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1. Introduction

Loosely speaking, a stationary time series is one whose statistical properties remain constant over
time, whereas the statistical properties oflocally stationary (LS) time series change slowly over
time. As a consequence, LS series can appear stationary whenexamined close up, but appear non-
stationary when examined on a larger scale. Priestley (1983) and Nason and von Sachs (1999)
review locally stationary (LS) time series.

Recently, Dahlhaus and Polonik (2006) introduced a generalinfinite order time-varying moving
average (MA) representation for LS processes:

Xt,n =

∞
∑

r=−∞

at,n(r)ǫt−r , (1)

whereǫi are assumed to be i.i.d. with zero mean and unit variance, where the{at,n} sequence
satisfies a number of technical conditions, see also Dahlhaus and Polonik (2009), andt = 1, . . . , T .
The LS processes introduced by Dahlhaus (1997), referred tobelow as locally stationary Fourier
(LSF) processes, and the LS wavelet (LSW) processes of Nasonet al. (2000) (NvSK) are examples
of infinite order time-varying MA processes.

The (second-order) statistical content of many kinds of LS time series is quantified by a time-
varying spectrum. For example, the LS processes of Dahlhausand Polonik (2006) and LSF pro-
cesses have a spectrum denoted byf(z, λ), wherez is time andλ is frequency. LSW processes
have a spectrum denoted bySj(z), wherez is time andj indicates scale or frequency band. Here,
we denote the generic time-varying spectrum byp(t, ν). Heret is time andν is another parameter,
or set of parameters. For LSF processesp(t, ν) = f(t, ν) andν would be the usual frequency
ν ∈ (−π, π). For LSW processesp(t, ν) = Sν(t), whereν = j ∈ N would be the usual scale
index. For stationary processes the spectrump(t, ν) = p(ν) does not depend on time. So far, we are
not prescriptive about the domain of the indicest, ν, as these are prescribed according to the precise
modelling context. For example, in the LSW and LSF cases above, the timez ∈ (0, 1) is rescaled
time z = t/T , for the oscillatory processes of Priestley (1983) time could be anyt ∈ R. (In the
following we usez andt interchangeably).

What is common to all these models is that when the (potentially) time-varying spectrum,
p(t, ν), is a constant function oft then, and only then, is the process second-order stationary. For
brevity, we henceforth assume stationary means second-order stationary.
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2. Costationarity

2.1. Introduction
The main question we pose here is: given two LS time series,Xt, Yt is it possible to find a linear
combination,Zt = αXt+βYt, such thatZt is stationary, whereα, β are deterministic? (Obviously,
if Xt or Yt are stationary then the problem is trivial.) Practically, it turns out that this concept is too
restrictive because the statistical evolution ofXt, Yt is such that, for real data, there is usually no
constant(α, β) for whichZt is stationary. Consequently, we seek deterministictime-varyinglinear
combinations which result inZt being stationary. This leads us to the following definition:

DEFINITION 1. Let{Xt}, {Yt} be LS with time-varying spectrapX(t, ν), pY (t, ν) of bounded
variation respectively. Then{Xt} and{Yt} are said to becostationaryif there exist deterministic
complexity constrained sequences (with constraintC) (αt, βt) such that

Zt = αtXt + βtYt, (2)

where{Zt} is a stationary process. The(αt, βt) sequences are called costationary vectors.

REMARK 1. Definition 1 refers to(αt, βt) as being complexity constrained with constraintC.
The reason for the constraint is that givenanyobserved time seriesXt andYt, you can choose any
stationary processZt and any deterministicαt you like, then just defineβt = (Zt − αtXt)/Yt
(assume wlogYt 6= 0). In other words, costationarity can always be made to ‘work’ in purely
formulaic terms with no constraint on the(αt, βt), but those solutions might be pathological and
not interpretable.

On the other hand, the most interpretable solutions would beαt = α, βt = β, but, as indi-
cated just above Definition 1, the constancy of theα, β here is too restrictive. Hence, we look for
(αt, βt) that are, in some sense, ‘the least complex but still achievecostationarity’. In practice,
there are various ways in which we can achieve this. We might constrain(αt, βt) to be samples
from a smooth function with smoothness constraint, e.g. integrated squared second derivative,C,
as in Section 4.2. Alternatively, we might constrain(αt, βt) to be piecewise constant functions and
impose an upper limit,C, on the number of breaks for both functions. Below, in Section 4.1, we
admit piecewise constant functions with breaks laid out on adyadic grid andC controls the fineness
of grid. However, the precise choice is up to the user and influenced by the particular characteristics
of the problem at hand.

The complexity of the resultant solutions(αt, βt) is an indicator of the character of the rela-
tionship betweenXt andYt. A low complexity solution indicates that the two time series have
“universal” relationship spread widely over time, a high complexity solution (whereαt, βt have to
vary a lot to achieve costationarity) indicates a more frequently changing relationship.

Finally, the particular costationary solution mentioned above is not unique becauseφZt is sta-
tionary if Zt is stationary andφ is a constant, and hence(φαt, φβt) would also be a costationary
solution. We shall say more on more non-trivial forms of uniqueness in Section 3.1.

REMARK 2. In someapplications, for example the wind power application in Section 4.2, it can
be useful to find(αt, βt) that makeZt closerto stationary than either of the originalXt, Yt series,
althoughZt itself mightnot bestationary. Some of the mathematical conditions on the parameters
of the systems will implicitly be tightened up for specific examples later. However, the definition
is concrete and can be deployed: either theoretically, withmathematically defined LS processes
and measure of stationarity as in Examples 3 and 4, or practically, with real data and a statistical
hypothesis test of stationarity as in Section 4. The next section motivates the costationarity concept,
provides more explanation and gives some examples.



Costationarity of locally stationary time series 3

2.2. Motivation, elaboration and examples
There are four main reasons why discovering costationarityis important: (i) learning/discovery of
any costationary relationship itself, (ii) estimating thestrength of any such relationship, (iii) us-
ing the derived stationary series, in some applications in preference to either of the original series
and (iv) using the relationship to learn aboutXt from data onYt or vice versa. For the last point,
rearranging (2) yieldsXt = α−1

t (Zt − βtYt). Later, we present two applications, portfolio selec-
tion in finance and wind energy volatility mitigation, whichboth show examples of how it can be
advantageous to use the stationary derived series,Zt, in preference to the original seriesXt or Yt.

Additionally, costationary relationships induce an “error-” or “variance-correction” formula
which can give further valuable information on the nature ofthe relationship between the series,
more details are given in Section 2.3.

REMARK 3. To find costationarity, given arbitrary LSXt andYt, one could adopt a model-
independent approach to search for costationary vectors byapplying the covariance operator toZt

in (2) yielding

γZ(τ) = cov(Zt, Zt+τ ) = cov(αtXt + βtYt, αt+τXt+τ + βt+τYt+τ ), (3)

for all t, τ , whereγZ(τ) is the autocovariance function of some unknown stationary process. Even
if Zt were knowna priori, solving this large set of nonlinear simultaneous equations for suitable
(αt, βt) would be difficult both analytically or numerically. The actual situation is even more tricky
sinceZt is, in general, unknown. Hence, we do not pursue this avenue further here. Our approach
is via models, e.g. LSF, LSW and their associated spectral quantities which turns out to be compu-
tationally feasible as described next.

REMARK 4. Our overall approach evaluates whether the spectrum ofZt, pZ(t, ν), is a constant
function of time for agivenset of vectors(αt, βt). If it is, thenXt andYt are costationary. Given
actual data realizations ofXt, Yt for t = 1, . . . , T we adopt a ‘projection pursuit’ approach to dis-
covering flat combination spectra. Our method is fully described in Section 3, but see Friedman and
Tukey (1974), Jones and Sibson (1987) or Nason (2001) for general projection pursuit references.
Our “projection index” measures the stationarity ofZt, via the constancy of its spectrum,pZ(t, ν),
and we optimize the index over the vectors(αt, βt) using numerical methods. As with projection
pursuit, our method shares the advantage of overcoming a “curse of dimensionality” in that rather
than solve the multiple nonlinear sets of simultaneous equations mentioned in Remark 3, assess-
ment of the stationarity ofZt is always a univariate problem irrespective of the number ofLS time
series one wishes to interrogate for costationarity. To emphasize, we could extend the concept in
Definition 1 to more than one time series and the statistical problem would still be evaluation of the
time-constancy, or not, of the single univariate spectrumpZ(t, ν). Hence, finding the solution might
be more computationally intensive, but not conceptually more difficult.

Given analytical process specifications forXt andYt, as in the examples below, one can inves-
tigate theoretically whether a costationary solution exists, or failing that, investigate the problem
using numerical methods. Again, the problem of searching for a flat spectrum is considerably easier
than solving the multiple nonlinear equations mentioned above.

REMARK 5. Costationarity is analogous to and inspired by, but not the same as, the cointegra-
tion of Engle and Granger (1987), where a linear combinationof integrated series is sought that
makes the combination stationary. These works fall into thegeneral category ofcomovements,
neatly summarized by Croux et al. (2001) who also summarize the key works at that time, En-
gle and Granger, the codependence of Gourieroux and Peaucelle (1992) and the common features
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of Engle and Kozicki (1993). A recent review of common features can be found in Urga (2007).
Other related works are cointegration relationships with structural breaks, a form of change, see, for
example, Johansen et al. (2000).

One difference between cointegration and costationarity,as formulated here, is that cointegrating
vectors are, classically, constant functions of time. However, Bierens and Martins (2010) have
recently extended cointegration to include time-varying cointegrating vectors where, as here, such
vectors have to be complexity penalized in some way. Anothermajor difference between the two is
that cointegration is concerned with first-order nonstationarity whereas costationarity is concerned
with second-order.

We briefly recall the definitions of LSF and LSW processes to provide some context for the co-
stationary examples that follow. However, costationarityworks for wider classes of processes that
have time-varying spectrump(t, ν) and “p(t, ν) constant int iff stationary”. Recall also the defini-
tion of rescaled timez = t/T . We conjecture that costationarity could also be made to work in the
context of a whole host of other non-stationary time series models, for example, piecewise station-
ary GARCH models, see Andreou and Ghysels (2002) or Davis et al. (2008), time-varying ARCH
models, see Dahlhaus and Subba Rao (2006), Dahlhaus and Subba Rao (2007), Granger (2008),
Markov-switching models, see Hamilton and Raj (2002), time-varying Hurst exponent models, see
Grech and Mazur (2004) and references therein. The relations of any of these models to LSW/LSF
is unclear and requires further research.

EXAMPLE 1. (LSF processes)A (zero mean) LSF process,{Xt,T}, with spectrumf(z, λ), is a
triangular array of stochastic processes with the following representation:

Xt,T =

∫ π

−π

At,T (λ) exp(iλt)dξ(λ), (4)

for t = 1, . . . , T > 0, whereξ(λ) is an orthonormal increments process, and where there exists
a functionA(z, λ) such thatAt,T (λ) ≈ A(t/T, λ) and |A(z, λ)|2 ≈ f(z, λ) = p(t, ν). Local
stationarity ofXt,T is achieved by (total variation) constraints uponA(z, λ), see Dahlhaus and
Polonik (2006). For further details see Dahlhaus (1997), Van Bellegem and Dahlhaus (2006). In this
model the time-varying autocovariance,c(z, τ) =

∫ π

−π
f(z, λ) exp(iλτ) dλ, see Dahlhaus (1996)

formula (1.5). The local variance ofXt,T is vX(z) = c(z, 0) =
∫ π

−π f(z, λ) dλ.

EXAMPLE 2. (LSW processes)A LSW process,{Xt,T }, with spectrum{Sj(z)}
∞

j=1, is a trian-
gular array of stochastic processes that admit the following representation

Xt,T =

∞
∑

j=1

∞
∑

k=−∞

wj,k;Tψj,k−tξj,k, (5)

for t = 1, . . . , T , where{ξj,k} are a collection of uncorrelated random variables (‘innovations’)
with mean 0 and variance 1, the{ψj,t} are a set of discrete nondecimated wavelets (compactly sup-
ported oscillatory vectors with support proportional to2j), and{wj,k;T } a collection of amplitudes
that are ‘smooth’ in a particular way as a function ofk. The smoothness ofwj,k;T controls the
degree of local stationarity ofXt,T . The spectrum is linked to the process byw2

j,k;T ≈ Sj(k/T ) =
p(k(t), j). A full definition of LSW processes, and comparison with LSF processes, can be found in
NvSK. Further explanation, including wavelets, can be found in Nason (2008). Jumps in the spec-
trum are permitted by the generalized extension developed by Van Bellegem and von Sachs (2008)
by extendingS = p to functions of bounded variation. We adopt this here.
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For LSW the time-varying autocovariancec(z, τ) =
∑

∞

j=1 Sj(z)Ψj(τ), whereΨj(τ) is the
autocorrelation function ofψj,t, see NvSK formula (14). The local variance ofXt,T is vX(z) =
c(z, 0) =

∑

∞

j=1 Sj(z), asΨj(0) = 1 for all j due to the wavelet orthonormality.

We now give two examples of costationarity.

EXAMPLE 3. (Uncorrelated LSW)Let Xt, Yt be two uncorrelated LSW processes with spec-
tra pX(z, 1) = SX

1 (z) = cos2(z) andpY (z, 1) = SY
1 (z) = sin2(z) for z ∈ (0, 1), all other

pX(z, j), pY (z, j) = 0 for z ∈ (0, 1) andj > 1. Then,Xt andYt are costationary as the spectrum
ofXt + Yt is exactly 1 forz ∈ (0, 1). The costationary vectors areαt = βt = 1.

EXAMPLE 4. (TVAR/TVARMA)LetXt be a TVAR(1) process with time-varying AR parameter
of a1(z), z ∈ (0, 1) and constant variance parameterσ2. From Dahlhaus (1997)Xt is LSF with

spectrum given bypX(t, ν) = fX(z, λ) = σ2π−1
∣

∣1 + a1(z)e
iλ
∣

∣

−2
for z ∈ (0, 1) andλ ∈ (−π, π).

LetYt be a TVARMA(1, 1) process with spectrumpY (t, ν) = fY (z, λ) = π−1G2(z, λ)
∣

∣1 + a1(z)e
iλ
∣

∣

2

where
G2(z, λ) = σ2

1

{

(1 + a21(z))− σ2σ−2
1 + 2a1(z) cos(λ)

}

, (6)

with σ2
1 large enough (as specified in the proof). ThenXt + Yt is second-order stationary with

spectrumσ2
1/π, henceXt andYt are costationary with costationary vectorsαt = 1, βt = 1. See

Appendix B for more details.

More generally, this article is written with “model-independent” concepts in mind. We refer to
generic time-varying autocovariances and spectra. However, later, when it comes to estimation we
choose particular estimators that are often derived from model-based formulae. For the ones we
use, the estimators are asymptotically unbiased for the “model-independent” quantities and possess
other attractive statistical properties. Of course, otherestimators could be used.

2.3. Cross-covariance and error-correction formulae
SupposeXt andYt are costationary. Take the variance of the general linear combination (2) to
obtain:

σ2
Z = α2

t vX(t) + β2
t vY (t) + 2αtβtcov(Xt, Yt). (7)

whereσ2
Z = var(Zt) is well-defined and constant since{Zt} is stationary, and wherevX(t) =

var(Xt) andvY (t) = var(Yt) are the usual time-varying variances mentioned in Examples1 and 2.
Given data it is easy to estimateσ2

Z by standard methods and the local variances,vX(t), vY (t), can
be estimated by integrating overν an estimate of the time-varying spectra,pX(t, ν) andpY (t, ν)
respectively, again as mentioned in Examples 1 and 2.

In classical cointegration theory there is a strong connection between cointegration and error-
correction models, see Engle and Granger (1987) for example. Roughly speaking, cointegrated
series are constrained so that their cointegrated linear combination remains stationary even in re-
sponse to shocks, say, on one of the series. The other series has to “respond” to maintain stationarity.

To understand error-correction in our setup see that equation (7) becomes

σ2
Z = α2

[zT ]vX(z) + β2
[zT ]vY (z) + 2α[zT ]β[zT ]γXY (z, 0), (8)

wheret = [zT ] and[x] denotes the greatest integer≤ x. Now letz2 = z + δz, whereδz is small,
and use the costationary argument again to write:

σ2
Z = α2

[z2T ]vX(z + δz) + β2
[z2T ]vY (z + δz) + 2α[z2T ]β[z2T ]γXY (z + δz, 0). (9)
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From Remark 1 recall thatαt andβt are slowly varying. Hence, assume thatα[z2T ] ≈ α[zT ] = α
and similarly forβt. In the practical example in Section 4.1 the approximation is indeed equality as
we use piecewise constant functions (assuming no jump at this location).

For the remainder of this section, let us further assume thatvX , vY andγXY (z, 0) are differen-
tiable. Now subtract (8) from (9), divide byδz and letδz → 0. We have

0 = α2v′X(z) + β2v′Y (z) + 2αβγ′XY (z, 0). (10)

Writing r = α/β and rearranging (10) gives us our ‘variance correction’ formula:

v′Y (z) = −r2v′X(z)− 2rγ′XY (z, 0). (11)

The formula speaks for itself and can be interpreted in numerous useful ways. For example: since
r2 > 0 any increase in the variance ofX must be matched by andecreasein the variance ofY to
maintain costationarity, assumingγXY (z, 0) remains unchanged.

REMARK 6. Further interesting relations can be derived for costationary series. For example,
drop the subscript[zT ] in equation (8) for brevity, but rememberα, β are still local, and then rear-
range using the fact that variance is non-negative to obtainthe following bounds

γXY (z, 0)

{

≤
≥

}

σ2
Z

2αβ

{

if αβ > 0
if αβ < 0.

(12)

The bound for the conditionαβ < 0 implies that the correlation betweenXt andYt is bounded
below (by a negative number) and bounded above (by a positivenumber) ifαβ > 0. Intuitively
this makes sense. The bound implies that ifα andβ are of the same sign (αβ > 0), thenXt, Yt
cannot becometoo positively correlated as they will ‘tend towards the same process’, in second-
order terms. This would result in a contradiction, because if Xt, Yt were the same LS process then
combinationZt would be LS and not stationary.

REMARK 7. Under costationary one can estimatecov(Xt, Yt) by solving for it in (7) using
the usual estimates ofσ2

Z , vX(z) andvY (z), but we do not pursue this further here as it can be
computed/estimated directly: for example, for LSF processes direct estimates can be obtained from
the cross-spectral estimates, see Dahlhaus (2000), for LSWprocesses, see Sanderson et al. (2010).

3. Discovering costationarity in practice

3.1. General algorithm
Suppose we have two LS series{Xt, Yt}

T
t=1. As indicated in Section 1 we adopt a pragmatic,

computational, “project-pursuit” approach to discovering possible(αt, βt) combinations that cause
{Zt} to be stationary. Examples 3 and 4 show that costationary is theoretically possible and there the
spectrum,pZ(t, ν), of the combined series is mathematically constant as a function of t. In practice,
we form actual combinations of the series and then evaluate aspectral estimateof the combinations
which are subject to estimation and sampling error. We then statistically assess whether a spec-
tral estimate of a combination is constant or not as a function of time. Our precise definition of
constancy,T , is given in Section 3.2.

Another important point is that costationary solutions fortwo processes{Xt, Yt} need not be
unique (in a mathematical sense). On top of this, when dealing with realizations, the costationary
solutions need not be unique as minor perturbations in the solution might not change the practical
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statisticalassessment of the stationarity ofZt. Hence, as in projection pursuit, we are interested
in discoveringanypotential costationary solutions that might be of interest. Typically, to try and
find costationary solutions we run the algorithm many times from different starting points. A later
step examines all found solutions and tries to find the set of interesting solutions that differ by more
than small numerical amounts. This is achieved by methods ofmultivariate analysis where all the
solution vectors are treated as standard multivariate vectors and then multidimensional scaling or
hierarchical cluster analysis is used to find classes of ‘like’ solutions.

Given realizations of(Xt, Yt) for t = 1, . . . , T , the algorithm to compute the constancy of the
spectral estimate is as follows:

(1) Given input vectors(αt, βt) for t = 1, . . . , T .

(2) Form the combinationZt = αtXt + βtYt for t = 1, . . . , T .

(3) Compute the spectral estimatep̂Z(t, ν) = p̂α,β(t, ν) on{Zt}
T
t=1.

(4) Compute the constancy of the spectral estimate usingT (p̂α,β).

Theα, β subscripts are used to denote that the spectral estimate depends on the combination vectors
(αt, βt). We now define the complete costationarity discovery algorithm.

Costat: Given starting vectors(αt, βt) proceed with the penalised numerical minimization of
the quantityT (p̂α,β) over the vectors(αt, βt) with a smoothness/complexity penalty on(αt, βt) as
discussed in Remark 1. Then, after the minimization algorithm has finished, resulting in ‘optimal’
combination vectors(α∗

t , β
∗

t ), we then apply a statistical test of stationarity toZt via the final
spectral estimatepα∗,β∗(t, ν). If the processZt is deemed stationary then the processes(Xt, Yt)
are deemed to be costationary with costationary vectors(α∗

t , β
∗

t ).

For implementation there are six aspects of theCostat that need to be specified: the choice of
the starting vectors, the type of spectral estimate, the penalty, the numerical minimizer, the measure
of constancy, and the test of stationarity. Appendix A provides implementation details about the
first four, the next two sections provide more details about the last two.

3.2. Measure of constancy
Our measure of constancy is a metric that quantifies the variation of the spectrump(z, ν) as a
function ofz = t/T . Specifically,

T (p) = K−1

∫ ∫ 1

0

{p(z, ν)− p̄(ν)}2dzdν, (13)

whereK =
∫

dν andp̄(ν) =
∫ 1

0 p(z, ν) dz. It is clear that ifp(z, ν) is a constant function ofz then
the metricT = 0. Also, if the underlying process is not stationary thenT (p) ≥ 0 with increasing
T for “increasingly nonstationary” processes asT is just theL2 metric. Clearly, other topologically
equivalent metrics could be used just as well. In practice, conditions are imposed to preventT (p)
being affected by changes in overall value ofp as is typical in projection pursuit.

EXAMPLE 5. (LSF processes)We could useT {f(z, λ)} =
∫ π

−π

∫ 1

0 {f(z, λ)− f̄(λ)}2dzdλ.

EXAMPLE 6. (LSW processes)LetJ = logT . We could useT {Sj(z)} = J−1
∑J

j=1

∫ 1

0 {Sj(z)−

S̄j}
2dz.

It is possible to detect constancy in the time-varying autocovariance instead.
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3.3. Our test and bootstrap assessment of significance
An early test of stationarity is described Priestley and Subba Rao (1969) which applies a two-factor
ANOVA test to the log of their evolutionary spectrum. Ahamada and Boutahar (2002) derive the
exact distribution of a similar test statistic and apply it to the analysis of Euro/US dollar exchange
rate. von Sachs and Neumann (2000) introduced a stationarity test based on the “segmented peri-
odogram” (an estimate of the periodogram based on the segmentXK , . . . , XL) which estimates the
evolutionary spectrum,f(z, λ). They then apply a two-dimensional wavelet transform whichsimul-
taneously smoothes across frequency (father wavelets) andidentifies inhomogeneities using mother
wavelets. Other recent stationarity tests are Stărică and Granger (2005) and Paparoditis (2009) that
measure the difference between a periodogram and model spectrum on intervals.

The typical stationarity test null hypothesis is:

H0 : p(z, ν) is a constant function ofz for all ν (14)

versus
HA : p(z, ν) is not constant function ofz for someν. (15)

The statisticalassessmentscarried out in this paper assume Gaussian innovations enabling us to
use the parametric bootstrap, see, e.g. (Davison and Hinkley, 1997, 4.2.3). However, it should be
emphasized that (i) all the concepts up to this point do not rely on this assumption (ii) it would be
perfectly possible to substitute other assessments that donot rely on the Gaussianity assumption.
However, the Gaussian assumption is not an unusual one to make and much used for classical sta-
tionary theory, e.g. Priestley (1983) (Chapters 5 and 6). Even with Gaussian innovations both LSW
and LSF processes are more general and flexible than they might first appear. This is because the
processes are time-varying combinations of Gaussians and hence fat or slim tails could be modelled.
We are currently investigating extension of the bootstrap to a more general distributional situation.

Our test uses the test statisticT defined in (13). For the fixed sample size, for testing purposes,
the spectrum{p(ν)}ν completely specifies the distribution of the time seriesZt under the null
hypothesis. Thus, we can use a parametric Monte Carlo test toassess the significance ofT on the
sample by usingB bootstrap simulations as follows

Bootstat:

(a) EvaluateT as in (13) on the actual data sample, call this valueT (1).

(b) Computēp(ν) for all ν, from the sample, as defined just after (13). This is just the classical
spectral estimate which assumes the data are stationary.

(c) Repeat fori in 2 toB

(i) SimulateZt from the appropriatestationarymodel with squared amplitudes given by
p̄(ν) using Gaussian innovations.

(ii) ComputeT as in (13) on the simulated data, call this valueT (i).

(d) Define thep-value of the test byp = {Number ofT (i) > T (1)}/B.

Heuristically the test evaluates how unlikely is the value of T computed on the real data com-
pared to other ‘likely’ values ofT computed on stationary realizations ofZt having a similar con-
stant spectrum to the actualZt. Empirically, we have found, with series of the lengths in this paper,
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settingB ≥ 200 to be adequate, but further work would be necessary to investigate the performance
and satisfactory values ofB.

The bootstrap procedure requires (statistically) consistent estimation of the spectral parameters
to work, Davison (2008). Results for consistency of spectral estimation in the LSF and LSW con-
texts can be found in von Sachs and Schneider (1996) and Fryzlewicz and Nason (2006) respectively.
Appendix C gives more details on the actual estimator we use and establishes its consistency.

Process simulation in step (c-i) ofBootstat is achieved by either:(LSF processes)the elegant
‘circulant embedding’ method as described by Percival and Constantine (2006) which simulates a
stationary time series given a (consistent) non-parametric spectral density estimate or(LSW pro-
cesses)the constructive formula given by (5) using the fast average-basis ‘inverse’ non-decimated
wavelet transform, see Coifman and Donoho (1995).

Section 5 describes a simulation study that demonstrates good empirical size and power of some
of our tests under both stationary and LS conditions.

4. Examples

Up to now this article has proposed a new set of statistical methods and, naturally, there needs to be
a continuing debate over the precise specifics: over the testof stationarity, the measure of constancy,
the nature of the costationary vectors, and so on. However, here we present two examples: asset
allocation in finance and intermittency mitigation in wind energy generation. In both cases our
methods generate combination series,Zt, that are shown to be useful by independent measures,
generally accepted in their respective literature.

4.1. Costationary asset allocation
The aim of modern capital market theory is to provide a framework to explain how individuals
decide to allocate their wealth. The capital asset pricing model (CAPM) of Sharpe (1964), Lint-
ner (1965) and Mossin (1966) has historically been considered the benchmark approach for a long
time. According to this, investment decisions were taken bymeans of the Markowitz (1952) mean-
variance criterion. Although this approach is still widelyused, several criticisms have been raised,
both on the theoretical specification of this model and the empirical validation of related studies.
The CAPM is a static, single-period, model although it has often been spuriously treated as if it
holds over time (intertemporally), both for the validity ofits results and the information provided as
model input. As an example of the latter, the mean-variance approach is used for portfolio selection
even when asset returns are modeled with time-varying conditional statistical properties, e.g. using
univariate or multivariate GARCH processes such as in Ledoit et al. (2003). Fama (1970) justified
an intertemporal use of CAPM, by showing that, if preferences and future investment opportunities
are time-invariant, then intertemporal portfolio selection can be treated as a static portfolio maxi-
mization. Merton (1971) showed that portfolio selection from an intertemporal maximizer behaves
very differently when preferences and investment opportunities change over time. We use costa-
tionary solutions in such a way that links the intertemporalasset allocation to the static CAPM: this
kind of optimization is missing in the single period approach.

The Markowitz (1952) mean-variance portfolio (MVP) theorytakes a set ofn assets,i =
1, . . . , n, uses the expected future rate of return, and the covariancestructure of the assets (returns),
to select the optimal set of weights{wi}

n
i=1 that minimizes the risk for an acceptable expected

rate of return. Following recent compelling thinking, e.g., Stărică and Granger (2005), we assume
that the assets are LS. For the purposes of this example, we take pairs of asset returns over time,
apply our costationary methodology to those pairs and seek sets of costationary solutions. In this
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Fig. 1. Dow Jones Commodities (DJC) and NASDAQ Financials (IXF) indices log-returns.

example we choose our combination vectors to be piecewise constant. Our end point is a set of
synthetic assets each containing two assets in different proportions over time. The key point is that,
because of costationarity, the returns associated with each synthetic asset are stationary (or at least
very close to stationarity). Hence, the covariance structure of the synthetic asset can be extremely
well-estimated because the estimation is based on thewhole lengthof the data series. Compare this
to the vector GARCH model which bases the optimization on theconditional quantities computed
at each portfolio rebalancing point.

We remarked earlier that, for a given set of time series, there might be more than one costationary
solution. The other innovation we propose is permitting theuse of more than one costationary
solution in a portfolio that arises from the same pair of assets.

For example, Figure 1 shows a pair of stock index log returns from the Dow Jones Commodities
and NASDAQ Financials indices. As described below we use 20 subsamples of size 512, rolling
forward each time by five days ahead. The first sample started at 1st December 2006 and end 17th
December 2008. The dates of the next 19 samples are obtained by rolling the trading dates (without
weekends and holidays) by five days. Both series are assessedas being highly non-stationary with
small p-valuesp < 0.001 arising from ourBootstat test. We form three kinds of portfolios
using the stock data. For each rolling window we (i) use the classic MVP portfolio selection,
(ii) refit a constant conditional correlation multivariateVECH GARCH(1,1) model with BEKK,
see Bollerslev et al. (1988); Bollerslev (1990) and Engle and Kroner (1995). This is followed
by repeated application of the single-period MVP portfolioselection considering a single budget
constraint and setting the risk appetite parameter equal to1, see Best and Grauer (1991). Careful
attention was paid to check the adequacy of model fit. Our method, (iii), form between 4 and 8
costationary synthetic asset solutions, followed by MVP toselect the overall portfolio mix. These
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Fig. 2. Sharpe ratios for MV Costationary portfolio (solid line), MV Garch portfolio (dashed line) and
class MV portfolios (dotted line). Higher ratios mean better performance of the portfolio.

analyses were applied to consecutive subsets of length 512 trading days with a rolling window
stepping ahead five days a total of 20 times.

We compare the outcome of the three portfolio selection methods by means of Sharpe (1966)
ratios which are a commonly used measure of how well an asset return compensates an investor for
the given amount of risk. (Letr be the asset return,rb the return on a benchmark asset andσ the
standard deviation or volatility of an asset. Then the Sharpe ratio is(r − rb)/σ and is a reward per
risk ratio. We use this ratio for comparative purposes, so wesetrb = 0. Clearly, investors like assets
that reward well with little risk and hence have a large Sharpe ratio. Of course, it is vital to remember
that the Sharpe ratio is one, very blunt, tool in the investors’ bag). Figure 2 shows the series of 20
Sharpe ratios for the period 2007–8 over the 20 week rolling window. The figure shows that the
costationary portfolio performs much better than the GARCH-based method, which is itself a little
better than the classic method. Indeed, the GARCH and classic methods return negative Sharpe
ratios which indicate that they are not better than risklessasset that the portfolios are being compared
to (possibly because the market experienced severe downward pressure during this period). We have
conducted similar analyses on other assets during earlier time periods where the Sharpe ratios of
GARCH and classic methods are positive, but again not as large as the costationary portfolio. It is
clear from these examples that costationary portfolio selection has a great deal of potential, and, as
a method, is fundamentally different from existing methods. The synthetic costationary asset idea
begs further investigation both theoretically and practically. For example, extension to include more
than two assets at a time.

We calculated Sharpe ratios on the same rolling windows for all the three approaches that we
compared. For the GARCH and classical approaches the portfolio means and variances were cal-
culated based on the actual assets. For costationary portfolios, these are calculated on costationary
solutionsZt, that we use here as factors. These factors are not completely independent. In fact, we
estimate their covariance matrix, which is not diagonal. Using this matrix we then calculate the port-
folio variance. Although we are using multiple solutions, there is no dependence (in a mathematical
sense) and the covariance matrix is not singular either. There is no surprise in having negative
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Sharpe ratios for both the classical and GARCH approaches. We have selected the dataset to ac-
count for a down-market tendency. In the costationary approach, ratios are calculated on stationary
quantities derived from the time-varying asset combinations, obtaining positive portfolio means. In
this case we typically use more than four costationary solutions, obtaining a more flexible portfolio
specification than the direct two-assets models.

4.2. Mitigating wind power intermittency
Wind is a key renewable energy source that has great potential by providing a partial alternative to
fossil fuel carbon emissions, does not require fuel in the conventional sense and enhances energy
security by both domestic siting and enhancing supply diversity. However, wind energy suffers from
two main drawbacks: (i) it is hard to predict, intermittent and volatile and hence cannot always
produce a reliable supply even in the face of constant demandand (ii) it is not controllable and
hence cannot respond to changes in demand, see Hirst (2002),Lewis (2008) or Skea et al. (2008).
Wind intermittency is a real cost as generators have to establish conventional generation that can be
started or stopped at short notice, such as that provided by the UK National Grid Fast Reserve or Hot
Standby contracts. Another interesting factor is that as wind energy market penetration increases, it
becomes increasingly likely that not all possible wind energy is taken, and some is dumped so as to
achieve stability and regulation in the system. For example, for 20% penetration it is estimated that
about 10% of wind power will be lost through this mechanism, see Holtinnen (2005).

The key to dealing with intermittency is ‘dumping’ and aggregation, Hirst (2002), Holtinnen
(2005). Aggregation can mean pooling wind energy from multiple turbines at a single site, or at
multiple sites across a geographical region with varying wind characteristics and possibly mixing
in other energy sources also. The goal is to provide a stable non-volatile energy source that is
more easily absorbed into the grid. Our new methods provide away of combining turbine energy
outputs to mitigate intermittency and reduce volatility. Of course, aggregation is just another kind
of portfolio: combining wind resources to increase return and decrease overall risk.

For example, consider the hourly wind speed time series measured at two Welsh Meteorological
Office stations: Aberporth and Valley, previously studied by Nason and Sapatinas (2002). Aberporth
is located approximately 120km south of Valley and they are mostly separated by Cardigan Bay.
Wind power is proportional the cube of the wind speed, see Lewis (2008), and hence we investigate
time-varying linear combinations of the cubed speed seriesthat minimize volatility. The cubed
series are shown as the grey series in the top row of Figure 3. TheBootstat test verifies the non-
stationary nature of the original speed and power series. Since we deal with genuine combinations
of physical quantities we constrainαt, βt to lie in [0, 1]. If αt < 1 then energy is being dumped
from sourceXt and similarly forβt, Yt. It is advisable to change proportions of power sources in a
smooth manner as power systems do not respond at all well to sudden changes. Hence, we enforce
smoothly changing proportions of each power series by usingthe following underlying Fourier
representation for the Fourier interpolant ofαt namely

α(t) = a0/2 +

∞
∑

n=1

an cos(nπt) +

∞
∑

n=1

bn sin(nπt), (16)

where the{an, bn} are the usual Fourier coefficients ofα(t), see Firth (1992). For complexity
penalization we have imposed a standard

∫

(α
′′

t )
2 dt roughness penalty, similarly forβt.

Figure 3 shows the results of one set of solutions that achieve stationarity. The wind power time
series themselves do not look as if they fit the typical LS models. For example, they do not have
zero mean. Hence, for these series, for stationarity assessment, we concentrate on the oscillations
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Fig. 3. Top row: wind power time series for Aberporth (left) and Valley (right) in grey, left axis. The
solid lines correspond to the final αt (left) and βt (right) identified by the costationary algorithm, right
axis. Bottom left: the ‘optimal’ combined series, Zt. Bottom right: proportion of total resource used.

above a fixed frequency (≈ 4.35× 10−6Hz, about 1 oscillation per 64 hours) by modifying the test
statistic in (13) to only take account of those higher frequencies and ignore the lower ones. This
makes practical sense as load balancing in a power grid is carried out on intra-hour and intra-day
timescales (the latter from daily forecasting), but not typically on weekly or monthly scales, see
Hirst (2002); Holtinnen (2005). In assessing the mid to highfrequencies the Aberporth and Valley
wind energy series are not stationary (p-value= 0.02) whereas the combined costationary series is
(p-value= 0.05). Indeed, with all other criteria of stationarity we tried the combined series is more
stationary than either of the individual series in that thep-value is higher. Hence, the variability in
the combined power profile is lower than in either of the two individual series.

At this point the reader might be wondering what we mean by onetime series being ‘more
stationary’ than another. In mathematical terms a time series is either stationary or it is not. What
we mean is that thep-value of the stationary hypothesis test, or indeed the teststatistic for constancy
over time can both be used to define an order relation so that (real data) seriesxt is ‘more stationary’
than seriesyt if the p-value of the stationary test forxt is greater than that ofyt.

The bottom right plot in Figure 3 shows the total proportion of energy taken from the combined
system. In practice, one would more tightly constrain the costationary vectors to reduce the amount
of dumping (e.g. around day 24 less than a quarter of the totalavailable energy is being utilized).
This could be achieved by constrainingαt, βt ≥ d for somed so that the proportion of power taken
from any one source would be greater thand. This might result inZt not being stationary, or rather
assessed as such, but it would be more stable than simple aggregation.
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Table 1. Empirical size (as percentage) of stationarity test based on LSW, T (Ŝ) and LSF,
T (f̂), test statistics for the following three models: S1=white noise, S2=AR(1) process and
S3=MA(15) process, see text for detailed model description.

Sample size Model,T (Ŝ) Model,T (f̂) Sample size Model,T (Ŝ) Model,T (f̂)
T S1 S2 S3 S1 S2 S3 T S1 S2 S3 S1 S2 S3
32 0 0 0 · · · 256 0 0 1 1 1 0
64 0 0 0 · · · 512 4 0 1 0 1 1

128 2 0 0 3 5 2 1024 1 0 3 1 2 4

5. Empirical assessment of our stationarity test (simulati ons)

5.1. Size assessment
We consider three stationary time series models described as follows. Model S1 setsXt ∼ i.i.d. N(0, 1).
Model S2 is an AR(1) model with AR parameterα = 0.9. Model S3 is a stationary LSW process
wherep(z, j) = Sj(z) = 1 for j = 1, 2, 3, 4 andp(z, j) = Sj(z) = 0 otherwise, which is just a
particular stationary MA(15) process, see NvSK. Table 1 displays empirical size results from each
of S1–S3, applying our stationarity test 100 times as described in Section 3.3 with anominalsize of
5% usingB = 200 bootstrap simulations. Table 1 shows reasonable empiricalsize results for both
LSW and LSF stationarity tests. (The LSF estimatep̂(λ) is based on a crude windowed Fourier
method which only works forT > 64).

5.2. Power assessment
We consider the following three non-stationary models. Model P1 samples from a concatenated
white noise model where the firstT/2 observations are i.i.d.N(0, 1) and the followingT/2 are
i.i.d. N(0, σ2). Clearly, this model is nonstationary but forσ2 ≈ 1 it is not easy to detect the
nonstationary nature. Model P2 samples from the LSW spectrum given byp(z, 1) = S1(z) = 1 for
z ∈ (0, 1/2] andp(z, 1) = S1(z) = σ2 for z ∈ (1/2, 1), otherSj are zero. Model P2’s spectrum
is piecewise constant with a jump increase in variability halfway through at the finest scale. Model
P3 samples from the LSW spectrum given byp(z, 1) = S1(z) = (1 + σ2) − 2σ2|z − 1/2| and
p(z, 2) = S2(z) = (1 + 4σ2)− 8σ2|z − 1/2| with all otherp(z, j) = Sj(z) = 0 all for z ∈ (0, 1).
Model P3’s spectrum is an example of a signal with ‘small’ variance at each end and a large variance
in the middle controlled byσ2. The empirical power results are shown in Tables 2 to 4. For all these
the degree of non-stationarity is controlled byσ2. If σ2 = 1 they all are stationary. Increasing
non-stationarity can be achieved by increasingσ2 and observing increasing power. Generally, for
small sample sizes the tests have low power even when the non-stationarity is reasonably large (e.g.
18% in Table 2 forT = 64 andσ = 2.4). Generally, for higher sample sizes the power is very good.

6. Combining locally stationary processes

Throughout this article we have assumed that time-varying linear combinations of particular LS
processes themselves are in the same class of processes. That this is true for LSF processes can be
established directly from the process definition in (4). Theverification for LSW processes is more
delicate because time-variation is achieved in LSW processes through the oscillatory basis function,
thet in ψj,k−t in (5), rather than through the amplitude,At(λ), in LSF processes.

If we confine ourselves to constant combination functionsαt = α andβt = β then it is easy to
see that the linear combinationZt in (2) is itself a LSW process if{Xt} and{Yt} are. The next two
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Table 2. Emp. power (%) for two tests for model P1. I=T (Ŝ)=wavelet, and II=T (f̂)=Fourier.

Sample size,T
σ 32 64 128 256 512 1024 σ 32 64 128 256 512 1024

↑ 1.5 0 1 14 52 91 100 2.1 0 13 59 99 100 100
I 1.7 0 7 27 84 99 100 2.3 2 16 68 100 100 100
↓ 1.9 0 9 45 90 100 100 2.4 2 18 72 100 100 100
↑ 1.5 · · 12 40 64 98 2.1 · · 38 96 100 100
II 1.7 · · 14 60 97 100 2.3 · · 47 99 100 100
↓ 1.9 · · 28 89 100 100 2.4 · · 63 98 100 100

Table 3. Empirical power (%) of test based on T (Ŝ) for model P2.
Sample size,T

σ 32 64 128 256 512 1024 σ 32 64 128 256 512 1024
1.5 1 6 9 11 23 49 2.1 3 8 16 49 84 98
1.7 1 6 10 24 53 81 2.3 3 9 19 58 91 100
1.9 1 6 12 35 70 97 2.4 3 11 19 61 94 100

theorems establish the result for more general combinationof LSW processes.
First, we give a name to a concept that links a sequence of values,at,T , to a function,a(z),

which appeared first in Dahlhaus (1997) and later in NvSK.

DEFINITION 2. Define aclose pair, (a(t), at,T ) with positive constantK, to be a function
a : [0, 1] → R and a sequenceat,T such that

∣

∣

∣

∣

at,T − a

(

t

T

)∣

∣

∣

∣

< KT−1. (17)

Next, we make clear an assumption that runs through our article:

ASSUMPTION1. Let{ξj,k} and{ηj,k} be the innovations sequences associated with two LSW
processes,Xt andYt. Throughout we assume that the two sequences arecross-orthogonal, that is
E(ξj,kηℓ,m) = ρj,kδj,ℓδk,m. This is the usual assumption made in stationary process theory, see
Priestley (1983) and also has been made for LS processes, seeSanderson et al. (2010).

To show thatZt = αtXt + βtYt is LSW, we first establish thatαtXt is LSW, and then that the
sum of two LSW processes is itself LSW.

THEOREM 1. Let {Xt,T }
T
t=1 be a LSW process with spectrumpX(z, j) = |Wj(z)|

2, discrete
nondecimated wavelets{ψj,k}, and innovations{ξj,k}, satisfying the conditions from Van Bellegem
and von Sachs (2008), page 1883, Definition 1. Leta : [0, 1] → R be a function of bounded total

Table 4. Empirical power (%) of test based on T (Ŝ) for model P3.
Sample size,T

σ 32 64 128 256 512 1024 σ 32 64 128 256 512 1024
1 0 2 4 13 37 84 6 3 7 26 65 100 100
2 0 3 10 28 74 99 7 4 7 26 68 100 100
3 2 6 16 47 90 100 8 4 7 27 71 100 100
4 2 6 21 54 96 100 9 4 7 28 73 100 100
5 2 7 23 61 99 100 9.5 4 7 29 74 100 100
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variation with constantR3, and let(a(t), at,T ) be a close pair with constantR2. Let the quantity
pY (z, j) = |a(z)|2pX(z, j) satisfy the LSW spectrum conditions from Van Bellegem and von Sachs
(2008) for allj = 1, 2, . . ..

Then the array of stochastic processesYt,T = at,TXt,T is a LSW process with spectrum given
bypY (z, j) for j = 1, 2, . . ..

The proof is in the appendix. Now we show that, under certain conditions, the sum of two LSW
processes is LSW.

THEOREM 2. Let

Xt,T =

∞
∑

j=1

∑

k

xj,kψj,k−tξj,k andYt,T =

∞
∑

j=1

∑

k

yj,kψj,k−tηj,k (18)

be LSW processes with evolutionary wavelet spectra (EWS)pX(z, j) andpY (z, j) respectively.
LetUt,T = Xt,T + Yt,T . From Assumption 1 let(ρj,k, Rj(z)) be a close pair, whereRj(z) is of

bounded total variation, thenUt,T is a LSW process with spectrum given bypX(z, j) + pY (z, j) +

2Rj(z) {pX(z, j)pY (z, j)}
1/2.

The proof is in the appendix. The quantityRj(z) for LSW processes was considered by Sander-
son et al. (2010) as part of a study of theinterdependence of LSW processes via wavelet coherence.

7. Future directions

This article has introduced the concept of costationarity between two LS time series and proposed
the benefits of relationship discovery, strength and the useof the costationary series itself. The arti-
cle raises several interesting possibilities for further fruitful study. Here follows some possibilities:
1. Investigation of strategies for finding costationary solutions when there are more than two series.
One could consider a large optimisation which merely entersall series into the combination and min-
imises theT (·) measure of the combination as above. Alternatively, one might consider searching
for sub-groups of series which can combine to make stationary series, which can then themselves
be combined to form an overall stationary series. 2. Whetherrestricting to certain classes of LS
processes could assist with theoretical approaches to finding costationary solutions, possibly in the
‘model-independent’ covariance domain. For example, we might expand on Example 4 to different
process classes to see what the costationary partner might be in certain circumstances. 3. Investi-
gation of the costationary-based estimate of cross-covariance that was mentioned in Remark 7. 4.
Development of methods to identify confidence bands for the combination vectors. 5. An ‘online’
version of our method would clearly be desirable. For example, having found a particular synthetic
asset in the costationary asset allocation example, or a particular way for distributing wind energy
in that example, one might be interested in updating the costationary vectors progressively as more
data was collected. Depending on circumstances, similar values of costationary vectors might be
enough to maintain costationarity, or the vectors may need to evolve to different values, or indeed
costationarity might be lost. One can envisage a continual updating by re-running the entire costa-
tionary algorithm from scratch. This might well be feasiblein circumstances where the sampling
rate is not too frequent. However, it would clearly be of interest to be able to develop a computa-
tionally efficient algorithm that did not have to re-run the whole analysis. 6. TheCostat algorithm
treats the ‘optimal’(α∗

t , β
∗

t ) as deterministic functions when, of course, they are stochastic as they
depend on the(Xt, Yt) realizations. TheCostat Bootstat method could possibly be enhanced
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by recognizing this fact and include resampling fromXt, Yt themselves. 7. More work is needed on
understanding likely choices ofC, the complexity constraint. Roughly speaking, the procedure we
have adopted is that a value ofC is chosen and if no costationarity is found thenC can be relaxed,
including progressively more complex functions until costationarity is detected (eventually, it must
be given arbitrary functions to combine with). If costationarity is discovered straight away then
C can be tightened, progressively making the function class contain less complex functions until
no costationary solutions can be found (although note that this does not mean that such a solution
does not exist, just that it cannot be found). Possibly, the most interestingvalue ofC is the one on
the boundary between no costationary solutions and one or some costationary solutions, and this
says something about the degree of ‘covarying’ between the two seriesXt andYt. If the series are
sympathetic then costationarity can be found easily with ‘simple’ functions. Cross-validation could
be used to discover the ‘boundary’ values ofC.

Appendices

A. Specific implementation issues

We describe three specific implementational issues forCostat for the examples given in this paper.

Starting vectors. As is common in projection pursuit applications we repeatedly runCostat from
random initial starting vectors.

Spectral estimate.We used the spectral estimateŜj(z) from NvSK, but could have used the Haar-
Fisz estimate from Fryzlewicz and Nason (2006). For Fourier-inspired spectral estimation
there are several time-varying spectral estimators that could be considered. For example,
Neumann and von Sachs (1997), Adak (1998) or Guo et al. (2003).

Penalty. We restrict the vectors to be piecewise constant with breaksonly at dyadic fractional
locations. We first attempt to discover costationary vectors which are piecewise constant at
z = 1/2 and then, if this is unsuccessful, we permit breaks atz = 1/4, 1/2 and3/4, and

then successively refine the dyadic grid, at stagej the breaks are permitted at{2−ji}2
j
−1

i=1 .
In the previous section “attempt” means run the algorithm from many,N , random starts and
ascertain whether any of them indicate stationarity, if notthen proceed to the next finest dyadic
scale of breaks. Limitations: the penalty described here iscrude, but the combination vectors
have the advantage of being extremely simple to code/compute through their Haar wavelet
coefficients. Alternative penalized combination vectors were considered in Remark 1 above.

Numerical minimizer The minimizer we use isoptim() from within R with default settings.

All the issues, apart from the second, apply to any form of LS process with spectrump. For the
second, one needs to replaceŜ by the form of spectral estimate ofp related to the model in use.

B. Proofs

PROOF (OF EXAMPLE 4). To momentarily simplify notation letα = a1(z). First expand
G2(z, λ) from (6) to obtainG2(z, λ) = σ2

1 |1 + αeiλ|2 − σ2. Then dividing byπ|1 + αeiλ|2 yields
fY (z, λ) = σ2

1/π − fX(z, λ). Why isYt a TVARMA(1, 1) process? The denominator of the spec-
trumfY (z, λ) is a legitimate AR part. The numerator of the spectrum of a TVARMA(1, 1) is given
by

β2
0 + β2

1 + 2β0β1 cos(λ) (19)
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(remember that theβs depend onz). Equating coefficients from (6) and (19) (without theσ2
1 which

goes with theπ) gives

β2
0 + β2

1 = (1 + α2)− σ2/σ2
1 and β0β1 = α. (20)

We find conditions onσ2
1 for this system to be valid, i.e. the LH equation≥ 0. Forβ2

0 + β2
1 ≥ 0 we

can rearrange the LHS of (20) to yieldσ2
1 ≥ σ2/(1 + α2). Choosingσ2

1 ≥ σ2 always works.

PROOF (OF THEOREM1). We pick one fixed scalej ∈ {1, 2, 3, . . .}. The LSW process at this
scale is given by (we can omit thej)

Xt,T =

∞
∑

k=−∞

wk;Tψk−tξk. (21)

SinceXt,T is a LSW process the quantitywk;T is part of a close pair withW (z) with constant,R1,
say. The support of waveletψj,k is finite on the domaink = 0, . . . , Lj − 1 and so

Xt,T =

t+Lj−1
∑

k=t

wk;Tψk−tξk. (22)

The quantity we are interested in is

at,TXt =

{

a

(

t

T

)

+R2T
−1

} t+Lj−1
∑

k=t

wk;Tψk−tξk (23)

=

{

a

(

t

T

)

+R2T
−1

}

wtψ0ξt (24)

+

{

a

(

t+ 1

T

)

+R3T
−1 +R2T

−1

}

wt+1ψ1ξt+1 (25)

+

{

a

(

t+ 2

T

)

+ 2R3T
−1 +R2T

−1

}

wt+2ψ2ξt+2 (26)

+ . . . (27)

+

{

a

(

t+ Lj − 1

T

)

+ (Lj − 1)R3T
−1 +R2T

−1

}

wt+Lj−1ψLj−1ξt+Lj−1.(28)

Rearranging givesat,TXt = Yt,T +R2Xt,T /T +R3Bt,T /T whereYt,T andBt,T are given below.
The process

Yt,T = atwtψ0ξt + at+1wt+1ψ1ξt+1 + · · ·+ at+Lj−1wt+Lj−1ψLj−1ξt+Lj−1 (29)

=

t+Lj−1
∑

k=t

uk,Tψk−tξk, (30)

where(u(t), ut,T ) is a close pair whereu(z) = a(z)W (z), andu is of bounded variation as it is the
product of two functions of bounded variation.

The processBt,T is given by

Bt,T =
(

wt+1ψ1ξt+1 + 2wt+2ψ2ξt+2 + · · ·+ wt+Lj−1ψLj−1ξt+Lj−1

)

R3/T. (31)
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The proof thatat,TXt,T is LSW can be completed by noticing that
∣

∣

∣

∣

(at +Rj/T )wt − a

(

t

T

)

W

(

t

T

)∣

∣

∣

∣

≤

∣

∣

∣

∣

atwt − a

(

t

T

)

W

(

t

T

)∣

∣

∣

∣

+Rj |wt|/T → 0 (32)

asT → ∞. This part of the proof is completely non-stochastic and essentially mapswt to atwt

everywhere, and due to the original ‘close pair’ link in the LSW defintion (formula (10) in NvSK).
The same process can be applied to all scales simultaneously.

As a corollary note that bothXt,T /T andBt,T /T are asymptotically zero in the mean square
sense. This is becauseXt,T is obviously a LSW process with covariance ofcT (z, τ) hence

E

{

(

T−1Xt,T

)2
}

= T−2
{

c (t/T, 0) +O(T−1)
}

→ 0,

asT → ∞ using Proposition 1 of NvSK. A similar argument applies toBt,T /T which can be seen
as the LSW processXt,T with its (square-root) spectrum multiplied by a linear function and hence,
by this theorem, a LSW process.

PROOF (OF THEOREM2). Define

µj,k = xj,kξj,k + yj,kηj,k. (33)

Then the quantityUt,T can be written

Ut,T =
∑

j

∑

k

µj,kψj,k−t. (34)

From the properties of{ξj,k} and{ηj,k} we have thatEµj,k = 0 and

var(µj,k) = E(µ2
j,k) (35)

= x2j,kvar(ξj,k) + y2j,kvar(ηj,k) + 2xj,kyj,kcov(ξj,k, ηj,k) (36)

= x2j,k + y2j,k + 2xj,kyj,kρj,k = ν2j,k (37)

Assume, for the moment, thatν2j,k > 0 for all j, k. Now let ǫj,k = ν−1
j,kµj,k. Clearly,E(ǫj,k) = 0

andcov(ǫj,k, ǫℓ,m) = δj,ℓδk,m. In other words,{ǫj,k} satisfies the conditions for being an LSW
innovation sequence. Hence,

Ut,T =
∑

j

∑

k

νj,kψj,k−tǫj,k. (38)

Case (a). Ifξj,k andηℓ,m are independent for allj, k, ℓ,m thenρj,k = 0 for all j, k. Since

(xj,k, p
1/2
X (z, j)) and(yj,k, p

1/2
Y (z, j)) are close pairs we have

ν2j,k = x2j,k + y2j,k (39)

= pX(k/T, j) +O(T−1) + pY (k/T, j) +O(T−1). (40)

By Fryzlewicz (2003) p. 93(ν2j,k, pX(z, j) + pY (z, j)) is a close pair and the result is proven.
Case (b.) Here we have

ν2j,k = x2j,k + y2j,k + 2xj,kyj,kρj,k (41)

= pX(k/T, j) + pY (k/T, j) + 2p
1/2
X (k/T, j)p

1/2
Y (k/T, j)Rj(k/T ) +O(T−1) (42)

and again, the result is proven (bounded variation is preserved by sums, products and square roots).
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C. Actual estimator used for our LSW examples

For our LSW examples we use the simple time-average of the fast and simpleLk estimator of
S(k/T ) from NvSK whose consistency is demonstrated as follows.

THEOREM 3. LetXt,T be a stationary Gaussian LSW process satisfyingSj ≤ D2j for all j
for someD > 0. ThenT−1

∑T
k=1 Lk is a consistent estimator ofS.

PROOF (OF THEOREM3). We are interested in estimation of the vectorS = (S1, . . . , SJ)
T

where here theS are constants wrtz because of stationarity. To begin we follow the idea of Fry-
zlewicz and Nason (2006) and consider estimation of theJ × 1 vector quantityβ = AS whereA is
theJ × J inner product matrix of autocorrelation wavelets from NvSK. We letβ̂ = T−1

∑T
k=1 Ik

be our estimator ofβ whereIk = (I1k, . . . , IJk)
T is the raw wavelet periodogram from NvSK.

NvSK prove thatE(Ik) = ASk + O(T−1). Hence in the stationary situationE(Ik) = AS +

O(T−1) for all k and thusβ̂ is asymptotically unbiased forβ. Further, they also demonstrated
that the variance ofIjk, call thisσ2

j , is (asymptotically) constant, i.e. this is the variance ofthejth

component of each term in̂β. It does not depend ont.
For consistency it only remains to show thatvar(β̂j) → 0 asT → ∞ for eachj. The variance

of β̂ is given by:

var(β̂j) = T−2
T
∑

k=1

var(Ijk) + 2T−2
T
∑

k=1

T
∑

ℓ=k+1

cov(Ijk , Ijℓ). (43)

The first term of the RHS of (43) clearly tends to zero asT → ∞ as the variance is finite. Fryzlewicz
and Nason (2004) show that:(∗∗) = cov (Ijk, Ijℓ) = 2

(
∑

∞

τ=−∞
c
(

t
T , τ

)

Ψj(τ + ℓ− k)
)2

+

O(2−j/T ), wherec(t/T, τ) is the localized autocovariance andΨj(τ) is the autocorrelation wavelet
from NvSK and{ψj,k} are the discrete nondecimated wavelets as defined in their introduction.

However,Ψj(τ) is compactly supported with support(a, b) which depend onj (which isfixed)
here (precise values ofa andb are to be found in Eckley and Nason (2005)). Further,Ψj(τ) ≤
Ψj(0) = 1: the inequality becauseΨj is an autocovariance function and the equality from NvSK.

For stationary processes the time-varying autocovariancec(t/T, τ) = c(τ), the regular autoco-
variance. NvSK show that, necessarily, for stationary LSW processes

∑

∞

τ=−∞
|c(τ)| < ∞. Using

the compact support ofΨj(τ) means that the first term of(∗∗) can be written:

2
(

∑b−(ℓ−k)
τ=a−(ℓ−k) c(τ)Ψj(τ + ℓ− k)

)2

≤ 2
(

∑b
τ=a |c{τ − (ℓ− k)}|

)2

. Then from (43) we sum

from ℓ = k + 1 to T asT → ∞, and since
∑

|c(τ)| < ∞ the sum overℓ in (43) is finite by the
comparison test.

References

Adak, S. (1998) Time-dependent spectral analysis of nonstationary time series,J. Am. Statist. Ass.,
93, 1488–1501.

Ahamada, I. and Boutahar, M. (2002) Tests for covariance stationarity and white noise, with an
application to Euro/US dollar exchange rate: an approach based on the evolutionary spectral
density,Econ. Lett., 77, 177–186.

Andreou, E. and Ghysels, E. (2002) Detecting multiple breaks in financial market volatility dynam-
ics,J. Appl. Econometrics, 17, 579–600.



Costationarity of locally stationary time series 21

Best, M. and Grauer, R. (1991) On the sensitivity of mean-variance-efficient portfolios to changes
in asset mean: some analytical and computational results,Rev. Fin. Stud., 4, 315–342.

Bierens, H. and Martins, L. (2010) Time-varying cointegration, Econometric Theory, 26, (to ap-
pear).

Bollerslev, T. (1990) Modeling the coherence in short-run nominal exchange rates: a multivariate
generalized ARCH model,The Review of Economics and Statistics, 72, 498–505.

Bollerslev, T., Engle, R., and Wooldridge, J. (1988) A capital-asset pricing model with time-varying
covariances,J. Polit. Econ., 96, 116–131.

Coifman, R. R. and Donoho, D. L. (1995) Translation-invariant de-noising, in A. Antoniadis and
G. Oppenheim, eds.,Wavelets and Statistics, volume 103 ofLecture Notes in Statistics, pp. 125–
150, Springer-Verlag, New York.

Croux, C., Forni, M., and Reichlin, L. (2001) A measure of comovement for economic variables:
theory and empirics,Rev. Econ. Stat., 83, 232–241.

Dahlhaus, R. (1996) Asymptotic statistical inference for nonstationary processes with evolutionary
spectra, inAthens Conference on Applied Probability and Time Series Analysis. Lecture Notes in
Statistics, Vol. 115, pp. 145–159, Springer Verlag, New York.

Dahlhaus, R. (1997) Fitting time series models to nonstationary processes,Ann. Statist., 25, 1–37.
Dahlhaus, R. (2000) A likelihood approximation for locallystationary processes,Ann. Statist., 28,

1762–1794.
Dahlhaus, R. and Polonik, W. (2006) Nonparametric quasi maximum likelihood estimation for gaus-

sian locally stationary processes,Ann. Statist., 34, 2790–2824.
Dahlhaus, R. and Polonik, W. (2009) Empirical spectral processes for locally stationary time series,

Bernoulli, 15, 1–39.
Dahlhaus, R. and Subba Rao, S. (2006) Statistical inferencefor time-varying ARCH processes,Ann.

Statist., 34, 1075–1114.
Dahlhaus, R. and Subba Rao, S. (2007) A recursive online algorithm for the estimation of time-

varying ARCH parameters,Bernoulli, 13, 389–422.
Davis, R., Lee, T., and Rodriguez-Yam, G. (2008) Break detection for a class of nonlinear time

series models,J. Time Ser. Anal., 29, 834–867.
Davison, A. (2008) Personal communication.
Davison, A. C. and Hinkley, D. V. (1997)Bootstrap Methods and their Application, Cambridge

University Press, Cambridge.
Eckley, I. A. and Nason, G. P. (2005) Efficient computation ofthe discrete autocorrelation wavelet

inner product matrix.,Statistics and Computing, 15, 83–92.
Engle, R. and Kozicki, S. (1993) Testing for common features, J. Bus. Econ. Stat., 11, 369–380.
Engle, R. and Kroner, K. (1995) Multivariate simultaneous generalized ARCH,Econ. Th., 11, 122–

150.
Engle, R. F. and Granger, C. W. J. (1987) Co-integration and error correction: Representation,

estimation and testing,Econometrica, 55, 251–276.
Fama, E. (1970) Multi-period consumption-investment decisions,Amer. Econ. Rev., 60, 163–174.
Firth, J. (1992)Discrete Transforms, Chapman and Hall, London.
Friedman, J. and Tukey, J. (1974) A projection pursuit algorithm for exploratory data analysis,IEEE

Trans. Comput., 23, 881–890.
Fryzlewicz, P. and Nason, G. P. (2004) Smoothing the waveletperiodogram using the Haar-Fisz

transform., Technical Report 03:08, Statistics Group, Department of Mathematics, University of
Bristol.

Fryzlewicz, P. and Nason, G. P. (2006) Haar-Fisz estimationof evolutionary wavelet spectra,J. R.
Statist. Soc.B, 68, 611–634.



22 A. Cardinali and G. P. Nason

Fryzlewicz, P. Z. (2003)Wavelet Techniques for Time Series and Poisson Data, Ph.D. thesis, Uni-
versity of Bristol, U.K.

Gourieroux, C. and Peaucelle, I. (1992) Series Codépendantes: Application a l’Hypothèse de Parité
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