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ABSTRACT intensities in terms of the two-component model:
Motivation: Many standard statistical techniques are effective on
data that are normally distributed with constant variance. Microarray Yi=a+puxe+e, i=1,..,n 1)

data typically violate these assumptions since they come from non-
Gaussian distributions with a non-trivial mean-variance relationship.
Several methods have been proposed that transform microarray data
to stabilize variance and draw its distribution towards the Gaussian.
Some methods, such as log or generalized log, rely on an underly-
ing model for the data. Others, such as the spread-versus-level plot,
do not. We propose an alternative data-driven multiscale approach,
called the Data-Driven Haar-Fisz for microarrays (DDHFm) with rep-
licates. DDHFm has the advantage of being “distribution-free” in the
sense that no parametric model for the underlying microarray data
is required to be specified nor estimated and hence DDHFm can be
applied very generally, not just to microarray data.

Results: DDHFm achieves very good variance stabilization of
microarray data with replicates and produces transformed intensi-
ties that are approximately normally distributed. Simulation studies
show that it performs better than other existing methods. Application
of DDHFm to real one-color cDNA data validates these results.
Availability: The R package of the Data-Driven Haar-Fisz transform
(DDHFM) for microarrays is available in Bioconductor and CRAN.
Contact: g.p.nason@bristol.ac.uk

1 INTRODUCTION

Here, (Y;)i=, are the raw single-color intensities for thegenes,
each assumed to be replicatedimes. Sometimes we will write
Y,,; when we are referring to theh replicate on théth gene ¢ =
1,...,p). Thea term represents the (common) mean background
noise of then genes on the array;; is the true expression level
for genei, andn; ande¢; are the normally distributed error terms
with zero mean and variance% ando?, respectively. In this way,
Y = (Y;)i=, can be considered as coming fromiahomogeneous
processhat produces the gene intensities with finite but different
w:'s and finite but different variances.

At low expression levels (i.eu; close to 0) the measured expres-
sion Y; in (1) can be written as; a + ¢ so thatY; is
approximately distributed as N(o2). On the other hand, for large
1:'s, the middle term in (1) dominates ai@ can be modelled as:

~
~

Yi ~ piet 2
with approximate variance
Var(V;) ~ 1 S, ®)

2 2 .
where S e“n(e”n — 1). For moderate values qf;, Y; is

Microarrays, in principle and in practice, are extensiorfs 0 mogelled as in (1) with variance:

hybridization-based methods (Southern Blots, Northerot$l

SAGE etc), which have been used for decades to identify and

Var(V;) = ui Sy + oc (4)

locate mRNA and DNA sequences that are complementary to a

segment of DNA (Alwinet al., 1977 and Velculescat al.,, 1995).
Microarray technology, in the form of either cDNA or High-isity
Oligonucleotide arrays enables molecular biologists tcasnee
simultaneously the expression level of thousands of génestypi-
cal microarray experiment the aim is to compare differetitgpes,
e.g. normal versus diseased cells, in order to identify gé&mat are
differentially expressed in the two cell types.

Typically, microarray data analyses consist of severgisstan-
ging from experimental design to the identification of impoi
genes (for a review on the whole process see Sebastiani andriRa
2003). Gene replication is a crucial design feature as ie@mses
the precision of estimation and permits estimation of mesament
variance which enables the significance of the final resoltbet
judged.

Rocke and Durbin (2001) identified that the variance of the ra
spot intensities increased with their mean and they madi¢fiese

*to whom correspondence should be addressed

From (3) and (4), we observe that the standard deviation (sd)
of the Y; increases linearly with their mean. Such mean-variance
dependence, implying the presence of heteroscedastitsities, is
a major problem in the statistical analysis of microarrays.

Two methodological approaches have been followed to ad¢coun
for the heteroscedasticity. The first approach involvesnedion of
differentially expressed genes directly from the hetezdsstic data
by means of penalizedstatistics (e.g. SAM method of Tushetral.,
2001), mixed or hierarchical Bayesian modelling (e.g. Bairal.,
2004 and Hsiaet al., 2004), appropriate Maximum Likelihood tests
(e.g. Wang and Ethier, 2004) and, recently, gene groupihgrses
(e.g. Comandeet al.,, 2004 and Delmaet al., 2005a,2005b). The
second approach, which we follow in this article, involvesling
appropriate transformations that stabilize the variarfcéhe® data.
After variance stabilization the data can be analyzed bydstal,
simple and universally accepted tools, like ANOVA models.

Section 2 outlines some existing variance stabilizingsfamms
that have been applied to microarray data. Section 3 prgEaew

(© Oxford University Press 2006.
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method called the Data-Driven Haar-Fisz transform for pacrays
(DDHFm) and compares its performance with existing methnyds

3 DATA-DRIVEN HAAR-FISZ TRANSFORMATION
FOR MICROARRAYS

means of simulated and real CDNA data in Section 4. We showpis section describes how the recent Data-Driven Haar-Fis

that DDHFm is superior to existing methods in terms of vazé&an
stabilization and Gaussianization of the transformedsites.

2 ESTABLISHED VARIANCE STABILIZATION
METHODS

For brevity we discuss and compare the performance of differ
variance stabilization techniques without, at this stagerrying
about differential expression. For this reason we consitia
obtained from one-color microarrays. Generalization to-telor
experiments will be considered in future work.

2.1 Log-based Transformations

Smythet al. (2003) suggest using the log transform for microar-
ray intensities. By assuming that the “lognormal distribatis an
extremely good approximation to the bulk of the data” (Hagtal.,
2002) as in model (2), the log transfotog(Y;) should stabilize the
variance of the gene intensities and bring their distrdutloser to
the Gaussian. An extension of this approach then considers b
ground corrected intensitie&; = Y; — &, which may be negative
and cannot be handled by the simpig function. Based on this
notion, several authors have studied alternative logaiittbased
transformations for microarray data.

Tukey (1977) defines the ‘Started Log’ transformation as:
sLog(Z) = log(Z + k) wherek is a positive constant estimated via
k= 62/2'/452, so that it minimizes the deviation from variance
constancy. Alternatively, Holdest al. (2001) developed the Log-
Linear Hybrid transformation adiyb, (Z) = Z/k + log(k) — 1,
for Z < k andHyb, (%) = log(Z), for Z > k. This transforma-
tion has also been called Linlog by Gatial. (2003). As withsLog,
the optimalk is estimated by: = /25, /6.

2.2 The Generalized L ogarithm Transfor mation (glog)

Munson (2001), Durbiret al. (2002) and Hubert al. (2002)
independently developed the Generalized Logarithm teaimsdtion
(referred to as glog in Rocke and Durbin, 2003). For datadbate
from model (1) with the mean-variance dependence (4), gbog i
assumed to produce symmetric transformed gene intensittas
stabilized variance. The glog formula is:

Z =log{(Y —a)+ /(Y —a) +¢&} (5)

wherec is estimated by: = 42 /52. Rocke and Durbin (2001) des-
cribed algorithms to estimate andc from one-color cDNA data.
While estimation of« can be conducted without replicated genes,
estimation ofc involves estimation 0[5‘,2,, which requires replica-
tion. Maximum Likelihood methods far estimation only, based on

(DDHF) transform can be adapted for use with microarray.data
adaption requires a subtle organization of microarraynsitées into
a form acceptable for the DDHF transform. We call our adayiie
DDHF transform for microarray dataor DDHFm.

Recently, a new class of variance stabilization transfoigese-
rically known as Haar-Fisz (HF) transforms, were introdudsy
Fryzlewicz and Nason (2004). In that work the HF transforradus
a multiscale technique to take sequences of Poisson randda: v
bles with unknown intensities into a sequence of randonaistes
with near constant variance and a distribution closer tonadity.
Later Fryzlewiczet al. (2005) introduced th®ata-Driven Haar-
Fisz (DDHF) transform which used a similar multiscale tfans
but additionally estimated the mean-variance relationaaisgf the
process of stabilization and bringing the distributionseloto nor-
mality. See also Fryzlewicz and Delouille (2005). HenceDiHF
transform can be used where there is a monotone mean-varianc
relationship but the precise form of the relationship iskmawn. In
other words, DDHFm is “distribution-free” in that the preeidata
distribution, such as model (1), need not be known nor seeciee
the Appendix for further details on the HF and DDHF transferm

Both the HF and DDHF transforms rely on an inméquence
of positive random variable&; with meanyu; and a variancer?
with some monotone (non-decreasing) relation between #&nm
and variancer? = h(u;). Both HF and DDHF transforms work
best when the underlying; form a piecewise constant sequence.
In other words, when consecutiyeare often very close or actually
identical in value but large jumps in value are also permittéowe-
ver, microarray data are usually not organized in this setipie
form. Microarray intensitied; usually come in replicated blocks:
i.e.Y; ; is therth replicate for theth gene.

For theith gene what we do know is that the underlying intensity
ur.; for Y, ; is identical for each replicate- (this is the reason for
replication). So, if the intensities for all replicates fogiven gené
were laid out into a consecutive sequence we waulowthat their
underlyingu,; sequence was constant.

To be able to make efficient use of the DDHF transform we would
need to sort our intensities in order of increaspag; so that the
sequence would be as near piecewise constant as possiateui
lity as we do not know theu; (since that is what we are trying to
estimate) we cannot sort the sequence into incregsiagler. So,
we do the next best thing in that we order the replicate setsrding
to their increasing mean observed value where the mean &g tak
across replicates. The idea is that the observed mean &ssitine
ur.; and observed mean ordering estimates the ‘correct’ truexmea
ordering. For example, suppose there were 4 replicates gedes

Box and Cox (1964), were also developed by Durbin and Rockeyith observed (raw) intensities

(2003) for the case of two-colors microarrays and thus itas n
relevant to the present work.

2.3 Spread-versus-Level Plot Transformation (SVL)

Archer et al. (2004) describes a different variance stabilization
approach based on plotting the log-median of the replictieah-
sities on the x-axis (level) against the log of their fouspread
(a variant of the interquantile range) on the y-axis (spre@tien
the estimated slope of the subsequent linear regressiorlrfibd
indicates the appropriate Box-Cox power transformation.

| Repl Rep2 Rep3 RepliMeans

Gene 1 13 12 13 14| 13
Gene 2 10 11 12 11 11
Gene 3| 100 102 99 103 101
Gene 4 73 74 74 75| 74

Then ordering these replicates according to the means bfaep
tes for each gene (indicated in the last column), and conatitey
gives a sequence of:
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1011121113121314737474 75100 102 99 103.

This ordered sequence of intensities within replicate kddorms
the input, denotedX;);—, in the Appendix, to the DDHF trans-
form. After transformation any further technique that hee/fpusly
been applied to variance stabilized and normalized data Ineay
applied here.

4 RESULTS

Durbin et al. (2002) and Rocke and Durbin (2003) compared the

performance of glog with the background-uncorrecteg (Log)
and the background-correctés; (bcLog) transforms. By conside-

ring 18 deterministiq. values, each corresponding to a gene, they

simulatedY;.; with » = 1,...,1000 andi = 1, ..., 18 intensities
from the two-component model (1) with parametésiso,, o) =

(24800, 0.227, 4800) and assessed the performance of the methods

in terms of the resulting transformed gene intensity vaxésnand
skewness coefficients. The two major results of Dusiial. (2002)
state that glog “stabilizes the asymptotic variance of odcray data
across the full range of the data, as well as making the date mo
symmetric” than the other methods under comparison.

In Durbin et al. (2002) though, after simulating the intensities
with the parameters mentioned above, the data were subggque
transformed using (5), with thenownmodel parameteréa, o,
o). This procedure is biased. In practice, the true parameters
not known and have to be estimated, which results in inferierall
variance stabilization performance. Below, we demonstitais by
simulating data from the two-component model estimating the
parameters.

Additionally, in our simulations described next, we alssform
our data with the background uncorrectieg (Log) method, the
Log-Linear Hybrid transform, the Spread-Versus-Levehsfarm
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Fig. 1. Simulatedu signal of 1024 genes.

our simulatedu; signal (“the truth”). This procedure is repeated for
both real data sets.

From each of the 1024; levels we simulate = 4 replicated raw
intensitiesY. ;, wherer = 1, ...,4 andi = 1, 2, ..., 1024, using the
si mdur bi n2() function from theDDHFmpackage which simula-
tes from model (1). To obtail;. ;, model (1) was considered with
parameters: = 340, o, = 0.9 ando. = 95 as estimated (and roun-
ded) from the McCaffreyet al. (2004) data set. These parameters
are re-estimated as in Rocke and Durbin (2001), then apidte
transformation methods that require their estimatignd and Hyb)
and the data are subsequently transformed. We iterate tive abo-

and our new DDHFm method. We do not use background correctegedurek = 1008 times, and prOd;J?é’rk,i raw intensities, where
Log and the Started Log, because both of them produce negativ'» denotes the'" replicate of the:'" iterated sequence. Finally, we

background corrected intensities, especially for smal) and we
have observed that they result in highly asymmetric data.

4.1 OneColor cDNA Data Acquisition

We simulate from the two component model (1) with parame-

ters estimated from real cDNA data, obtained from the Stanfo
Microarray Database (http://smd.stanford.edu/). Twe eEtlata are
considered. The first one comes from McCaffetwl (2004) study
on mouse cDNA microarrays to investigate gene expressiggetr
red by infection of bone marrow-derived macrophages witbsyl-
and vacuole-localized Listeria monocytogenes (Lm). Eastegvas
replicated 4 times. The data set numbers were 40430, 4089053
and 34912.

The second set comes from Paetial. (2006) work to identify
genes expressed in the intestine of C.elegans using cDNPoatic
rays. Student t-tests for differential expression weredooted with
8 replicates for each gene. The data set numbers were 3652623
38265, 39215, 40157, 41833, 41834, 41886.

4.2 Simulationsbased on McCaffrey et al. (2004) data

We wish to simulate a likely:; signal using our real cDNA data. As
in the example of Section 3, we estimate the mean of repfidate

concatenate the transform&®, ; into a single “output” vector for
eachi, from which we will derive our results. In other words, our
output consists of 1024 output vectarsof lengthp x k& = 4000
transformed observations.

The effectiveness of the methods is assessed in terms aitedju
sds @) of the replicated transformed intensities of eagh Each
&; is computed as follows. The sd;, of the stabilized sample of
4000 values is computed for eaph We noticed that each method
stabilizes the variance to a different value. So, for eacthotewe
compute the mean of;’s over the wholeu; set, denoted a8, and
adjust eachr; by computings; = o;/&. In this way the different
stabilization methods can be compared directly.

Additionally, we evaluate the Gaussianization propertiesach
transform by means of D’Agostino-Pearséft test for normality
(D’Agostino, 1971): the test is appropriate for detectireyidti-
ons from normality due to either “abnormal” skewness or dsig.
Hence, when we subsequently write (not) normal we meanivelat
to this test. In contrast to the analysis of Durbkiral. (2002) on the
means of skewness coefficients over 1000 samples for gacke
choose this more comprehensive, distribution-based appro

Figures 2—-4 show the variance stabilization results of taest
formation methods. Note thaiylog®” stands for the generalized

each gene from our two datasets. These means are orderedrand clogarithm transform with the known (optimal) parameters-,, and

catenated in a single vector from which we sample 1024 eqoep
values. This sequence of sample means, shown in Figurerhsfor

o, While “glog®” is the glog transform with all parameters being
estimated. Additionally, “Hyb"=the Log-Linear Hybrid mnteid,
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Fig. 2. Variance Stabilization oflog® (top) andglog® (bottom) transforms.
Dots: 0;, = 0.9; Crosseso, = 0.3. Horizontal line at 1. Each gene is
replicated 4 times.
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Fig. 3. Variance Stabilization of Hyb (top) anflog (bottom) transforms.
Dots: 0,, = 0.9; Crosseso, = 0.3. Horizontal line at 1. Each gene is
replicated 4 times.

“Log"=the background uncorrectetbg transform, “SVL’=the
Spread-Versus-Level transform and, finally, “DDHFm”.
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Fig. 4. Variance Stabilization of SVL (top) and DDHFm (bottom) tsan
forms. Dots:oy, = 0.9; Crossesw,, = 0.3. Horizontal line at 1. Each gene
is replicated 4 times.

a = 430.22, 5, = 0.85 anda. = 104.5. Further analysis has sho-
wed that the large differences of the estimatéom «, frequently
observed over the k iterations, is the main cause of the datica
in glog® performance.

Figure 3 shows Hyb anflog variance stabilization results. Notice
that both methods fail to stabilize the adjusted sds of tmesfiormed
intensities and, similarly t9log®, their performance depends on the
oy value: the smaller the,, gets, the better variance stabilization is
achieved. For smalr, though, Log seems to work better than the
other two methods.

In Figure 4 we notice that SVL seems to perform well, especi-
ally for small o, but its performance is still inferior to DDHFm.
DDHFm clearly outperforms every other method and its vaean
stabilization results are very similar with those g@bg® (but, of
course, glog' uses known parameters and can not be used in
practice).

Figures 5-6 show the Gaussianization results of SVL and
DDHFm, which had the best variance stabilization performan
ces. To produce the respective dotplots, we have estimated t
D’Agostino-Pearsors? p-value for each set of transformed inten-
sities. In the figures we present these 1p2hlues (dots) over the
1024 “mean-sorted” genes. We interppetalues over 0.05 to indi-
cate good Gaussianization and have plotted a horizontiithe
plots to aid interpretation.

We plot thes;’s against the 1024 “mean-sorted” genes of data We notice that SVL fails to normalize most of the transformed

simulated first fromo,, = 0.9 (estimated from McCaffrewt al.
(2004) data) and then fromr,, = 0.3 in order to show the
performance of the methods with different choices of the ehod
parameters. Varying ando. individually in the simulations did not
yield different variance stabilization results from theeenmeported
here.

The more concentrated tlég’s are around 1 (the straight line in
the figures), the better the stabilization has been perforiFigure 2
evidently shows the superiority aflog’ over glog® for both o,
values, indicating the direct effect on variance stahiicrawhen
the glog parameters are being estimated. The means of theest

intensities for any,. At o, = 0.9, DDHFm normalize$5% per-
cent of the transformed intensities but a slight downwaetdris
apparent, indicating that DDHFm normalization perforneadegra-
des asu gets larger. For,, = 0.3, though, DDHFm normalizes
the 91% of the transformed data with inexistence of a particular
trend. DDHF normalizes better than SVL and outperforms thero
transforms, due to its superior variance stabilizatiorpprties.

4.3 Simulations based on Pauli et al. (2006) data

We simulate, as beforé,= 1000 sequences from = 1024 genes.
Here we replicate each gepe= 8 times in order to show the per-

ted parameters over the = 1000 sequences were estimated as formance of selected methods when more replicates areabisil
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Fig. 5. Gaussianization of SVL transform. Tog;, = 0.9; Bottom: o, =
0.3. Horizontal line at%. Each gene is replicated 4 times.
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Fig. 6. Gaussianization of DDHFm transform. Top;, = 0.9; Bottom:
oy = 0.3. Horizontal line at%. Each gene is replicated 4 times.

We generate thg signal and then simulate raw intensities from the
two component model with parameteis= 900, o. = 196 and

on = 0.3 derived from Paulet al. (2006) cDNA data analysis. We
compargylog®, Log, SVL and DDHFm transforms, which for small
oy produced the best results in the previous section.

Table 1. Summary statistics of the adjusted ség)@nd K2 p-values (<2)
for the various transforms.

Min Q1 Med | Q3 Max | SD
ai || glog® 0.248| 0.666| 1.120| 1.335( 1.473| 0.364
Log 0.770| 0.961| 0.992| 1.020| 1.475| 0.120
SVL 0.830| 0.915| 0.967| 1.040| 1.512| 0.121
DDHFm | 0.907 | 0.979| 1.000| 1.020| 1.090| 0.030
K2 | glog® 0.000| 0.000| 0.000| 0.000| 0.981| ——
Log 0.000| 0.007| 0.165| 0.503| 0.998| ——
SVL 0.000| 0.000| 0.000| 0.150| 0.996| ——
DDHFm | 0.000| 0.085| 0.291| 0.597| 0.995| ——

4.4 Application to Real cDNA Data

In this section, we transform the McCaffreyal. (2004) real cDNA
data. The need for data transformation is suggested by emprel
nary analysis which indicates that the replicate sd inegasth the
replicate mean.

We apply DDHFm,Log, SVL, and glog transforms to the data set
and compute the adjusted replicate sds. Ideally, the fiveesexs
of 5; should be as closely concentrated around one as possible.

Adjusted Std Deviation

T T T T T
20000

Gene Number

Adjusted Std Deviation

T T T T T
0 10000 20000 30000 40000

Gene Number

Fig. 7. Variance stabilization of glog (top/black), Log (top/gye$VL (bot-

tom/grey) and DDHFm (bottom/black) transforms. Dasheddinrange of
glog (top) and SVL (bottom) adjusted sds; dotted lines: eaofyLog (top)

and DDHFm (bottom) adjusted sds.

The top section of Table 1 shows the summary statistics of the

adjusted sd§; of the transformed data for each method. Better con-
.Notice that DDHFn%;’s range approximately from 0 to 3.5 (the dot-

centration of thes; around 1 suggests better variance stabilization

Figure 7 shows the variance stabilization results of thenou.

We observe that the best performance is achieved by DDHFm witted lines in the bottom figure) with estimated sdef 55, ~ 0.35,

approximately 3.5 times lower range and 4 times lower sd fifoen
best competitorog transform).

The bottom section of Table 1 shows th& p-value summary
statistics. Again, DDHFm performs better than any othernoet
DDHFm also has the 1st Quantile (Q1) of jts/alues distribution
above 0.05.

while the best competitor glog producéss that range from 0 to
3.95 withgs, ~ 0.51. Log and SVL perform worse than glog (their
&i's range from O to 5.8 witlé#5, ~ 0.46). Since DDHFm produces
g;'s that are more closely concentrated around 1 than of anlyeof t
competitors, we conclude that this is the best transfoondtr our
data set.
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5 CONCLUSIONS AND FURTHER RESEARCH

This article has introduced DDHFm, a new method for variance

stabilization for replicated intensities that follow a rRdecreasing
mean-variance relationship. The DDHFm is self-contaimetidoes
not require any separate parameter estimation. The DDHFtsds
“distribution-free” in the sense that a parametric modelifden-
sities does not need to be pre-specified. Hence, it can beinsed
situations where there is uncertainty about the precisenlyidg
intensity distribution.

Simulations have shown that DDHFm not only performs very

good variance stabilization but also it produces inteesithat have
distribution much closer to the Gaussian when comparedterot
established methods.

The superior performance of DDHFm combined with its ability
to adapt to a wide range of distributions with non-decrepsiean-
variance relationship make it an ideal tool for variancéititztion
for microarray data.

This paper has not addressed the separate, but related,afsu
calibration (that is adapting to the over location and soateparate
slides). This is an issue for DDHFm but to judge from the ressoth
stabilization not a significant issue. However, it would begible to
use DDHFm in conjunction with a calibration technique inraitr
way to the combination of calibration and stabilizationiklae in
thevsn package described in Hubet al. (2003). We conjecture
that stabilization would be again superior for DDHFm the ofe
DDHFm requires somewhat more computational effort tharg glo
type methods. Our future aim is to investigate this morelehging
problem as well as develop direct Haar-Fisz methods fobiaion.

APPENDIX: THE DATA-DRIVEN HAAR-FISZ
TRANSFORM

Let X = (X;)j=, denote an input vector to the Data-Driven Haar-
Fisz Transform (DDHFT). The following list specifies the geio
distributional properties cX.

1. The lengthn of X must be a power of two. We denote =
log, (n). In practice, if our data is not of lengtty, then we

reflect the end of our data set in a mirror-like fashion so that9'

the “padded” sequence has a length which is a power of two.

dom variables with finite positive meaps = E(X;) > 0 and
finite positive variances? = Var(X;) > 0.

. The variances? must be a non-decreasing function of the
meanp;: we must haver? h(p:), where the functiorh
is independent of.

For example, letX; ~ Poig)\;). In this casep; = \; ando?

. (X;)i=, must be a sequence of independent, nonnegative rarg, o

2. Foreaclhy =J —1,J —2,...,0, recursively form vectors’
andd’:
-
Sop—1

j+1 J+1

S — S

2k—1 2k
Zhol T2k g

2

j+1
+ 8o L4 =
2 Pk

The operatoif, whereHX = (s°,d°,...,d” '), defines the HT.
The inverse HT is performed as follows:

J J
s1, L, 20

1. Foreachj =0,1,...,J — 1, recursively forms*!:

J+1 j

— . Gt J — J
She g =8, +dy; sy =s,—dy, k=1,...,2".

2. SetX; = s].

The elements o’ andd’ have a simple interpretation: they can
be thought of as “smooth” and “detail” (respectively) of thréginal
vectorX at scale2’.

We now introduce the HFT: a multiscale algorithm for (approx
mately) stabilizing the variance & and bringing its distribution
closer to normality.

The main idea of the HFT is to decompo3e using the HT,
then “Gaussianise” the coeﬂicierﬂ% and stabilize their variance,
and then apply the inverse HT to obtain a vector which is clo-
ser to Gaussianity and has its variance approximately |iziatbi
We now describe the middle step: the variance stabilizagioo
“Gaussianisation” offy..

Consider firstd] " (X1 — X2)/2. Suppose for now that
X4, X, are identically distributed (i.d.): indeed, this is likdfythe
underlying mear{p; }; is e.g. piecewise constant. This implies that
d]~* is symmetric around zero. We want to stabilize the variance
of d/~* around2/ =Y~/ = 1/2. To do so, we dividal; ~* by
2'/2 times its own sd. Using the assumption of independence (item
2, first list of this section above) we have

Var(d{ ') = 1/4 (Var(X1) + Var(Xz)) = 07 /2,

which gives2'/? (Var(d{‘l))l/2 = o1 = h'?(p1). In practicep
is unknown and we estimate it locally By = (X1 + X2)/2 =
s7~1. The (approximately) variance-stabilized coefficigit ' is
ven by /' = d{~'/h'/? (s{ ') (where the conventiof/0 =
0 is used).

Turning now tod! =% = (X1 + X2 — X3 — X4)/4, we also
t assume that th&(;, Xo, X3, X, are i.d. In order to stabilize
the variance ofly =2 around2’~7/ = 277277 = 1/4, we divide
d{=% by 2 times its sd. We have (Var(dl"‘g))l/2 = o
h'/?(p1) as before, and we estimatg locally by s7~2, which
yields an approximately variance-stabilized coefficigiit >
d{=?/n'/* (s{=?). Asymptotic Gaussianity and variance stabili-

zation of random variables of a form similarfg} were studied by

i, which yieldsh(z) = x. Naturally, in many practical situations Fisz (1955): hence we labg], the Fisz coefficientsf X, and the
the exact form of, is unknown and needs to be estimated. Below, Whole procedure — thelaar-Fisz transformof X.

we describe the Haar-Fisz Transform (HFT) in the cases where \We now give the general algorithm for the Haar-Fisz tramsfor
is known and unknown, respectively. (For microarrays theHpD  When the functiorh is known.

transform is modified and the: are sorted to minimize variation of ;| oo/ _ x
the functionp;, see Section 3.) Lo , .
We first recall the formula for the Haar Transform (HT). The HT 2 Foreacly =J —1,J —2,...,0, recursively form vectors’
is a linear orthogonal transfor®™ — R™ wheren = 27. Given an andf’:
input vectorX = (X;); 1, the HT is performed as follows: i s+ siit L st —siit P of
Sk = 2 7fk— 2h1/2(8‘£) 5 =1,..., .

1. Lets! = X;.
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3. Foreacly =0,1,...,J — 1, recursively modifys?*1:
. v o v v
séz_lzsiJrfg;s;Z =s,—fl, k=1,...,27.

4. SetY =s’.

The relationY = F}, X defines a nonlinear, invertible operatby
which we callthe Haar-Fisz transform (aX) with link functionh.

Cui, X., Kerr, M.K. and Churchill, G.A. (2003) Transformatis for cONA microarray
data.Statist. App. Gen. Mol. Bigl2:4.

D’Agostino, R.B. (1971) An omnibus test of normality for mevdte and large size
samplesBiometrikg 58, 341-348.

Delmar, P., Robin, S., Tronik-Le Roux D. and Daudin J.J. B2)Mixture model on the
variance for the differential analysis of gene expressmt@ad. Roy. Statist. So€,
54, 31-50.

Delmar, P., Robin, S. and Daudin, J.J. (2005b) VarMixt: &ffit variance modelling
for the differential analysis of replicated gene expresslata.Bioinformatics 21,

In practiceh is often unknown and needs to be estimated. Since 5go_50s.

o7 = h(p:), ideally we would wish to estimatk by computing
the empirical variances oX1, X, ... at pointsp1, p2, . . ., respec-
tively, and then smoothing the observations to obtain ames¢ of
h. Suppose for the time being that thes are known and, as an illu-
strative example, consider = p;+1. The empirical variance ok;
can be pre-estimated, for example sds= (X; — Xi+1)?/2. Note
that on any piecewise constant stretch, our pre-estimatgaistly
unbiased. The above discussion motivates the followingessipn
setup:

67 = h(p:) +ei,

wheree; = 67 — 0 = (X; — Xi11)?/2 — o7 and “in most cases”
E(e;) = 0. Of course, in practice, thg;’s are not known and,
since we pre-estimate the varianceXdfusing X; and X1, it also
makes sense to pre-estimateby p; = (X; + Xi+1)/2. Note that
for eachk = 1,...,27 7%, we havepo,_1 = s; ' andé3,_, =
2(d;]~")?, which leads to our final regression setup

2(dy ) = h(sy ') +ex. (6)

In other words, we estimatefrom the finest-scale Haar smooth and
detail coefficients of X;);—,, where the smooth coefficients serve

as pre-estimates gf; and the squared detail coefficients serve as

pre-estimates of 2.

As we restricth to be a non-decreasing function @fwe choose
to estimate it from the regression problem (6) via leastsesl
isotone regression, using the “pool-adjacent-violatakjorithm
described in detail in Johnstone and Silverman (2005),i@e6t3.
The resulting estimate, denoted here fm,yis a non-decreasing,
piecewise constant function pf

The DDHFT is performed as above except thaeplacesh.
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