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1. Introduction

Loosely speaking, a stationary time series is one whosistgtat properties remain constant over
time, whereas the statistical propertieslatally stationary (LS) time series change slowly over
time. As a consequence, LS series can appear stationaryexaerined close up, but appear non-
stationary when examined on a larger scale. Priestley (1888 Nason and von Sachs (1999)
review locally stationary (LS) time series.

Recently, Dahlhaus and Polonik (2006) introduced a geivdiaite order time-varying moving
average (MA) representation for LS processes:

oo

Xt,n: Z at,n(r)et—r; (1)

r=—00

wheree; are assumed to be i.i.d. with zero mean and unit variancerene {a; ,} Sequence
satisfies a number of technical conditions, see also Dakl&ad Polonik (2009), and=1,...,T.
The LS processes introduced by Dahlhaus (1997), referréeltw as locally stationary Fourier
(LSF) processes, and the LS wavelet (LSW) processes of Natsdn(2000) (NvSK) are examples
of infinite order time-varying MA processes.

The (second-order) statistical content of many kinds of ib&tseries is quantified by a time-
varying spectrum. For example, the LS processes of Dahlaad$olonik (2006) and LSF pro-
cesses have a spectrum denotedfby, \), wherez is time and)\ is frequency. LSW processes
have a spectrum denoted By(z), wherez is time and; indicates scale or frequency band. Here,
we denote the generic time-varying spectrunpby v). Heret is time andv is another parameter,
or set of parameters. For LSF procesgésv) = f(¢,v) andv would be the usual frequency
v € (—m, ). For LSW processes(t,v) = S,(t), wherev = j € N would be the usual scale
index. For stationary processes the spectpin) = p(v) does not depend on time. So far, we are
not prescriptive about the domain of the indi¢gs, as these are prescribed according to the precise
modelling context. For example, in the LSW and LSF casesaltbe timez € (0, 1) is rescaled
time z = ¢/T, for the oscillatory processes of Priestley (1983) timelddie anyt € R. (In the
following we usez andt interchangeably).

What is common to all these models is that when the (potdyjtiine-varying spectrum,
p(t,v), is a constant function afthen, and only then, is the process second-order statiofary
brevity, we henceforth assume stationary means secorat-stationary.
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2. Costationarity

2.1. Introduction

The main question we pose here is: given two LS time selesY; is it possible to find a linear
combinationZ; = aX; + 8Y;, such thatZ, is stationary, where, 8 are deterministic? (Obviously,
if X; orY; are stationary then the problem is trivial.) Practicaliyurns out that this concept is too
restrictive because the statistical evolution’df, Y; is such that, for real data, there is usually no
constant«, 3) for which Z, is stationary. Consequently, we seek determintstie-varyinglinear
combinations which result i#; being stationary. This leads us to the following definition:

DerINITION 1. Let{X,}, {Y:} be LS with time-varying spectiax (¢, v), py (¢, v) of bounded
variation respectively. ThefiX;} and{Y;} are said to beostationaryif there exist deterministic
complexity constrained sequences (with constré@nfa:, 5;) such that

Zy = an Xy + Bi Y3, 2)
where{Z,;} is a stationary process. Tlje;, 5;) sequences are called costationary vectors.

ReEMARK 1. Definition 1 refers tdoy, 5;) as being complexity constrained with constraiht
The reason for the constraint is that giveamy observed time serieX,; andY;, you can choose any
stationary procesf; and any deterministie;; you like, then just defing, = (Z; — «; X:)/Y;
(assume wlogy; # 0). In other words, costationarity can always be made to “Worlpurely
formulaic terms with no constraint on the., 5;), but those solutions might be pathological and
not interpretable.

On the other hand, the most interpretable solutions would.be- o, 5, = 3, but, as indi-
cated just above Definition 1, the constancy of &h¢ here is too restrictive. Hence, we look for
(au, ;) that are, in some sense, ‘the least complex but still achieggationarity’. In practice,
there are various ways in which we can achieve this. We mighstrain(a;, ;) to be samples
from a smooth function with smoothness constraint, e.ggirated squared second derivatigg,
as in Section 4.2. Alternatively, we might constréin, 5;) to be piecewise constant functions and
impose an upper limitC’, on the number of breaks for both functions. Below, in Sectidl, we
admit piecewise constant functions with breaks laid out dpaadic grid and” controls the fineness
of grid. However, the precise choice is up to the user andenfted by the particular characteristics
of the problem at hand.

The complexity of the resultant solutioifa;, 3;) is an indicator of the character of the rela-
tionship betweenX,; andY;. A low complexity solution indicates that the two time serteave
“universal” relationship spread widely over time, a highhg@exity solution (wherey,, 5, have to
vary a lot to achieve costationarity) indicates a more fegdgly changing relationship.

Finally, the particular costationary solution mentionédee is not unique becauge, is sta-
tionary if Z; is stationary and is a constant, and henc¢é«:, ¢5;) would also be a costationary
solution. We shall say more on more non-trivial forms of wgess in Section 3.1.

REMARK 2. In somepplications for example the wind power application in Section 4.2, it ca
be useful to find oy, 5;) that makeZ, closerto stationary than either of the origindl,, Y; series,
althoughZ; itself mightnot bestationary. Some of the mathematical conditions on themeters
of the systems will implicitly be tightened up for specificagmples later. However, the definition
is concrete and can be deployed: either theoretically, migtthematically defined LS processes
and measure of stationarity as in Examples 3 and 4, or padlgtievith real data and a statistical
hypothesis test of stationarity as in Section 4. The next@emotivates the costationarity concept,
provides more explanation and gives some examples.
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2.2. Motivation, elaboration and examples
There are four main reasons why discovering costationaritpportant: (i) learning/discovery of
any costationary relationship itself, (ii) estimating tteength of any such relationship, (iii) us-
ing the derived stationary series, in some applicationgéfgpence to either of the original series
and (iv) using the relationship to learn abott from data onY; or vice versa. For the last point,
rearranging (2) yields(; = o; *(Z; — $;Y;). Later, we present two applications, portfolio selec-
tion in finance and wind energy volatility mitigation, whitloth show examples of how it can be
advantageous to use the stationary derived sefiesn preference to the original seriég or Y;.
Additionally, costationary relationships induce an “e+faor “variance-correction” formula
which can give further valuable information on the naturehef relationship between the series,
more details are given in Section 2.3.

ReEMARK 3. To find costationarity, given arbitrary LX; andY;, one could adopt a model-
independent approach to search for costationary vectoapplying the covariance operator i
in (2) yielding

Yz(7) = cov(Zy, Ziyr) = cov(ou Xy + B Yy, avgr Xigr + BigrYigr), (3)

for all ¢, 7, whereyz (1) is the autocovariance function of some unknown stationesgess. Even
if Z; were knowna priori, solving this large set of nonlinear simultaneous equation suitable
(o, B¢) would be difficult both analytically or numerically. The aet situation is even more tricky
sinceZ; is, in general, unknown. Hence, we do not pursue this aveuntiest here. Our approach
is via models, e.g. LSF, LSW and their associated spectgattifies which turns out to be compu-
tationally feasible as described next.

REMARK 4. Our overall approach evaluates whether the spectrufh,of; (¢, ), is a constant
function of time for agivenset of vectorgay, 5;). If itis, then X; andY; are costationary. Given
actual data realizations d¢;,Y; fort = 1,...,T we adopt a ‘projection pursuit’ approach to dis-
covering flat combination spectra. Our method is fully dissat in Section 3, but see Friedman and
Tukey (1974), Jones and Sibson (1987) or Nason (2001) foergéprojection pursuit references.
Our “projection index” measures the stationarityff via the constancy of its spectrupy (¢, v),
and we optimize the index over the vectots, 8;) using numerical methods. As with projection
pursuit, our method shares the advantage of overcomingraé¢af dimensionality” in that rather
than solve the multiple nonlinear sets of simultaneous &g mentioned in Remark 3, assess-
ment of the stationarity of; is always a univariate problem irrespective of the numbér®fime
series one wishes to interrogate for costationarity. Toleasjze, we could extend the concept in
Definition 1 to more than one time series and the statistigalpm would still be evaluation of the
time-constancy, or not, of the single univariate spectpyitt, ). Hence, finding the solution might
be more computationally intensive, but not conceptuallyerdifficult.

Given analytical process specifications f6r andY;, as in the examples below, one can inves-
tigate theoretically whether a costationary solution txier failing that, investigate the problem
using numerical methods. Again, the problem of searching ftat spectrum is considerably easier
than solving the multiple nonlinear equations mentionealab

REMARK 5. Costationarity is analogous to and inspired by, but netsdime as, the cointegra-
tion of Engle and Granger (1987), where a linear combinatibimtegrated series is sought that
makes the combination stationary. These works fall intogaereral category ofomovements
neatly summarized by Croux et al. (2001) who also summakheekey works at that time, En-
gle and Granger, the codependence of Gourieroux and Pé&a(t@92) and the common features
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of Engle and Kozicki (1993). A recent review of common feasican be found in Urga (2007).
Other related works are cointegration relationships wiitiactural breaks, a form of change, see, for
example, Johansen et al. (2000).

One difference between cointegration and costationastiormulated here, is that cointegrating
vectors are, classically, constant functions of time. HmveBierens and Martins (2010) have
recently extended cointegration to include time-varyinmtegrating vectors where, as here, such
vectors have to be complexity penalized in some way. Anatiggor difference between the two is
that cointegration is concerned with first-order nonstatiity whereas costationarity is concerned
with second-order.

We briefly recall the definitions of LSF and LSW processes twijgle some context for the co-
stationary examples that follow. However, costationasitrks for wider classes of processes that
have time-varying spectrup(¢, ») and “p(t, v) constant irt. iff stationary”. Recall also the defini-
tion of rescaled time = ¢/T. We conjecture that costationarity could also be made tdvothe
context of a whole host of other non-stationary time seriedais, for example, piecewise station-
ary GARCH models, see Andreou and Ghysels (2002) or Davik €@08), time-varying ARCH
models, see Dahlhaus and Subba Rao (2006), Dahlhaus and Ralbh(2007), Granger (2008),
Markov-switching models, see Hamilton and Raj (2002), twaeying Hurst exponent models, see
Grech and Mazur (2004) and references therein. The retatibany of these models to LSW/LSF
is unclear and requires further research.

EXAMPLE 1. (LSF processes) (zero mean) LSF procesgX; r}, with spectrumf(z, A), is a
triangular array of stochastic processes with the foll@wiepresentation:

Xer = /j A r(N) exp(iAt)dE(N), (4)

fort = 1,...,T > 0, whereg()) is an orthonormal increments process, and where theresexist
a function A(z, \) such thatd; r(\) ~ A(t/T,\) and|A(z,\)|? ~ f(z,\) = p(t,v). Local
stationarity of X; o is achieved by (total variation) constraints updfz, A), see Dahlhaus and
Polonik (2006). For further details see Dahlhaus (1997),Bfllegem and Dahlhaus (2006). In this
model the time-varying autocovarianegz, 7) = [”_ f(z, A) exp(iA7) d), see Dahlhaus (1996)

formula (1.5). The local variance of, 7 is vx (z) = ¢(2,0) = ["_ f(z,A) dA.

EXAMPLE 2. (LSW processeg) LSW process{ X, r}, with spectrum{S;(2)}52,, is a trian-
gular array of stochastic processes that admit the follgwépresentation

o0 (o]
X = Z Z Wj ks 7 V5 k€ ks )
Jj=1k=—oc0
fort = 1,...,T, where{¢; »} are a collection of uncorrelated random variables (‘intiove’)

with mean 0 and variance 1, the); ,} are a set of discrete nondecimated wavelets (compactly sup-
ported oscillatory vectors with support proportionalt, and{w, .7} a collection of amplitudes
that are ‘smooth’ in a particular way as a functionfof The smoothness ab; ., controls the
degree of local stationarity of; 7. The spectrum is linked to the processisy,. ~ S;(k/T) =
p(k(t), j). Afull definition of LSW processes, and comparison with L$Bqesses, can be found in
NvSK. Further explanation, including wavelets, can be fbimNason (2008). Jumps in the spec-
trum are permitted by the generalized extension developab Bellegem and von Sachs (2008)
by extendingS = p to functions of bounded variation. We adopt this here.
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For LSW the time-varying autocovarianegz, 7) = 72, S;(2)¥;(7), where¥,(r) is the
autocorrelation function of; ;, see NvSK formula (14). The local variance ®f r is vx (z) =

c(z,0) = Z;‘;l S;(z), as¥;(0) = 1 for all j due to the wavelet orthonormality.

We now give two examples of costationarity.

ExamMPLE 3. (Uncorrelated LSW) et X, Y; be two uncorrelated LSW processes with spec-
trapx(z,1) = S{(2) = cos?(z) andpy(z,1) = S} (z) = sin®(z) for z € (0,1), all other
px(z,7),py(z,j) = 0forz € (0,1) andj > 1. Then,X; andY; are costationary as the spectrum
of X; + Y; is exactly 1 forz € (0, 1). The costationary vectors ang = 3, = 1.

ExamMPLE 4. (TVAR/TVARMAl et X; be a TVAR1) process with time-varying AR parameter
of a1(z), z € (0,1) and constant variance parametér From Dahlhaus (1997X; is LSF with

spectrumgiven by (t,v) = fx(z,A) = o2 1 [1 + al(z)e“\_2 forz € (0,1)and\ € (-, ).
LetY; be a TVARMA(1, 1) process with spectrupy (t,v) = fy (z,A) = 7 *G?(2,A) [1 + al(,z)e“\2
where

G*(z,\) = 07 {(1 +ai(2)) — o207% + 2a1(2) cos(A) }, (6)

with o2 large enough (as specified in the proof). Th&n+ Y; is second-order stationary with
spectruny? /7, henceX, andY; are costationary with costationary vectars= 1,3, = 1. See
Appendix B for more details.

More generally, this article is written with “model-indepient” concepts in mind. We refer to
generic time-varying autocovariances and spectra. Howkater, when it comes to estimation we
choose particular estimators that are often derived frordehbased formulae. For the ones we
use, the estimators are asymptotically unbiased for thel&himdependent” quantities and possess
other attractive statistical properties. Of course, odstimators could be used.

2.3. Cross-covariance and error-correction formulae
SupposeX,; andY; are costationary. Take the variance of the general lineanbatation (2) to
obtain:

0% = Zvx(t) + Bivy () + 20 Brcov(Xy, Vi). 7

wherec? = var(Z;) is well-defined and constant sinée;} is stationary, and wherex (t) =

var(X;) andvy (t) = var(Y;) are the usual time-varying variances mentioned in Exanipées 2.
Given data it is easy to estimaté by standard methods and the local varianegst), vy (), can
be estimated by integrating overan estimate of the time-varying spectpe; (¢, v) andpy (¢, v)

respectively, again as mentioned in Examples 1 and 2.

In classical cointegration theory there is a strong conaedietween cointegration and error-
correction models, see Engle and Granger (1987) for examiptaighly speaking, cointegrated
series are constrained so that their cointegrated lineabition remains stationary even in re-
sponse to shocks, say, on one of the series. The other sasi&s ‘mespond” to maintain stationarity.

To understand error-correction in our setup see that ezuéf) becomes

oy = alpux(2) + BLroy (2) + 2000 Brryxy (2,0), (8)
wheret = [zT] and|z] denotes the greatest integérz. Now letzy = z + §z, wheredz is small,
and use the costationary argument again to write:

oy = af,pux (2 +02) + B, vy (2 + 62) + 201,11 B2y Yy (2 + 02, 0). )
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From Remark 1 recall that; and3; are slowly varying. Hence, assume that,r) ~ a.7) = @
and similarly forg;. In the practical example in Section 4.1 the approximatdndeed equality as
we use piecewise constant functions (assuming no jumpsaldtiation).

For the remainder of this section, let us further assumeuthaty andyxy (z,0) are differen-
tiable. Now subtract (8) from (9), divide ¢ and letéz — 0. We have

0 = a?vly (2) + B2} (2) + 20875y (2,0). (10)
Writing » = /8 and rearranging (10) gives us our ‘variance correctiontfala:
vy (2) = = (2) — 2ryyy (2, 0). (11)

The formula speaks for itself and can be interpreted in nooeeuseful ways. For example: since
r2 > 0 any increase in the variance &f must be matched by atecreasén the variance ol to
maintain costationarity, assumingy (z, 0) remains unchanged.

REMARK 6. Further interesting relations can be derived for castatiy series. For example,
drop the subscriptz7'] in equation (8) for brevity, but remember § are still local, and then rear-
range using the fact that variance is non-negative to oltt@ifollowing bounds

< o2 if af >0
7xv(2,0) { > } %08 { it af < 0. (12)
The bound for the condition3 < 0 implies that the correlation betweety, andY; is bounded
below (by a negative number) and bounded above (by a positivgber) ifa5 > 0. Intuitively
this makes sense. The bound implies that éind 5 are of the same sigm( > 0), thenX,,Y;
cannot becoméoo positively correlated as they will ‘tend towards the samecpss’, in second-

order terms. This would result in a contradiction, becatisg;j Y; were the same LS process then
combinationZ; would be LS and not stationary.

REMARK 7. Under costationary one can estimate (X;,Y;) by solving for it in (7) using
the usual estimates of%, vx(z) andvy (z), but we do not pursue this further here as it can be
computed/estimated directly: for example, for LSF proessfirect estimates can be obtained from
the cross-spectral estimates, see Dahlhaus (2000), for fu®¥ésses, see Sanderson et al. (2010).

3. Discovering costationarity in practice

3.1. General algorithm
Suppose we have two LS seri¢x;,Y;}7 ;. As indicated in Section 1 we adopt a pragmatic,
computational, “project-pursuit” approach to discovgnossiblg ., 8;) combinations that cause
{Z:} to be stationary. Examples 3 and 4 show that costationangarétically possible and there the
spectrumpz(t, v), of the combined series is mathematically constant as diamef¢. In practice
we form actual combinations of the series and then evaluspeeétral estimatef the combinations
which are subject to estimation and sampling error. We thatistically assess whether a spec-
tral estimate of a combination is constant or not as a funatiotime. Our precise definition of
constancyy, is given in Section 3.2.

Another important point is that costationary solutionsti@o processeq X;, Y;} need not be
unique (in a mathematical sense). On top of this, when dgalith realizations, the costationary
solutions need not be unigue as minor perturbations in theiso might not change the practical
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statisticalassessment of the stationarity Bf. Hence, as in projection pursuit, we are interested
in discoveringany potential costationary solutions that might be of inter&sfpically, to try and
find costationary solutions we run the algorithm many timresfdifferent starting points. A later
step examines all found solutions and tries to find the settefésting solutions that differ by more
than small numerical amounts. This is achieved by methodsuifivariate analysis where all the
solution vectors are treated as standard multivariateoveend then multidimensional scaling or
hierarchical cluster analysis is used to find classes of"Blolutions.

Given realizations of X, Y;) fort = 1,..., T, the algorithm to compute the constancy of the
spectral estimate is as follows:

(1) Giveninputvectorsay, ;) fort=1,...,T.

(2) Form the combinatio®; = o X; + ;Y fort =1,...,T.

(3) Compute the spectral estimaig(t, v) = p, 5(t,v) on{Z;} L ,.
(4) Compute the constancy of the spectral estimate UBipg, 3 ).

Thec, § subscripts are used to denote that the spectral estimagadepn the combination vectors
(cu, Bt). We now define the complete costationarity discovery atgori

Cost at : Given starting vectorsa,, 5;) proceed with the penalised numerical minimization of
the quantity7 (p.,s) over the vectorga,, 5;) with a smoothness/complexity penalty 6w, ;) as
discussed in Remark 1. Then, after the minimization algorihas finished, resulting in ‘optimal’
combination vectorga;, 5;), we then apply a statistical test of stationarity Ap via the final
spectral estimatg,- g« (t, ). If the processZ, is deemed stationary then the processgs Y;)
are deemed to be costationary with costationary ve¢terss; ).

For implementation there are six aspects of@et at that need to be specified: the choice of
the starting vectors, the type of spectral estimate, thalpgithe numerical minimizer, the measure
of constancy, and the test of stationarity. Appendix A pdeg implementation details about the
first four, the next two sections provide more details abbetast two.

3.2. Measure of constancy
Our measure of constancy is a metric that quantifies the tiamiaf the spectrunp(z,v) as a
function ofz = ¢/T'. Specifically,

Tp) =K / / (p(z) — p())?dzdv, (13)

whereK = [ dv andp(v) = fol p(z,v)dz. Itis clear that ifp(z, v) is a constant function of then
the metric7 = 0. Also, if the underlying process is not stationary tiefp) > 0 with increasing
T for “increasingly nonstationary” processesfass just theL? metric. Clearly, other topologically
equivalent metrics could be used just as well. In practioadiions are imposed to prevefitp)
being affected by changes in overall valuepas is typical in projection pursuit.

EXAMPLE 5. (LSF processedle could usel {f(z,\)} = [7_ [ {f(z,A) — F(\)}2dzd.
EXAMPLE 6. (LSW processegpt.J = log 7. We could usg {S;(z)} = J ! ijl fol{Sj(z)—
Sj}QdZ.

It is possible to detect constancy in the time-varying aoNaciance instead.
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3.3. Our test and bootstrap assessment of significance
An early test of stationarity is described Priestley andi&uRao (1969) which applies a two-factor
ANOVA test to the log of their evolutionary spectrum. Aharaaahd Boutahar (2002) derive the
exact distribution of a similar test statistic and applyithe analysis of Euro/US dollar exchange
rate. von Sachs and Neumann (2000) introduced a statipnesit based on the “segmented peri-
odogram” (an estimate of the periodogram based on the sdgkhen . ., X 1) which estimates the
evolutionary spectruny;(z, A). They then apply a two-dimensional wavelet transform wisioful-
taneously smoothes across frequency (father waveletsjlantifies inhomogeneities using mother
wavelets. Other recent stationarity tests are StaridéGranger (2005) and Paparoditis (2009) that
measure the difference between a periodogram and modetsmean intervals.

The typical stationarity test null hypothesis is:

Hy : p(z,v) is a constant function of for all v (14)

versus
H, : p(z,v) is not constant function of for somev. (15)

The statisticabssessmentsarried out in this paper assume Gaussian innovations iegais to
use the parametric bootstrap, see, e.g. (Davison and Hinkd®7, 4.2.3). However, it should be
emphasized that (i) all the concepts up to this point do nigtar this assumption (ii) it would be
perfectly possible to substitute other assessments thabtely on the Gaussianity assumption.
However, the Gaussian assumption is not an unusual one te amkmuch used for classical sta-
tionary theory, e.g. Priestley (1983) (Chapters 5 and 6gnBwvith Gaussian innovations both LSW
and LSF processes are more general and flexible than theyt fingfrappear. This is because the
processes are time-varying combinations of Gaussiansemzktat or slim tails could be modelled.
We are currently investigating extension of the bootstoe more general distributional situation.

Our test uses the test statisficdefined in (13). For the fixed sample size, for testing purpose
the spectrum{p(v)}, completely specifies the distribution of the time ser#gsunder the null
hypothesis. Thus, we can use a parametric Monte Carlo testsiss the significance Bfon the
sample by usind3 bootstrap simulations as follows

Boot st at :
(a) Evaluate] as in (13) on the actual data sample, call this valie.

(b) Computep(v) for all v, from the sample, as defined just after (13). This is just thssical
spectral estimate which assumes the data are stationary.

(c) Repeatfoiin2toB

(i) SimulateZ, from the appropriatstationarymodel with squared amplitudes given by
p(v) using Gaussian innovations.

(i) Compute7 as in (13) on the simulated data, call this vafté).

(d) Define thep-value of the test by = {Number of7() > 7(U}/B.

Heuristically the test evaluates how unlikely is the valfig ocomputed on the real data com-
pared to other ‘likely’ values of computed on stationary realizationsf having a similar con-
stant spectrum to the actugl. Empirically, we have found, with series of the lengths iis thaper,
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settingB > 200 to be adequate, but further work would be necessary to iigatstthe performance
and satisfactory values df.

The bootstrap procedure requires (statistically) coestststimation of the spectral parameters
to work, Davison (2008). Results for consistency of spéestéimation in the LSF and LSW con-
texts can be found in von Sachs and Schneider (1996) andetrigziand Nason (2006) respectively.
Appendix C gives more details on the actual estimator we ndesatablishes its consistency.

Process simulation in step (c-i) Bbot st at is achieved by eithe(LSF processeghe elegant
‘circulant embedding’ method as described by Percival aodstantine (2006) which simulates a
stationary time series given a (consistent) non-paramspectral density estimate @rSW pro-
cessesj)he constructive formula given by (5) using the fast aveilgss ‘inverse’ non-decimated
wavelet transform, see Coifman and Donoho (1995).

Section 5 describes a simulation study that demonstratesgmpirical size and power of some
of our tests under both stationary and LS conditions.

4. Examples

Up to now this article has proposed a new set of statisticéhats and, naturally, there needs to be
a continuing debate over the precise specifics: over thetssitionarity, the measure of constancy,
the nature of the costationary vectors, and so on. Howeeeg, We present two examples: asset
allocation in finance and intermittency mitigation in windeegy generation. In both cases our
methods generate combination serigs, that are shown to be useful by independent measures,
generally accepted in their respective literature.

4.1. Costationary asset allocation
The aim of modern capital market theory is to provide a frapréwo explain how individuals
decide to allocate their wealth. The capital asset pricirgleh (CAPM) of Sharpe (1964), Lint-
ner (1965) and Mossin (1966) has historically been consttlére benchmark approach for a long
time. According to this, investment decisions were takemigans of the Markowitz (1952) mean-
variance criterion. Although this approach is still wideilsed, several criticisms have been raised,
both on the theoretical specification of this model and theigoal validation of related studies.
The CAPM is a static, single-period, model although it hasmmbeen spuriously treated as if it
holds over time (intertemporally), both for the validityitdf results and the information provided as
model input. As an example of the latter, the mean-variappeaach is used for portfolio selection
even when asset returns are modeled with time-varying tondi statistical properties, e.g. using
univariate or multivariate GARCH processes such as in ltegtail. (2003). Fama (1970) justified
an intertemporal use of CAPM, by showing that, if preferesaed future investment opportunities
are time-invariant, then intertemporal portfolio selentcan be treated as a static portfolio maxi-
mization. Merton (1971) showed that portfolio selectiomnfran intertemporal maximizer behaves
very differently when preferences and investment oppdtieschange over time. We use costa-
tionary solutions in such a way that links the intertempassiet allocation to the static CAPM: this
kind of optimization is missing in the single period approac

The Markowitz (1952) mean-variance portfolio (MVP) thedakes a set of, assets; =
1,...,n, uses the expected future rate of return, and the covar@nggure of the assets (returns),
to select the optimal set of weigh{sv; }_, that minimizes the risk for an acceptable expected
rate of return. Following recent compelling thinking, e §tarica and Granger (2005), we assume
that the assets are LS. For the purposes of this example kegtars of asset returns over time,
apply our costationary methodology to those pairs and setskad costationary solutions. In this
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Fig. 1. Dow Jones Commodities (DJC) and NASDAQ Financials (IXF) indices log-returns.

example we choose our combination vectors to be piecewisstaiot. Our end point is a set of
synthetic assets each containing two assets in differepigptions over time. The key point is that,
because of costationarity, the returns associated with gatthetic asset are stationary (or at least
very close to stationarity). Hence, the covariance streotd the synthetic asset can be extremely
well-estimated because the estimation is based owhinde lengttof the data series. Compare this
to the vector GARCH model which bases the optimization onctiveditional quantities computed
at each portfolio rebalancing point.

We remarked earlier that, for a given set of time seriesgtheght be more than one costationary
solution. The other innovation we propose is permitting tise of more than one costationary
solution in a portfolio that arises from the same pair of essse

For example, Figure 1 shows a pair of stock index log retuarathe Dow Jones Commodities
and NASDAQ Financials indices. As described below we useub@amples of size 512, rolling
forward each time by five days ahead. The first sample stattest ®ecember 2006 and end 17th
December 2008. The dates of the next 19 samples are obtainetiibg the trading dates (without
weekends and holidays) by five days. Both series are assasdeing highly non-stationary with
small p-valuesp < 0.001 arising from ourBoot st at test. We form three kinds of portfolios
using the stock data. For each rolling window we (i) use tressic MVP portfolio selection,
(ii) refit a constant conditional correlation multivaria¢é=CH GARCH(1,1) model with BEKK,
see Bollerslev et al. (1988); Bollerslev (1990) and Engld &noner (1995). This is followed
by repeated application of the single-period MVP portfd@ection considering a single budget
constraint and setting the risk appetite parameter equb| $ee Best and Grauer (1991). Careful
attention was paid to check the adequacy of model fit. Our aakttiii), form between 4 and 8
costationary synthetic asset solutions, followed by MVRétect the overall portfolio mix. These



Costationarity of locally stationary time series 11

0.05
|

Sharpe Ratios

0.00

-0.05

weeks

Fig. 2. Sharpe ratios for MV Costationary portfolio (solid line), MV Garch portfolio (dashed line) and
class MV portfolios (dotted line). Higher ratios mean better performance of the portfolio.

analyses were applied to consecutive subsets of lengthratiihgy days with a rolling window
stepping ahead five days a total of 20 times.

We compare the outcome of the three portfolio selection ouglby means of Sharpe (1966)
ratios which are a commonly used measure of how well an asgghrcompensates an investor for
the given amount of risk. (Let be the asset returm;, the return on a benchmark asset anthe
standard deviation or volatility of an asset. Then the Shaatio is(r — r,)/c and is a reward per
risk ratio. We use this ratio for comparative purposes, seate, = 0. Clearly, investors like assets
that reward well with little risk and hence have a large Shagtio. Of course, it is vital to remember
that the Sharpe ratio is one, very blunt, tool in the investoag). Figure 2 shows the series of 20
Sharpe ratios for the period 2007-8 over the 20 week rollimgdaw. The figure shows that the
costationary portfolio performs much better than the GAR&s$ed method, which is itself a little
better than the classic method. Indeed, the GARCH and classthods return negative Sharpe
ratios which indicate that they are not better than riskésset that the portfolios are being compared
to (possibly because the market experienced severe dowmpnessure during this period). We have
conducted similar analyses on other assets during edrfierpgeriods where the Sharpe ratios of
GARCH and classic methods are positive, but again not ae Esdghe costationary portfolio. It is
clear from these examples that costationary portfoliocsiele has a great deal of potential, and, as
a method, is fundamentally different from existing methotlse synthetic costationary asset idea
begs further investigation both theoretically and praadtyc For example, extension to include more
than two assets at a time.

We calculated Sharpe ratios on the same rolling windows Ifaha three approaches that we
compared. For the GARCH and classical approaches the pomfieans and variances were cal-
culated based on the actual assets. For costationary jastfthese are calculated on costationary
solutionsZ,, that we use here as factors. These factors are not conypiletelpendent. In fact, we
estimate their covariance matrix, which is not diagonaingshis matrix we then calculate the port-
folio variance. Although we are using multiple solutiorfeefte is no dependence (in a mathematical
sense) and the covariance matrix is not singular either.reTlgeno surprise in having negative
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Sharpe ratios for both the classical and GARCH approacheshaVe selected the dataset to ac-
count for a down-market tendency. In the costationary agghrpratios are calculated on stationary
quantities derived from the time-varying asset combimetj@btaining positive portfolio means. In
this case we typically use more than four costationary smist obtaining a more flexible portfolio
specification than the direct two-assets models.

4.2. Mitigating wind power intermittency

Wind is a key renewable energy source that has great pdtbgtiroviding a partial alternative to
fossil fuel carbon emissions, does not require fuel in theveational sense and enhances energy
security by both domestic siting and enhancing supply dit)eerHowever, wind energy suffers from
two main drawbacks: (i) it is hard to predict, intermittemidavolatile and hence cannot always
produce a reliable supply even in the face of constant deraaddii) it is not controllable and
hence cannot respond to changes in demand, see Hirst (2@} (2008) or Skea et al. (2008).
Wind intermittency is a real cost as generators have to ksftatbnventional generation that can be
started or stopped at short notice, such as that providdulyK National Grid Fast Reserve or Hot
Standby contracts. Another interesting factor is that aglenergy market penetration increases, it
becomes increasingly likely that not all possible wind gyes taken, and some is dumped so as to
achieve stability and regulation in the system. For exanipte20% penetration it is estimated that
about 10% of wind power will be lost through this mechaniseg Bloltinnen (2005).

The key to dealing with intermittency is ‘dumping’ and aggaéon, Hirst (2002), Holtinnen
(2005). Aggregation can mean pooling wind energy from rplétiurbines at a single site, or at
multiple sites across a geographical region with varyingdagharacteristics and possibly mixing
in other energy sources also. The goal is to provide a stadrbevolatile energy source that is
more easily absorbed into the grid. Our new methods providayaof combining turbine energy
outputs to mitigate intermittency and reduce volatilityf d@urse, aggregation is just another kind
of portfolio: combining wind resources to increase returd decrease overall risk.

For example, consider the hourly wind speed time seriesumedst two Welsh Meteorological
Office stations: Aberporth and Valley, previously studigdNason and Sapatinas (2002). Aberporth
is located approximately 120km south of Valley and they aostig separated by Cardigan Bay.
Wind power is proportional the cube of the wind speed, seed €008), and hence we investigate
time-varying linear combinations of the cubed speed sehias minimize volatility. The cubed
series are shown as the grey series in the top row of Figure@Bdot st at test verifies the non-
stationary nature of the original speed and power serigeeSie deal with genuine combinations
of physical quantities we constrain, 5; to lie in [0, 1]. If a; < 1 then energy is being dumped
from sourceX; and similarly fors,, Y;. It is advisable to change proportions of power sources in a
smooth manner as power systems do not respond at all weltittesichanges. Hence, we enforce
smoothly changing proportions of each power series by uiegfollowing underlying Fourier
representation for the Fourier interpolantgfnamely

a(t) =ap/2+ i an cos(nmt) + i by, sin(nwt), (16)

n=1 n=1

where the{a,,b,} are the usual Fourier coefficients aft), see Firth (1992). For complexity
penalization we have imposed a standﬁ(d;')2 dt roughness penalty, similarly fgt;.

Figure 3 shows the results of one set of solutions that aetg&tionarity. The wind power time
series themselves do not look as if they fit the typical LS ndEor example, they do not have
zero mean. Hence, for these series, for stationarity assggswe concentrate on the oscillations
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Fig. 3. Top row: wind power time series for Aberporth (left) and Valley (right) in grey, left axis. The
solid lines correspond to the final o; (left) and B: (right) identified by the costationary algorithm, right
axis. Bottom left: the ‘optimal’ combined series, Z:. Bottom right: proportion of total resource used.

above a fixed frequency{4.35 x 10~5Hz, about 1 oscillation per 64 hours) by modifying the test
statistic in (13) to only take account of those higher frawies and ignore the lower ones. This
makes practical sense as load balancing in a power grid fiedavut on intra-hour and intra-day
timescales (the latter from daily forecasting), but noticgly on weekly or monthly scales, see
Hirst (2002); Holtinnen (2005). In assessing the mid to Higlquencies the Aberporth and Valley
wind energy series are not stationapysalue= 0.02) whereas the combined costationary series is
(p-value= 0.05). Indeed, with all other criteria of stationarity we tridtetcombined series is more
stationary than either of the individual series in thatjpthealue is higher. Hence, the variability in
the combined power profile is lower than in either of the twadividual series.

At this point the reader might be wondering what we mean bytone series being ‘more
stationary’ than another. In mathematical terms a timeesdsi either stationary or it is not. What
we mean is that the-value of the stationary hypothesis test, or indeed thestasistic for constancy
over time can both be used to define an order relation so #stdata) series; is ‘more stationary’
than serieg; if the p-value of the stationary test fay; is greater than that af;.

The bottom right plot in Figure 3 shows the total proportiéeergy taken from the combined
system. In practice, one would more tightly constrain th&ationary vectors to reduce the amount
of dumping (e.g. around day 24 less than a quarter of the &vtilable energy is being utilized).
This could be achieved by constraining 3; > d for somed so that the proportion of power taken
from any one source would be greater thialhis might result inZ; not being stationary, or rather
assessed as such, but it would be more stable than simplegagign.
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Table 1. Empirical size (as percentage) of stationarity test based on LSW, T(S‘) and LSF,

T(f), test statistics for the following three models: S1=white noise, S2=AR(1) process and
S3=MA(15) process, see text for detailed model description.

Sample size| Model, T'(S) Model, T'(f) | Sample size| Model,T'(S) Model, T'(f)

T|S1 S2 S3S1 S2 S3 T|S1 S2 S3S1 S2 S3
32 0 0 0 . . . 256 0 0 1 1 1 0
64 0 0 0 . . . 512 4 0 1 0 1 1
128 2 0 0| 3 5 2 1024 | 1 0 3 1 2 4
5. Empirical assessment of our stationarity test (simulati ons)

5.1. Size assessment

We consider three stationary time series models describfedlaws. Model S1 setX, ~ i.i.d. N(0,1).
Model S2 is an AR(1) model with AR parameter= 0.9. Model S3 is a stationary LSW process
wherep(z,j) = S;(z) = 1for j = 1,2,3,4andp(z, j) = S;(z) = 0 otherwise, which is just a
particular stationary MA(15) process, see NvSK. Table pldigs empirical size results from each
of S1-S3, applying our stationarity test 100 times as diesdrin Section 3.3 with aominalsize of
5% usingB = 200 bootstrap simulations. Table 1 shows reasonable empgizalresults for both
LSW and LSF stationarity tests. (The LSF estimaf®) is based on a crude windowed Fourier
method which only works fol” > 64).

5.2. Power assessment

We consider the following three non-stationary models. Bdeil samples from a concatenated
white noise model where the firgt/2 observations are i.i.dV(0, 1) and the followingT'/2 are
i.i.d. N(0,0%). Clearly, this model is nonstationary but fof ~ 1 it is not easy to detect the
nonstationary nature. Model P2 samples from the LSW spmogivuen byp(z,1) = S1(z) = 1 for

z € (0,1/2] andp(z,1) = Si(z) = o? for z € (1/2,1), otherS; are zero. Model P2’s spectrum
is piecewise constant with a jump increase in variabilitifvaay through at the finest scale. Model
P3 samples from the LSW spectrum givenzdy, 1) = Si(z) = (1 + %) — 202|z — 1/2| and
p(2,2) = S2(2) = (14 40?) — 802|z — 1/2| with all otherp(z, j) = S;(z) = 0 all for z € (0, 1).
Model P3’s spectrum is an example of a signal with ‘smalliaace at each end and a large variance
in the middle controlled by2. The empirical power results are shown in Tables 2 to 4. Fohese
the degree of non-stationarity is controlled &%. If 2 = 1 they all are stationary. Increasing
non-stationarity can be achieved by increasiigand observing increasing power. Generally, for
small sample sizes the tests have low power even when thetationarity is reasonably large (e.g.
18% in Table 2 fofl’ = 64 ando = 2.4). Generally, for higher sample sizes the power is very good.

6. Combining locally stationary processes

Throughout this article we have assumed that time-varyimgal combinations of particular LS
processes themselves are in the same class of processethig satrue for LSF processes can be
established directly from the process definition in (4). Vksfication for LSW processes is more
delicate because time-variation is achieved in LSW praesgough the oscillatory basis function,
thet in v; x—¢ in (5), rather than through the amplitudé,()), in LSF processes.

If we confine ourselves to constant combination functions- « ands; = S then it is easy to
see that the linear combinatich in (2) is itself a LSW process X, } and{Y;} are. The next two
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Table 2. Emp. power (%) for two tests for model P1. I=7(S)=wavelet, and II=7 ( f)=Fourier.

Sample sizeT’

o |32 64 128 256 512 1024 o | 32 64 128 256 512 1024
T 15| 0 1 14 52 91 100, 22| O 13 59 99 100 100
I 171 O 7 27 84 99 100, 23| 2 16 68 100 100 100
J 19| O 9 45 90 100 100 24| 2 18 72 100 100 100
T 15 . . 12 40 64 98| 2.1 . . 38 96 100 100
I 1.7 . . 14 60 97 100| 2.3 . . a7 99 100 100
+ 19 . . 28 89 100 100| 2.4 . . 63 98 100 100

Table 3. Empirical power (%) of test based on 7’(5’) for model P2.
Sample sizeT’

o |32 64 128 256 512 1024 o | 32 64 128 256 512 1024
1.5 1 6 9 11 23 49| 2.1 3 8 16 49 84 98
1.7 1 6 10 24 53 81 2.3 3 9 19 58 91 100
1.9 1 6 12 35 70 97| 2.4 3 1 19 61 94 100

theorems establish the result for more general combinafi€sW processes.
First, we give a name to a concept that links a sequence oésalyr, to a function,a(z),
which appeared first in Dahlhaus (1997) and later in NvSK.

DerINITION 2. Define aclose pair, (a(t), a: ) with positive constanf, to be a function
a : [0,1] — R and a sequence; r such that

t
agT —a (?) ‘ < KT a7

Next, we make clear an assumption that runs through outeartic

AsSsUMPTIONL. Let{¢;} and{n;:} be the innovations sequences associated with two LSW
processesX; andY;. Throughout we assume that the two sequencesrags-orthogonathat is
E(& xnem) = pjk0je0km- This is the usual assumption made in stationary processryhisee
Priestley (1983) and also has been made for LS processeSgasekerson et al. (2010).

To show thatZ; = o X; + B3:Y; is LSW, we first establish that; X; is LSW, and then that the
sum of two LSW processes is itself LSW.

THEOREM1. Let {X; 7}, be a LSW process with spectrym (z, j) = |W;(z)|?, discrete
nondecimated wavelefs); i }, and innovationg¢;  }, satisfying the conditions from Van Bellegem
and von Sachs (2008), page 1883, Definition 1. d_ef0, 1] — R be a function of bounded total

Table 4. Empirical power (%) of test based on 7(.S) for model P3.
Sample sizeT’

32 64 128 256 512 1024 32 64 128 256 512 1024

0 2 4 13 37 84 7 26 65 100 100
10 28 74 99 26 68 100 100
16 47 90 100 27 71 100 100
21 54 96 100 28 73 100 100
23 61 99 100 9. 29 74 100 100
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variation with constani?s, and let(a(t), a;,r) be a close pair with constarit,. Let the quantity
py (2,7) = |a(2)|*px (2, j) satisfy the LSW spectrum conditions from Van Bellegem an®achs
(2008)forallj =1,2,....

Then the array of stochastic proces3g¢s = a; v X: r is a LSW process with spectrum given
bypy(z,j)forj=1,2,....

The proofis in the appendix. Now we show that, under certaimd@ions, the sum of two LSW
processes is LSW.

THEOREMZ2. Let

o0 o0

Xer =YY winthini&inandYer =Y > "y ke (18)

j=1 k j=1 k

be LSW processes with evolutionary wavelet spectra (B)A/S), j) andpy (z, j) respectively.
LetU,r = X; 1+ Y:,r. From Assumption 1 I, ., R,(z)) be a close pair, wher®; (z) is of
bounded total variation, the@l; 1 is a LSW process with spectrum givengy(z, j) + py (2, j) +

2R;(2) {px (2, J)py (2, j)}l/Q.

The proofis in the appendix. The quantiy(z) for LSW processes was considered by Sander-
son et al. (2010) as part of a study of iheerdependence of LSW processes via wavelet coherence.

7. Future directions

This article has introduced the concept of costationartyvdeen two LS time series and proposed
the benefits of relationship discovery, strength and theotifee costationary series itself. The arti-
cle raises several interesting possibilities for furthriaitful study. Here follows some possibilities:
1. Investigation of strategies for finding costationarysions when there are more than two series.
One could consider a large optimisation which merely ergtteeries into the combination and min-
imises theT (-) measure of the combination as above. Alternatively, onéhtrignsider searching
for sub-groups of series which can combine to make statyogeries, which can then themselves
be combined to form an overall stationary series. 2. Whatkglricting to certain classes of LS
processes could assist with theoretical approaches ta§jradistationary solutions, possibly in the
‘model-independent’ covariance domain. For example, wghtréxpand on Example 4 to different
process classes to see what the costationary partner méghtdertain circumstances. 3. Investi-
gation of the costationary-based estimate of cross-caneg that was mentioned in Remark 7. 4.
Development of methods to identify confidence bands for tirelination vectors. 5. An ‘online’
version of our method would clearly be desirable. For exagipdving found a particular synthetic
asset in the costationary asset allocation example, orteylar way for distributing wind energy
in that example, one might be interested in updating theatiosiary vectors progressively as more
data was collected. Depending on circumstances, similaesaf costationary vectors might be
enough to maintain costationarity, or the vectors may neextlve to different values, or indeed
costationarity might be lost. One can envisage a continpdting by re-running the entire costa-
tionary algorithm from scratch. This might well be feasiblecircumstances where the sampling
rate is not too frequent. However, it would clearly be of it to be able to develop a computa-
tionally efficient algorithm that did not have to re-run thhale analysis. 6. Th€ost at algorithm
treats the ‘optimal{«;, 5;) as deterministic functions when, of course, they are swt@has they
depend on théX,, Y;) realizations. Th€ost at Boot st at method could possibly be enhanced
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by recognizing this fact and include resampling frain Y; themselves. 7. More work is needed on
understanding likely choices @f, the complexity constraint. Roughly speaking, the procedie
have adopted is that a value @fis chosen and if no costationarity is found th@rcan be relaxed,
including progressively more complex functions until editnarity is detected (eventually, it must
be given arbitrary functions to combine with). If costatnity is discovered straight away then
C' can be tightened, progressively making the function clasgain less complex functions until
no costationary solutions can be found (although note thatdoes not mean that such a solution
does not exist, just that it cannot be found). Possibly, thstinterestingvalue ofC' is the one on
the boundary between no costationary solutions and oneroe sostationary solutions, and this
says something about the degree of ‘covarying’ betweentbeseriesX; andY;. If the series are
sympathetic then costationarity can be found easily withjpde’ functions. Cross-validation could
be used to discover the ‘boundary’ valuegof

Appendices
A. Specific implementation issues
We describe three specific implementational issue€dait at for the examples given in this paper.

Starting vectors. Asis common in projection pursuit applications we repelgtad Cost at from
random initial starting vectors.

Spectral estimate. We used the spectral estimaﬂp(z) from NvSK, but could have used the Haar-
Fisz estimate from Fryzlewicz and Nason (2006). For Fotingpired spectral estimation
there are several time-varying spectral estimators thakdcbe considered. For example,
Neumann and von Sachs (1997), Adak (1998) or Guo et al. (2003)

Penalty. We restrict the vectors to be piecewise constant with breakg at dyadic fractional
locations. We first attempt to discover costationary vectanich are piecewise constant at
z = 1/2 and then, if this is unsuccessful, we permit breaks at 1/4,1/2 and3/4, and
then successively refine the dyadic grid, at stadlee breaks are permitted ei—ji}f;f.
In the previous section “attempt” means run the algorithemfmany,NV, random starts and
ascertain whether any of them indicate stationarity, itheh proceed to the next finest dyadic
scale of breaks. Limitations: the penalty described hecelide, but the combination vectors
have the advantage of being extremely simple to code/catpubugh their Haar wavelet
coefficients. Alternative penalized combination vectoesewconsidered in Remark 1 above.

Numerical minimizer The minimizer we use ispt i m() from within R with default settings.

All the issues, apart from the second, apply to any form of k& ess with spectrum. For the
second, one needs to replagdy the form of spectral estimate pfrelated to the model in use.

B. Proofs

PROOF (OF EXAMPLE 4). To momentarily simplify notation letv = a4(z). First expand
G?%(z, \) from (6) to obtainG?(z, \) = 0?|1 + ae*|? — o2. Then dividing byr|1 + ae®*|? yields
fy(z,\) =o?/7 — fx(z,)\). WhyisY; a TVARMA(1, 1) process? The denominator of the spec-
trum fy (2, \) is a legitimate AR part. The numerator of the spectrum of a RMPA(1, 1) is given
by

B2 4 B3 + 26061 cos(N) (19)
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(remember that thés depend on). Equating coefficients from (6) and (19) (without tgwhich
goes with ther) gives

ﬂg + ﬂf =1+ a2) - 02/0% and Byf51 = a. (20)

We find conditions omr? for this system to be valid, i.e. the LH equatien). For 83 + 37 > 0 we
can rearrange the LHS of (20) to yield > o2 /(1 + «?). Choosingr? > o2 always works.

PrROOF (OF THEOREM1). We pick one fixed scalge {1,2,3,...}. The LSW process at this
scale is given by (we can omit thg

oo

Xt,T: Z wk;ka—tfk- (21)

k=—o0

SinceX, r is a LSW process the quantity.r is part of a close pair withl”(z) with constantR;,
say. The support of wavelet; ; is finite on the domait = 0,...,L; — 1 and so

tJrLj*l
Xt,T = Z wk;ka—tfk- (22)
k=t
The quantity we are interested in is
t tJrLj*l
arr Xy = {a (f) + Rle} ; Wi, 7Yk — €k (23)
t
= {0, (?) + RQTl} wﬂ/’oft (24)
t+1 -1 -1
+ <a T + R3T™" + RoT Wi+1P161+1 (25)
t+2 _ _
+ {a (—T ) +2R3T ™' + RoT 1} Wit2¥2€i42 (26)
. (27)
t+L;—1 _ _
{a (#) +(L; — )RsT~ '+ RoT 1} Wiy, 1YL, 1§41, -1-(28)

Rearranging gives, v X; = Y; v + R2 Xy, 1/T + R3 B, /T whereY, r andB, 1 are given below.
The process

Yir = awihoés + apriwer1P1&er + o+ @y, 1w n, 1%, —16§ern,-1 - (29)
41
= Y wrvrid, (30)
k=t

where(u(t), us ) is a close pair where(z) = a(z)W (=), andu is of bounded variation as it is the
product of two functions of bounded variation.
The proces$, r is given by

Bir = (wip1t1€e1 4 2wipotoiyo + -+ wipn, 1%L, 1&41,-1) Rs/T. (31)
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The proof thaiz, X r is LSW can be completed by noticing that

s (3) (1)

asT — oo. This part of the proof is completely non-stochastic aneesally mapsw; to a;w;
everywhere, and due to the original ‘close pair’ link in th&W defintion (formula (10) in NvSK).
The same process can be applied to all scales simultaneously

As a corollary note that botX, /T and B, r /T are asymptotically zero in the mean square
sense. This is becausg r is obviously a LSW process with covariancesgf(z, 7) hence

<

E{(T7'Xu1)"} =772 {e(t/T,0)+ O(T™")} >0,

asT — oo using Proposition 1 of NvSK. A similar argument applied3gr /T which can be seen
as the LSW procesX, 1 with its (square-root) spectrum multiplied by a linear ftioo and hence,
by this theorem, a LSW process.

PROOF (OF THEOREM?2). Define
ik = T k& k + Yj kN k- (33)

Then the quantity/; - can be written

Uir = Z Z ik Wj k—t- (34)
ik
From the properties of¢; » } and{n; »} we have thaEu; , = 0 and
var(pin) = E(uy) (35)
= a5 var(&ie) + v pvar(nie) + 225.5Y5,6c0v (& ks Mjok) (36)
= JC?k + y?,k + 235 kY5 PGk = 1/32»,;C (37)

Assume, for the moment, thajf,C > 0 for all j, k. Now lete; ,, = v; ku]k Clearly,E(¢; ) = 0
andcov(€; i, €e,m) = 0j.¢0km- In other words{e; ,} satisfies the conditions for being an LSW
innovation sequence. Hence,

Uir = Z Z Vj kW) k—t €5 k- (38)
7k

Case (a). I, andn,,, are independent for all, k, ¢, m thenp; , = 0 for all j,%k. Since
(zjﬂk,p¥2(z,j)) and(yj_,k,p;/Q(z,j)) are close pairs we have

Vik = T, +yik (39)

= px(k/T.5)+ O(T™") +py (k/T,j) + O(T 7). (40)
By Fryzlewicz (2003) p. 93v%,, px (2, ) + py (2, )) is a close pair and the result is proven.
Case (b.) Here we have

V?k = x?k + yjzk + 225, kY5,k 05,k (41)

= px(k/T.5) +py(k/T.5) + 25 (k/T. j)py/ > (k/T. §)R; (k/T) + O(T ") (42)

and again, the result is proven (bounded variation is pvesdry sums, products and square roots).
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C. Actual estimator used for our LSW examples

For our LSW examples we use the simple time-average of theafad simpleL;, estimator of
S(k/T) from NvSK whose consistency is demonstrated as follows.

THEOREM3. Let X, r be a stationary Gaussian LSW process satisfying< D27 for all j
for someD > 0. ThenT~' 3"} 1, is a consistent estimator &

PROOF (OF THEOREM3). We are interested in estimation of the vecoe= (S1,...,5,)T
where here theS' are constants wrt because of stationarity. To begin we follow the idea of Fry-
zlewicz and Nason (2006) and consider estimation offtlel vector quantitys = AS whereA is
theJ x J inner product matrix of autocorrelation wavelets from Nv3¥e letd = T-! ZZZI I,
be our estimator of wherel, = (I1x,...,1)" is the raw wavelet periodogram from NvSK.

NVSK prove thatE(I;) = AS; + O(T~!). Hence in the stationary situatid@{(I;) = AS +
O(T~1) for all k and thuss is asymptotically unbiased fg$. Further, they also demonstrated
that the variance af;, call '[hISO' is (asymptotically) constant, i.e. this is the variancé¢hef;jth

component of each term iR, It does not depend an
For consistency it only remains to show tkat(3,;) — 0 asT — oo for eachj. The variance

of 3 is given by:

var(f3;) = 2Zvaulr k) + 2T~ 22 Z cov(Ljk, Ljg). (43)

k=1/{=k+1

The first term of the RHS of (43) clearly tends to zer@as;> oo as the variance is finite. Fryzlewicz
and Nason (2004) show thatix) = cov (I, I;z) = 2 (X% ¢ (&,7) U (7 +£—k))?
O(277/T), wherec(t/T, 7) is the localized autocovariance afig(7) is the autocorrelation wavelet
from NvSK and{%; ;. } are the discrete nondecimated wavelets as defined in tigdurction.

However,¥ ;(7) is compactly supported with suppdtt, b) which depend orj (which isfixed)
here (precise values af andb are to be found in Eckley and Nason (2005)). Furtler(r) <
¥;(0) = 1: the inequality becausg; is an autocovariance function and the equality from NvSK.

For stationary processes the time-varying autocovariafi¢&’, 7) = ¢(r), the regular autoco-
variance. NvSK show that, necessarily, for stationary LSWtpsse$ 2 |¢(7)| < oo. Using
the compact support of ;(7) means that the first term ¢x) can be written:

2 2

2 (Z’; ((f (’2) gy STV (T + € — k:)) <2 (Zi:a le{T — (¢ — k:)}|) . Then from (43) we sum
from/ =k +1toT asT — oo, and sinced_ |¢(7)| < oo the sum over in (43) is finite by the
comparison test.
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