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ABSTRACT
Motivation: Many standard statistical techniques are effective on
data that are normally distributed with constant variance. Microarray
data typically violate these assumptions since they come from non-
Gaussian distributions with a non-trivial mean-variance relationship.
Several methods have been proposed that transform microarray data
to stabilize variance and draw its distribution towards the Gaussian.
Some methods, such as log or generalized log, rely on an underly-
ing model for the data. Others, such as the spread-versus-level plot,
do not. We propose an alternative data-driven multiscale approach,
called the Data-Driven Haar-Fisz for microarrays (DDHFm) with rep-
licates. DDHFm has the advantage of being “distribution-free” in the
sense that no parametric model for the underlying microarray data
is required to be specified nor estimated and hence DDHFm can be
applied very generally, not just to microarray data.
Results: DDHFm achieves very good variance stabilization of
microarray data with replicates and produces transformed intensi-
ties that are approximately normally distributed. Simulation studies
show that it performs better than other existing methods. Application
of DDHFm to real one-color cDNA data validates these results.
Availability: The R package of the Data-Driven Haar-Fisz transform
(DDHFm) for microarrays is available in Bioconductor and CRAN.
Contact: g.p.nason@bristol.ac.uk

1 INTRODUCTION
Microarrays, in principle and in practice, are extensions of
hybridization-based methods (Southern Blots, Northern Blots,
SAGE etc), which have been used for decades to identify and
locate mRNA and DNA sequences that are complementary to a
segment of DNA (Alwinet al., 1977 and Velculescuet al., 1995).
Microarray technology, in the form of either cDNA or High-Density
Oligonucleotide arrays enables molecular biologists to measure
simultaneously the expression level of thousands of genes.In a typi-
cal microarray experiment the aim is to compare different cell types,
e.g. normal versus diseased cells, in order to identify genes that are
differentially expressed in the two cell types.

Typically, microarray data analyses consist of several steps ran-
ging from experimental design to the identification of important
genes (for a review on the whole process see Sebastiani and Ramoni,
2003). Gene replication is a crucial design feature as it increases
the precision of estimation and permits estimation of measurement
variance which enables the significance of the final results to be
judged.

Rocke and Durbin (2001) identified that the variance of the raw
spot intensities increased with their mean and they modelled those
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intensities in terms of the two-component model:

Yi = α + µi × eηi + ǫi, i = 1, ..., n (1)

Here, (Yi)
n
i=1 are the raw single-color intensities for then genes,

each assumed to be replicatedp times. Sometimes we will write
Yr,i when we are referring to therth replicate on theith gene (r =
1, . . . , p). Theα term represents the (common) mean background
noise of then genes on the array,µi is the true expression level
for genei, andηi and ǫi are the normally distributed error terms
with zero mean and variancesσ2

η andσ2
ǫ , respectively. In this way,

Y = (Yi)
n
i=1 can be considered as coming from aninhomogeneous

processthat produces then gene intensities with finite but different
µi’s and finite but different variances.

At low expression levels (i.e.µi close to 0) the measured expres-
sion Yi in (1) can be written asYi ≈ α + ǫi so that Yi is
approximately distributed as N(α, σ2

ǫ ). On the other hand, for large
µi’s, the middle term in (1) dominates andYi can be modelled as:

Yi ≈ µie
ηi (2)

with approximate variance

Var(Yi) ≈ µ2
i S

2
η (3)

where S2
η = eσ2

η (eσ2

η − 1). For moderate values ofµi, Yi is
modelled as in (1) with variance:

Var(Yi) = µ2
i S

2
η + σ2

ǫ (4)

From (3) and (4), we observe that the standard deviation (sd)
of the Yi increases linearly with their mean. Such mean-variance
dependence, implying the presence of heteroscedastic intensities, is
a major problem in the statistical analysis of microarrays.

Two methodological approaches have been followed to account
for the heteroscedasticity. The first approach involves estimation of
differentially expressed genes directly from the heteroscedastic data
by means of penalizedt-statistics (e.g. SAM method of Tusheret al.,
2001), mixed or hierarchical Bayesian modelling (e.g. Baird et al.,
2004 and Hsiaoet al., 2004), appropriate Maximum Likelihood tests
(e.g. Wang and Ethier, 2004) and, recently, gene grouping schemes
(e.g. Comanderet al., 2004 and Delmaret al., 2005a,2005b). The
second approach, which we follow in this article, involves finding
appropriate transformations that stabilize the variance of the data.
After variance stabilization the data can be analyzed by standard,
simple and universally accepted tools, like ANOVA models.

Section 2 outlines some existing variance stabilizing transforms
that have been applied to microarray data. Section 3 proposes a new
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method called the Data-Driven Haar-Fisz transform for microarrays
(DDHFm) and compares its performance with existing methodsby
means of simulated and real cDNA data in Section 4. We show
that DDHFm is superior to existing methods in terms of variance
stabilization and Gaussianization of the transformed intensities.

2 ESTABLISHED VARIANCE STABILIZATION
METHODS

For brevity we discuss and compare the performance of different
variance stabilization techniques without, at this stage,worrying
about differential expression. For this reason we considerdata
obtained from one-color microarrays. Generalization to two-color
experiments will be considered in future work.

2.1 Log-based Transformations
Smyth et al. (2003) suggest using the log transform for microar-
ray intensities. By assuming that the “lognormal distribution is an
extremely good approximation to the bulk of the data” (Hoyleet al.,
2002) as in model (2), the log transformlog(Yi) should stabilize the
variance of the gene intensities and bring their distribution closer to
the Gaussian. An extension of this approach then considers back-
ground corrected intensities,̂Zi = Yi − α̂, which may be negative
and cannot be handled by the simplelog function. Based on this
notion, several authors have studied alternative logarithmic-based
transformations for microarray data.

Tukey (1977) defines the ‘Started Log’ transformation as:
sLog(Ẑ) = log(Ẑ +k) wherek is a positive constant estimated via
k̂ = σ̂2

ǫ /21/4σ̂2
η, so that it minimizes the deviation from variance

constancy. Alternatively, Holderet al. (2001) developed the Log-
Linear Hybrid transformation as:Hybk(Ẑ) = Ẑ/k + log(k) − 1,
for Ẑ ≤ k andHybk(Ẑ) = log(Ẑ), for Ẑ > k. This transforma-
tion has also been called Linlog by Cuiet al. (2003). As withsLog,
the optimalk is estimated bŷk =

√
2σ̂ǫ/σ̂η.

2.2 The Generalized Logarithm Transformation (glog)
Munson (2001), Durbinet al. (2002) and Huberet al. (2002)
independently developed the Generalized Logarithm transformation
(referred to as glog in Rocke and Durbin, 2003). For data thatcome
from model (1) with the mean-variance dependence (4), glog is
assumed to produce symmetric transformed gene intensitieswith
stabilized variance. The glog formula is:

Ẑ = log{(Y − α̂) +
p

(Y − α̂) + ĉ} (5)

wherec is estimated bŷc = σ̂2
ǫ /Ŝ2

η . Rocke and Durbin (2001) des-
cribed algorithms to estimateα andc from one-color cDNA data.
While estimation ofα can be conducted without replicated genes,
estimation ofc involves estimation ofS2

η , which requires replica-
tion. Maximum Likelihood methods forc estimation only, based on
Box and Cox (1964), were also developed by Durbin and Rocke
(2003) for the case of two-colors microarrays and thus it is not
relevant to the present work.

2.3 Spread-versus-Level Plot Transformation (SVL)
Archer et al. (2004) describes a different variance stabilization
approach based on plotting the log-median of the replicatedinten-
sities on the x-axis (level) against the log of their fourth-spread
(a variant of the interquantile range) on the y-axis (spread). Then
the estimated slope of the subsequent linear regression model fit
indicates the appropriate Box-Cox power transformation.

3 DATA-DRIVEN HAAR-FISZ TRANSFORMATION
FOR MICROARRAYS

This section describes how the recent Data-Driven Haar-Fisz
(DDHF) transform can be adapted for use with microarray data. Our
adaption requires a subtle organization of microarray intensities into
a form acceptable for the DDHF transform. We call our adaption the
DDHF transform for microarray data, or DDHFm.

Recently, a new class of variance stabilization transforms, gene-
rically known as Haar-Fisz (HF) transforms, were introduced by
Fryzlewicz and Nason (2004). In that work the HF transform used
a multiscale technique to take sequences of Poisson random varia-
bles with unknown intensities into a sequence of random variables
with near constant variance and a distribution closer to normality.
Later Fryzlewiczet al. (2005) introduced theData-Driven Haar-
Fisz (DDHF) transform which used a similar multiscale transform
but additionally estimated the mean-variance relation as part of the
process of stabilization and bringing the distribution closer to nor-
mality. See also Fryzlewicz and Delouille (2005). Hence theDDHF
transform can be used where there is a monotone mean-variance
relationship but the precise form of the relationship is notknown. In
other words, DDHFm is “distribution-free” in that the precise data
distribution, such as model (1), need not be known nor specified. See
the Appendix for further details on the HF and DDHF transforms.

Both the HF and DDHF transforms rely on an inputsequence
of positive random variablesXi with meanµi and a varianceσ2

i

with some monotone (non-decreasing) relation between the mean
and varianceσ2

i = h(µi). Both HF and DDHF transforms work
best when the underlyingµi form a piecewise constant sequence.
In other words, when consecutiveµ are often very close or actually
identical in value but large jumps in value are also permitted. Howe-
ver, microarray data are usually not organized in this sequential
form. Microarray intensitiesYi usually come in replicated blocks:
i.e.Yr,i is therth replicate for theith gene.

For theith gene what we do know is that the underlying intensity
µr,i for Yr,i is identical for each replicater (this is the reason for
replication). So, if the intensities for all replicates fora given genei
were laid out into a consecutive sequence we wouldknowthat their
underlyingµi sequence was constant.

To be able to make efficient use of the DDHF transform we would
need to sort our intensities in order of increasingµr,i so that the
sequence would be as near piecewise constant as possible. Inactua-
lity as we do not know theµi (since that is what we are trying to
estimate) we cannot sort the sequence into increasingµ order. So,
we do the next best thing in that we order the replicate sets according
to their increasing mean observed value where the mean is taken
across replicates. The idea is that the observed mean estimates the
µr,i and observed mean ordering estimates the ‘correct’ true mean
ordering. For example, suppose there were 4 replicates and 4genes
with observed (raw) intensities

Rep 1 Rep 2 Rep 3 Rep 4Means
Gene 1 13 12 13 14 13
Gene 2 10 11 12 11 11
Gene 3 100 102 99 103 101
Gene 4 73 74 74 75 74

Then ordering these replicates according to the means of replica-
tes for each gene (indicated in the last column), and concatenating
gives a sequence of:
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10 11 12 11 13 12 13 14 73 74 74 75 100 102 99 103.

This ordered sequence of intensities within replicate blocks forms
the input, denoted(Xi)

n
i=1 in the Appendix, to the DDHF trans-

form. After transformation any further technique that has previously
been applied to variance stabilized and normalized data maybe
applied here.

4 RESULTS
Durbin et al. (2002) and Rocke and Durbin (2003) compared the
performance of glog with the background-uncorrectedlog (Log)
and the background-correctedlog (bcLog) transforms. By conside-
ring 18 deterministicµ values, each corresponding to a gene, they
simulatedYr,i with r = 1, . . . , 1000 andi = 1, . . . , 18 intensities
from the two-component model (1) with parameters(α, ση, σǫ) =
(24800, 0.227, 4800) and assessed the performance of the methods
in terms of the resulting transformed gene intensity variances and
skewness coefficients. The two major results of Durbinet al. (2002)
state that glog “stabilizes the asymptotic variance of microarray data
across the full range of the data, as well as making the data more
symmetric” than the other methods under comparison.

In Durbin et al. (2002) though, after simulating the intensities
with the parameters mentioned above, the data were subsequently
transformed using (5), with theknownmodel parameters(α, ση,
σǫ). This procedure is biased. In practice, the true parametersare
not known and have to be estimated, which results in inferioroverall
variance stabilization performance. Below, we demonstrate this by
simulating data from the two-component modelandestimating the
parameters.

Additionally, in our simulations described next, we also transform
our data with the background uncorrectedlog (Log) method, the
Log-Linear Hybrid transform, the Spread-Versus-Level transform
and our new DDHFm method. We do not use background corrected
Log and the Started Log, because both of them produce negative
background corrected intensities, especially for smallµ’s, and we
have observed that they result in highly asymmetric data.

4.1 One Color cDNA Data Acquisition
We simulate from the two component model (1) with parame-
ters estimated from real cDNA data, obtained from the Stanford
Microarray Database (http://smd.stanford.edu/). Two sets of data are
considered. The first one comes from McCaffreyet al. (2004) study
on mouse cDNA microarrays to investigate gene expression trigge-
red by infection of bone marrow-derived macrophages with cytosol-
and vacuole-localized Listeria monocytogenes (Lm). Each gene was
replicated 4 times. The data set numbers were 40430, 40571, 34905
and 34912.

The second set comes from Pauliet al. (2006) work to identify
genes expressed in the intestine of C.elegans using cDNA microar-
rays. Student t-tests for differential expression were conducted with
8 replicates for each gene. The data set numbers were 36590, 38262,
38265, 39215, 40157, 41833, 41834, 41886.

4.2 Simulations based on McCaffrey et al. (2004) data
We wish to simulate a likelyµi signal using our real cDNA data. As
in the example of Section 3, we estimate the mean of replicates for
each gene from our two datasets. These means are ordered and con-
catenated in a single vector from which we sample 1024 equispaced
values. This sequence of sample means, shown in Figure 1, forms
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Fig. 1. Simulatedµ signal of 1024 genes.

our simulatedµi signal (“the truth”). This procedure is repeated for
both real data sets.

From each of the 1024µi levels we simulatep = 4 replicated raw
intensitiesYr,i, wherer = 1, ..., 4 andi = 1, 2, ..., 1024, using the
simdurbin2() function from theDDHFm package which simula-
tes from model (1). To obtainYr,i, model (1) was considered with
parametersα = 340, ση = 0.9 andσǫ = 95 as estimated (and roun-
ded) from the McCaffreyet al. (2004) data set. These parameters
are re-estimated as in Rocke and Durbin (2001), then appliedto the
transformation methods that require their estimation (glog and Hyb)
and the data are subsequently transformed. We iterate the above pro-
cedurek = 1000 times, and produceYrk,i raw intensities, where
rk denotes therth replicate of thekth iterated sequence. Finally, we
concatenate the transformedYrk,i into a single “output” vector for
eachi, from which we will derive our results. In other words, our
output consists of 1024 output vectors v

¯i of lengthp × k = 4000
transformed observations.

The effectiveness of the methods is assessed in terms of adjusted
sds (̃σi) of the replicated transformed intensities of eachµi. Each
σ̃i is computed as follows. The sd,σi, of the stabilized sample of
4000 values is computed for eachµi. We noticed that each method
stabilizes the variance to a different value. So, for each method we
compute the mean ofσi’s over the wholeµi set, denoted as̄σ, and
adjust eachσi by computingσ̃i = σi/σ̄. In this way the different
stabilization methods can be compared directly.

Additionally, we evaluate the Gaussianization propertiesof each
transform by means of D’Agostino-PearsonK2 test for normality
(D’Agostino, 1971): the test is appropriate for detecting deviati-
ons from normality due to either “abnormal” skewness or kurtosis.
Hence, when we subsequently write (not) normal we mean relative
to this test. In contrast to the analysis of Durbinet al. (2002) on the
means of skewness coefficients over 1000 samples for eachµ, we
choose this more comprehensive, distribution-based approach.

Figures 2–4 show the variance stabilization results of the trans-
formation methods. Note that “glogi” stands for the generalized
logarithm transform with the known (optimal) parametersα, ση and
σǫ, while “gloge” is the glog transform with all parameters being
estimated. Additionally, “Hyb”=the Log-Linear Hybrid method,

3



E.S. Motakis et al

0 200 400 600 800 1000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Gene Number

A
dj

us
te

d 
S

td
 D

ev
ia

tio
n

0 200 400 600 800 1000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Gene Number

A
dj

us
te

d 
S

td
 D

ev
ia

tio
n

Fig. 2. Variance Stabilization ofglogi (top) andgloge (bottom) transforms.
Dots: ση = 0.9; Crosses:ση = 0.3. Horizontal line at 1. Each gene is
replicated 4 times.
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Fig. 3. Variance Stabilization of Hyb (top) andLog (bottom) transforms.
Dots: ση = 0.9; Crosses:ση = 0.3. Horizontal line at 1. Each gene is
replicated 4 times.

“Log”=the background uncorrectedlog transform, “SVL”=the
Spread-Versus-Level transform and, finally, “DDHFm”.

We plot theσ̃i’s against the 1024 “mean-sorted” genes of data
simulated first fromση = 0.9 (estimated from McCaffreyet al.
(2004) data) and then fromση = 0.3 in order to show the
performance of the methods with different choices of the model
parameters. Varyingα andσǫ individually in the simulations did not
yield different variance stabilization results from the ones reported
here.

The more concentrated thẽσi’s are around 1 (the straight line in
the figures), the better the stabilization has been performed. Figure 2
evidently shows the superiority ofglogi over gloge for both ση

values, indicating the direct effect on variance stabilization when
the glog parameters are being estimated. The means of the estima-
ted parameters over thek = 1000 sequences were estimated as
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Fig. 4. Variance Stabilization of SVL (top) and DDHFm (bottom) trans-
forms. Dots:ση = 0.9; Crosses:ση = 0.3. Horizontal line at 1. Each gene
is replicated 4 times.

ᾱ = 430.22, σ̄η = 0.85 andσ̄ǫ = 104.5. Further analysis has sho-
wed that the large differences of the estimateα̂ from α, frequently
observed over the k iterations, is the main cause of the degradation
in gloge performance.

Figure 3 shows Hyb andLog variance stabilization results. Notice
that both methods fail to stabilize the adjusted sds of the transformed
intensities and, similarly togloge, their performance depends on the
ση value: the smaller theση gets, the better variance stabilization is
achieved. For smallση though,Log seems to work better than the
other two methods.

In Figure 4 we notice that SVL seems to perform well, especi-
ally for small ση, but its performance is still inferior to DDHFm.
DDHFm clearly outperforms every other method and its variance
stabilization results are very similar with those ofglogi (but, of
course, glogi uses known parameters and can not be used in
practice).

Figures 5–6 show the Gaussianization results of SVL and
DDHFm, which had the best variance stabilization performan-
ces. To produce the respective dotplots, we have estimated the
D’Agostino-PearsonK2 p-value for each set of transformed inten-
sities. In the figures we present these 1024p-values (dots) over the
1024 “mean-sorted” genes. We interpretp-values over 0.05 to indi-
cate good Gaussianization and have plotted a horizontal line in the
plots to aid interpretation.

We notice that SVL fails to normalize most of the transformed
intensities for anyση. At ση = 0.9, DDHFm normalizes55% per-
cent of the transformed intensities but a slight downward trend is
apparent, indicating that DDHFm normalization performance degra-
des asµ gets larger. Forση = 0.3, though, DDHFm normalizes
the 91% of the transformed data with inexistence of a particular
trend. DDHF normalizes better than SVL and outperforms the other
transforms, due to its superior variance stabilization properties.

4.3 Simulations based on Pauli et al. (2006) data
We simulate, as before,k = 1000 sequences fromn = 1024 genes.
Here we replicate each genep = 8 times in order to show the per-
formance of selected methods when more replicates are available.
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Fig. 5. Gaussianization of SVL transform. Top:ση = 0.9; Bottom: ση =

0.3. Horizontal line at5%. Each gene is replicated 4 times.
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Fig. 6. Gaussianization of DDHFm transform. Top:ση = 0.9; Bottom:
ση = 0.3. Horizontal line at5%. Each gene is replicated 4 times.

We generate theµ signal and then simulate raw intensities from the
two component model with parametersα = 900, σǫ = 196 and
ση = 0.3 derived from Pauliet al. (2006) cDNA data analysis. We
comparegloge, Log, SVL and DDHFm transforms, which for small
ση produced the best results in the previous section.

The top section of Table 1 shows the summary statistics of the
adjusted sds̃σi of the transformed data for each method. Better con-
centration of thẽσi around 1 suggests better variance stabilization.
We observe that the best performance is achieved by DDHFm with
approximately 3.5 times lower range and 4 times lower sd fromthe
best competitor (Log transform).

The bottom section of Table 1 shows theK2 p-value summary
statistics. Again, DDHFm performs better than any other method.
DDHFm also has the 1st Quantile (Q1) of itsp-values distribution
above 0.05.

Table 1. Summary statistics of the adjusted sds (σ̃i) andK2 p-values (K2)
for the various transforms.

Min Q1 Med Q3 Max SD
σ̃i gloge 0.248 0.666 1.120 1.335 1.473 0.364

Log 0.770 0.961 0.992 1.020 1.475 0.120
SVL 0.830 0.915 0.967 1.040 1.512 0.121
DDHFm 0.907 0.979 1.000 1.020 1.090 0.030

K2 gloge 0.000 0.000 0.000 0.000 0.981 −−
Log 0.000 0.007 0.165 0.503 0.998 −−
SVL 0.000 0.000 0.000 0.150 0.996 −−
DDHFm 0.000 0.085 0.291 0.597 0.995 −−

4.4 Application to Real cDNA Data
In this section, we transform the McCaffreyet al. (2004) real cDNA
data. The need for data transformation is suggested by a prelimi-
nary analysis which indicates that the replicate sd increases with the
replicate mean.

We apply DDHFm,Log, SVL, and glog transforms to the data set
and compute the adjusted replicate sds. Ideally, the five sequences
of σ̃i should be as closely concentrated around one as possible.
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Fig. 7. Variance stabilization of glog (top/black), Log (top/grey), SVL (bot-
tom/grey) and DDHFm (bottom/black) transforms. Dashed lines: range of
glog (top) and SVL (bottom) adjusted sds; dotted lines: range of Log (top)
and DDHFm (bottom) adjusted sds.

Figure 7 shows the variance stabilization results of the methods.
Notice that DDHFm̃σi’s range approximately from 0 to 3.5 (the dot-
ted lines in the bottom figure) with estimated sd ofσ̃i, σ̂σ̃i

≃ 0.35,
while the best competitor glog producesσ̃i’s that range from 0 to
3.95 withσ̂σ̃i

≃ 0.51. Log and SVL perform worse than glog (their
σ̃i’s range from 0 to 5.8 witĥσσ̃i

≃ 0.46). Since DDHFm produces
σ̃i’s that are more closely concentrated around 1 than of any of the
competitors, we conclude that this is the best transformation for our
data set.
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5 CONCLUSIONS AND FURTHER RESEARCH
This article has introduced DDHFm, a new method for variance
stabilization for replicated intensities that follow a non-decreasing
mean-variance relationship. The DDHFm is self-contained and does
not require any separate parameter estimation. The DDHFm isalso
“distribution-free” in the sense that a parametric model for inten-
sities does not need to be pre-specified. Hence, it can be usedin
situations where there is uncertainty about the precise underlying
intensity distribution.

Simulations have shown that DDHFm not only performs very
good variance stabilization but also it produces intensities that have
distribution much closer to the Gaussian when compared to other
established methods.

The superior performance of DDHFm combined with its ability
to adapt to a wide range of distributions with non-decreasing mean-
variance relationship make it an ideal tool for variance stabilization
for microarray data.

This paper has not addressed the separate, but related, issue of
calibration (that is adapting to the over location and scaleof separate
slides). This is an issue for DDHFm but to judge from the results on
stabilization not a significant issue. However, it would be possible to
use DDHFm in conjunction with a calibration technique in a similar
way to the combination of calibration and stabilization available in
thevsn package described in Huberet al. (2003). We conjecture
that stabilization would be again superior for DDHFm the useof
DDHFm requires somewhat more computational effort than glog
type methods. Our future aim is to investigate this more challenging
problem as well as develop direct Haar-Fisz methods for calibration.

APPENDIX: THE DATA-DRIVEN HAAR-FISZ
TRANSFORM
Let X = (Xi)

n
i=1 denote an input vector to the Data-Driven Haar-

Fisz Transform (DDHFT). The following list specifies the generic
distributional properties ofX.

1. The lengthn of X must be a power of two. We denoteJ =
log2(n). In practice, if our data is not of length2J , then we
reflect the end of our data set in a mirror-like fashion so that
the “padded” sequence has a length which is a power of two.

2. (Xi)
n
i=1 must be a sequence of independent, nonnegative ran-

dom variables with finite positive meansρi = E(Xi) > 0 and
finite positive variancesσ2

i = Var(Xi) > 0.

3. The varianceσ2
i must be a non-decreasing function of the

meanρi: we must haveσ2
i = h(ρi), where the functionh

is independent ofi.

For example, letXi ∼ Pois(λi). In this case,ρi = λi andσ2
i =

λi, which yieldsh(x) = x. Naturally, in many practical situations
the exact form ofh is unknown and needs to be estimated. Below,
we describe the Haar-Fisz Transform (HFT) in the cases whereh
is known and unknown, respectively. (For microarrays the DDHF
transform is modified and theρi are sorted to minimize variation of
the functionρi, see Section 3.)

We first recall the formula for the Haar Transform (HT). The HT
is a linear orthogonal transformRn → R

n wheren = 2J . Given an
input vectorX = (Xi)

n
i=1, the HT is performed as follows:

1. LetsJ
i = Xi.

2. For eachj = J − 1, J − 2, . . . , 0, recursively form vectorssj

andd
j :

sj
k =

sj+1
2k−1 + sj+1

2k

2
; dj

k =
sj+1
2k−1 − sj+1

2k

2
, k = 1, . . . , 2j .

The operatorH , whereHX = (s0,d0, . . . , dJ−1), defines the HT.
The inverse HT is performed as follows:

1. For eachj = 0, 1, . . . , J − 1, recursively forms
j+1:

sj+1
2k−1 = sj

k + dj
k ; sj+1

2k = sj
k − dj

k, k = 1, . . . , 2j .

2. SetXi = sJ
i .

The elements ofsj andd
j have a simple interpretation: they can

be thought of as “smooth” and “detail” (respectively) of theoriginal
vectorX at scale2j .

We now introduce the HFT: a multiscale algorithm for (approxi-
mately) stabilizing the variance ofX and bringing its distribution
closer to normality.

The main idea of the HFT is to decomposeX using the HT,
then “Gaussianise” the coefficientsdj

k and stabilize their variance,
and then apply the inverse HT to obtain a vector which is clo-
ser to Gaussianity and has its variance approximately stabilized.
We now describe the middle step: the variance stabilizationand
“Gaussianisation” ofdj

k.
Consider firstdJ−1

1 = (X1 − X2)/2. Suppose for now that
X1, X2 are identically distributed (i.d.): indeed, this is likelyif the
underlying mean{ρi}i is e.g. piecewise constant. This implies that
dJ−1
1 is symmetric around zero. We want to stabilize the variance

of dJ−1
1 around2(J−1)−J = 1/2. To do so, we dividedJ−1

1 by
21/2 times its own sd. Using the assumption of independence (item
2, first list of this section above) we have

Var(dJ−1
1 ) = 1/4 (Var(X1) + Var(X2)) = σ2

1/2,

which gives21/2
`

Var(dJ−1
1 )

´1/2
= σ1 = h1/2(ρ1). In practiceρ1

is unknown and we estimate it locally bŷρ1 = (X1 + X2)/2 =
sJ−1
1 . The (approximately) variance-stabilized coefficientfJ−1

1 is
given byfJ−1

1 = dJ−1
1 /h1/2

`

sJ−1
1

´

(where the convention0/0 =
0 is used).

Turning now todJ−2
1 = (X1 + X2 − X3 − X4)/4, we also

first assume that theX1, X2, X3, X4 are i.d. In order to stabilize
the variance ofdJ−2

1 around2j−J = 2J−2−J = 1/4, we divide

dJ−2
1 by 2 times its sd. We have2

`

Var(dJ−2
1 )

´1/2
= σ1 =

h1/2(ρ1) as before, and we estimateρ1 locally by sJ−2
1 , which

yields an approximately variance-stabilized coefficientfJ−2
1 =

dJ−2
1 /h1/2

`

sJ−2
1

´

. Asymptotic Gaussianity and variance stabili-
zation of random variables of a form similar tof j

k were studied by
Fisz (1955): hence we labelf j

k the Fisz coefficientsof X, and the
whole procedure — theHaar-Fisz transformof X.

We now give the general algorithm for the Haar-Fisz transform
when the functionh is known.

1. LetsJ
i = Xi.

2. For eachj = J − 1, J − 2, . . . , 0, recursively form vectorssj

andf
j :

sj
k =

sj+1
2k−1 + sj+1

2k

2
; f j

k =
sj+1
2k−1 − sj+1

2k

2h1/2
`

sj
k

´ , k = 1, . . . , 2j .
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3. For eachj = 0, 1, . . . , J − 1, recursively modifysj+1:

sj+1
2k−1 = sj

k + f j
k ; sj+1

2k = sj
k − f j

k , k = 1, . . . , 2j .

4. SetY = s
J .

The relationY = Fh X defines a nonlinear, invertible operatorFh

which we callthe Haar-Fisz transform (ofX) with link functionh.
In practiceh is often unknown and needs to be estimated. Since

σ2
i = h(ρi), ideally we would wish to estimateh by computing

the empirical variances ofX1, X2, . . . at pointsρ1, ρ2, . . ., respec-
tively, and then smoothing the observations to obtain an estimate of
h. Suppose for the time being that theρi’s are known and, as an illu-
strative example, considerρi = ρi+1. The empirical variance ofXi

can be pre-estimated, for example, asσ̂2
i = (Xi − Xi+1)

2/2. Note
that on any piecewise constant stretch, our pre-estimate isexactly
unbiased. The above discussion motivates the following regression
setup:

σ̂2
i = h(ρi) + εi,

whereεi = σ̂2
i − σ2

i = (Xi −Xi+1)
2/2− σ2

i and “in most cases”
E(εi) = 0. Of course, in practice, theρi’s are not known and,
since we pre-estimate the variance ofXi usingXi andXi+1, it also
makes sense to pre-estimateρi by ρ̂i = (Xi + Xi+1)/2. Note that
for eachk = 1, . . . , 2J−1, we haveρ̂2k−1 = sJ−1

k and σ̂2
2k−1 =

2(dJ−1
k )2, which leads to our final regression setup

2(dJ−1
k )2 = h(sJ−1

k ) + εk. (6)

In other words, we estimateh from the finest-scale Haar smooth and
detail coefficients of(Xi)

n
i=1, where the smooth coefficients serve

as pre-estimates ofρi and the squared detail coefficients serve as
pre-estimates ofσ2

i .
As we restricth to be a non-decreasing function ofρ, we choose

to estimate it from the regression problem (6) via least-squares
isotone regression, using the “pool-adjacent-violators”algorithm
described in detail in Johnstone and Silverman (2005), Section 6.3.
The resulting estimate, denoted here byĥ, is a non-decreasing,
piecewise constant function ofρ.

The DDHFT is performed as above except thatĥ replacesh.
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