 2�N=2
KX
k=0

IE

�
Uk
�

�
�N;k(t) = 2�N=2

KX
k=0

[f �(tk) +O(�)]�N;k(t)

= 2�N=2
KX
k=0

f �(tk)�N;k(t) +O(�)2�N=2
KX
k=0

�N;k(t):

Using the fact that supt
P

k j�(t�k)j =M , whereM is a constant depending
only on the scaling function �, and since �N;k(t) = 2N=2�(2N t� k), it is easy
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to see that supt 2
�N=2P

k j�N;k(t)j =M . Therefore

IE[ ~f �N(t)] = 2�N=2
KX
k=0

f �(tk)�N;k(t) +O(�)

=
KX
k=0

f< f �; �N;k > +�1=2O(�m)g�N;k(t) +O(�) by Lemma 2

=
KX
k=0

< f �; �N;k > �N;k(t) +O(�m+1=2) +O(�);

where m is the order of di�erentiability of f �.
To prove expression (11) note that

Var[ ~f �N (t)] = 2�N
KX
k=0

Var

�
Uk
�

�
�2N;k(t)+2

�N
KX
k=0

KX
`=0;`6=k

Cov

�
Uk
�
;
U`
�

�
�N;k(t)�N;`(t)

By Lemma 1 we have

Var[ ~f �N (t)] = 2�N
KX
k=0

�
f �(tk)
n�

+O(n�1)
�
�2N;k(t)

+2�N
KX
k=0

KX
`=0;`6=k

�
� 1

n
f �(tk)f �(t`) +O(�n�1)

�
�N;k(t)�N;`(t)

Since f � is uniformly bounded on [0; � ] and since � = O(2�N) it follows that:

Var[ ~f �N (t)] � 1

n
C1

KX
k=0

�2N;k(t) +O(�=n)
KX
k=0

�2N;k(t)

+C2
�

n

X
k

X
k 6=`

j�N;k(t)�N;`(t)j+O(�2=n)
X
k

X
k 6=`

j�N;k(t)�N;`(t)j:

Using the fact that � is at least m-regular in the sense of Meyer (1990), we
have

KX
k=0

�2N;k(t) = O(2N) and
X
k

X
k 6=`

j�N;k(t)j j�N;`(t)j = O(22N):

where O does not depend on t. It then follows that

Var[ ~f �N (t)] = O �(n�)�1	+O(n�1);
which completes the proof.
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Proof of Theorem 1

Write

E(t) = f̂n(t)� f �(t) = �j(n)( ~f
�
N)(t)� f �(t)

= �j(n)( ~f
�
N)(t)� �j(n)(f

�)(t) + �j(n)(f
�)(t)� f �(t) = S(t) + A(t)

with S denoting the stochastic error and A the approximation error of the
estimate. Using the above expression, the fact that m � 1 and the results of
Lemma 3 we have:

IE[E(t)] = IE[S(t)] + A(t) = �j(n)(�N (f
�))(t) +O(�)� �j(n)(f

�)(t) +A(t):

Now, since Vj(n) � VN , it follows that

IE[E(t)] = O(�) + A(t):

Using the fact k�j(n)(f
�)�f �k2 = o(2�mj(n)) (see (8)), the squared integrated

bias of f̂n behaves like
O(�2) +O(2�2mj(n)):

As for the variance part of the MISE, say V , observe �rst that

�j(n)( ~f
�
N)(t) =

2j(n)�1X
k=0

< ~f �N ; �j(n);k > �j(n);k(t)

=
2j(n)�1X
k=0

8<
:

2N�1X
`=0

2�N=2 <
U`
�
�N;`; �j(n);k >

9=
;�j(n);k(t)

It therefore follows that

�j(n)( ~f
�
N)(t)��j(n)(IE( ~f

�
N(t))) =

X
k

2�N=2
X
`

U` � IE(U`)

�
< �N;`; �j(n);k > �j(n);k(t):

Using Parseval's relation we have:

Z n
�j(n)( ~f

�
N)(t)� �j(n)IE( ~f

�
N)(t))

o2

dt = 2�N
X
`

(X
k

Uk � IE(Uk)

�
< �N;k; �j(n);` >

)2

:

(14)

Taking expectations in both sides of (14) and using the results of Lemma 1
yields

V =
X
`

2�N
X
k

IE

�
(Uk � IE(Uk))

2

�2

�
< �N;k; �j(n);` >

2

+
X
`

2�N
X
k

X
h6=k

CovfUk
�
;
Uh
�
g < �N;k; �j(n);` >< �N;h; �j(n);` >(15)
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By Lemma 1 the �rst part in the right hand side of (15) is equal to

�
X
k;`

ff
�(tk)
n�

+O(n�1)g < �N;k; �j(n);` >
2 (16)

Now, observe thatX
k

< �N;k; �j(n);` >
2= k�N (�j(n);`)k22 = k�j(n);`k22 = 1: (17)

Therefore, using again the fact that f � is uniformly bounded, we see that
(16) behaves like:

O
�
2j(n)

n

�
+O(�2j(n)n�1) = O

�
2j(n)

n

�
: (18)

The second term in (15) is equal to

X
`

2�N
X
k

X
h 6=k
f� 1

n
f �(tk)f �(th)+O(�n�1)g < �N;k; �j(n);` >< �N;h; �j(n);` > :

Now, by using (17)X
k

X
h6=k

< �N;k; �j(n);` >< �N;h; �j(n);` > �
X
k

X
h

j < �N;k; �j(n);` > j j < �N;h; �j(n);` > j

=

 X
k

j < �N;k; �j(n);` > j
!2

� 2N
X
k

< �N;k; �j(n);` >
2= 2Nk�j(n);`k22 = 2N

Finally, it is easy to see that (16) behaves like

O(2
j(n)

n
) +O(�2

j(n)

n
) = O(2

j(n)

n
);

and this, together with (17), completes the proof.

Proof of Theorem 2

First write
p
n�(f̂n(t)� f �(t)) =

p
n�(f̂n(t)� IE[f̂n(t)]) +

p
n�(IE[f̂n(t)]� f �(t)):

By the proof of Theorem 1 it is known that

IE[f̂n(t)]� f �(t) = O(�) + (�j(n)(f
�(t))� f �(t)):
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From Walter (1992), Theorem 4.1, p. 937, it follows that

sup
f2Hm

k�j(n)(f)� fk1 = O(2�j(n)(m�1=2)):

It follows that (�j(n)(f
�)(t)� f �(t)) = O(2�j(n)(m�1=2)) and consequently

IE[f̂n(t)]� f �(t) = O(�) +O(2�j(n)(m�1=2)):
Consider now the following expansion

p
n�(f̂n(t)� IE[f̂n(t)])

=
p
n�(f̂n(t)� ~f �N(t)) +

p
n�( ~f �N(t)� IE ~f �N(t)) +

p
n�(IE ~f �N(t)� IEf̂n(t))

= I + II + III say:

The key argument in our proof is that II is asymptotically Gaussian while
the terms I and III are vanishing as n goes to in�nity.

Let us �rst show that I and III tend to zero. This basically follows from
Walter's result quoted above. For the term I we have

f̂n(t)� ~f �N(t) = �j(n)( ~f
�
N)(t)� ~f �N(t) = O(2�j(n)(m�1=2));

and the convergence follows from the assumptions of the theorem. For the
term III we observe that���IE ~f �N(t)� IEf̂n(t)

��� � IE
��� ~f �N(t)� f̂n(t)

��� = O(2�j(n)(m�1=2));

where we have used the fact that Walter's result implies that j�j(n)f � f j �
K2�j(n)(m�1=2) where K does not depend on f .

Finally, it remains to show that, given our assumptions, ~f �N(t) is
asymptotically Gaussian. The proof will rely on the decomposition

p
n�( ~f �N(t)� IE ~f �N(t)) =

nX
i=1

1p
n�

KX
k=0

(Yik � pk)�(2
Nt� k) =

nX
i=1

Zni;

where pk = IE(Yik).
It is important to note that, since � is compactly supported, the sum over

k only involves a �nite number (depending on t) of terms. From arguments
similar to those used in the proof of Lemma 3, we obtain

Var[Zni] =
1

n

 
KX
k=0

f �(tk)�2(2N t� k) +O(�)
!
:

By continuity of f and since t is dyadic, it follows that

Var[
p
n�( ~f �N(t)� IE ~f �N(t))]! f �(t)

1X
k=�1

�2(k):
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Note that when t is non dyadic the sum over k is not asymptotically
stable (see Antoniadis et al., (1994) for a similar remark when estimating
a regression function by wavelet methods). To obtain asymptotic normality
it remains to check the Lindeberg condition. Setting Uni = Zni=(VarZni)

1=2,
this amounts in showing that

IE
�
U2
niIjUnij>"

p
n

	! 0:

By the Cauchy-Schwarz and Chebyshev inequalities, we have

IE
�
U2
niIjUnij>"

p
n

	 � �IE(Uni)4	1=2 ("pn)�1:
Straightforward calculations yield

IE(Z4
ni) = O

�
1

n2�

�
;

and IE(U4
ni) = O(n2)IE(Z4

ni). Therefore,

IE
�
U2
niIjUnij>"

p
n

	
= O

�
1p
n�

�
;

and this completes the proof.

Proof of Proposition 2

Let us �rst note that

�̂n(t) =
h
IE(f̂n(t)) + ff̂n(t)� IE(f̂n(t))g

i
fIE(1� L̂n(t))g�1

�
n
1 + [IE(L̂n(t))� L̂n(t)](IE(1� L̂n(t)))

�1
o�1

:

By the Chung-Smirnov property of L̂n and using Taylor's theorem it follows
that

�̂n(t) = IE(f̂n(t))fIE(1� L̂n(t))g�1 + ff̂n(t)� IE(f̂n(t))gfIE(1� L̂n(t))g�1

�
n
IE(L̂n(t))� L̂n(t)

o
IE(f̂n(t))

�
IE(1� L̂n(t))

��2
+o
h
jf̂n(t)� IE(f̂n(t))j+ jIE(L̂n(t))� L̂n(t)j

i
:

Now, using again Taylor's formula, we have

IE(f̂n(t))

IE(1� L̂n(t))�1
=

�
f �(t) + [IE(f̂n(t))� f �(t)]

�
(1� L(t))�1

�
(
1� IE(L̂n(t))� L(t)

1� L(t)
+ o

�
jIE(L̂n(t))� L(t)j

�)
:
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From the above expressions and the fact that �(t) = f �(t)=(1�L(t)), routine
calculations show that the mean squared error (and the MISE as well) of �̂n(t)
is the same as the one of"

f̂n(t)� f �(t)
1� L(t)

� f �(t)
(1� L(t))2

[L(t)� L̂n(t)]

#
: (19)

The assertion of the proposition is now easily seen to be a consequence
of Theorem 1 and Proposition 1 and the fact that (1 � L(t)) is uniformly
bounded away from 0 on [0; � ] by de�nition of � .
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