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Abstract

This article introduces a fast cross-validation algorithm that performs wavelet shrink-

age on data sets of arbitrary size and irregular design and also simultaneously selects

good values of the primary resolution and number of vanishing moments.

We demonstrate the utility of our method by suggesting alternative estimates of

the conditional mean of the well-known Ethanol data set. Our alternative estimates

outperform the Kovac-Silverman method with a global variance estimate by 25% be-

cause of the careful selection of number of vanishing moments and primary resolution.

Our alternative estimates are simpler than, and competitive with, results based on the

Kovac-Silverman algorithm equipped with a local variance estimate.

We include a detailed simulation study that illustrates how our cross-validation

method successfully picks good values of the primary resolution and number of van-

ishing moments for unknown functions based on Walsh functions (to test the response

to changing primary resolution) and piecewise polynomials with zero or one derivative

(to test the response to function smoothness).

Keywords: cross-validation; Ethanol data; fast wavelet shrinkage updates; Kovac-Silverman

algorithm.

1 Introduction

Wavelet shrinkage is a technique for estimating curves in the presence of noise which is

appealing because it is nearly minimax for a wide range of functions, computationally

practical and spatially adaptive (see the seminal work of Donohoet al. (1995)). This paper

assumes a familiarity with wavelets and wavelet shrinkage up to the level of Nason and
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Silverman (1994). We also rely heavily on developments in Kovac and Silverman (2000).

For a recent survey of research in the area see Vidakovic (1999) or Abramovich, Bailey and

Sapatinas (2000).

Most early wavelet shrinkage techniques relied on Mallat’s (1989) pyramid algorithm

for computing the discrete wavelet transform (DWT) which in its standard form requires

data to be equally spaced and contain2J values. For this limited data situation wavelet

shrinkage works by taking the DWT, then thresholding or shrinking the coefficients, and

then taking the inverse transformation. A great deal of research effort has been expended

on methods to choose the threshold value of wavelet shrinkage, again see Vidakovic (1999)

for an excellent overview. However, the threshold, albeit important, is but one parameter

involved in wavelet shrinkage. For successful shrinkage the following criteria need also to

be chosen well:

the primary resolution Thresholding of coefficients is applied to coefficients whose res-

olution level is equal to or finer than the primary resolution. The primary resolution

parameter is similar to the usual bandwidth parameter in linear smoothing methods.

For wavelet shrinkage choice of the primary resolution was first investigated by Hall

and Patil (1995). Hall and Nason (1997) suggest that actually choosing the primary

resolution on a continuous scale may be advantageous. However, even if the primary

resolution is to be chosen on a discrete scale, as in standard wavelet shrinkage, it is

critical to use good values (just as the bandwidth is critical in linear smoothing).

the analysing wavelet.Very little detailed attention has been paid to the problem of which

wavelet should be used in wavelet shrinkage. The Daubechies’ (1988) series of com-

pactly supported wavelets provide a family of mother wavelets of varying smooth-

ness, V , whereV is the number of vanishing moments and V 2 C�V (R) where

� � 0:2 andC�(R) is the space of� times continuously differentiable functions on

R. We only consider the Daubechies’ extremal phase wavelets in this article ranging

from the discontinuousV = 1 Haar wavelet to the smoothV = 10 wavelet. Let

hV denote the quadrature mirror filter associated with Daubechies’ extremal phase

wavelet of orderV andNhV be the length of this filter.

The type of wavelet transform is also important. For example, the translation-invariant

transform of Coifman and Donoho (1995) often gives better results than using the

DWT.

how the threshold is applied Early work described in Donohoet al. (1995) considered

two methods for applying the threshold to wavelet coefficients, the “keep-or-kill”
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hard thresholding (similar to model selection) and “shrink-or-kill” soft threshold-

ing. Other techniques have been suggested such as the firm thresholding of Gao

and Bruce (1997) and more recently Bayesian wavelet shrinkage which also has a

thresholding interpretation, see Chipmanet al. (1997) or Abramovichet al. (1998).

This article proposes a fast-update cross-validation method which aims to find good com-

binations of the threshold, number of vanishing moments (wavelet smoothness),V , and

primary resolution parameters. Often there is no unique “optimal” combination as the

parameters interact and sometimes quite different combinations give similar results. The

cross-validation method described below could be extended to incorporate different choices

of threshold application and type of wavelet transform but it is not clear that such choices

could be implemented in a fast-update algorithm. Cross-validation for threshold selec-

tion in wavelet shrinkage was proposed, especially for functions sparsely represented by

wavelets, by Nason (1996).

Generalized cross-validation for wavelet shrinkage was proposed by Jansen, Malfait

and Vial (1997) and other cross-validation techniques were proposed by Wang (1996) and

Weyrich and Warhola (1998) but of course cross-validation as a general technique has been

around for a very long time; see Stone (1974) for further details. Recently, papers such

as Hall and Turlach (1997), Sardyet al. (1999) and Kovac and Silverman (2000) have

adapted the wavelet shrinkage methodology to data sets with arbitrary size and irregular

design. See also Antoniadis, Gr´egoire and Vial (1997) and Antoniadis and Pham (1998)

for work on fastlinear wavelet methods for random designs. We should also mention that

recent algorithms based on the lifting transform show great promise for curve and surface

estimation for irregular data (see for example, Daubechieset al. (1999) for an excellent

review).

Our cross-validatory method is a development of Kovac and Silverman (2000) and as

such works with data sets of irregular design and arbitrary size but ours additionally gives

useful information on which wavelet and primary resolution to use as well as choosing the

threshold value.

1.1 Wavelet shrinkage and the Kovac-Silverman algorithm

First we establish some notation and describe the data model specified by Kovac and Sil-

verman (2000). We suppose thatf(x) for x 2 (0; 1) is the function that we wish to estimate

and that we observen data pointsg(xi) according to the model

g(xi) = f(xi) + �i (1)
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wheref�ign�1i=0 is i.i.d. noise with mean zero and variance�2 andfxi 2 (0; 1)gn�1i=0 are not

necessarily equally spaced.

Kovac and Silverman (2000) propose choosing a new equally spaced gridt0; : : : ; tN�1

on (0; 1) whereN = 2J for someJ 2 N and interpolate the observed data onto the new

grid. They propose choosingtk = (k+0:5)=N for k = 0; : : : ; N�1 and chooseN(= 2J)

such thatJ = minfj 2 Z : 2j > ng. Throughout their article they linearly interpolate the

original data to new values,yk, on the grid by

yk =

8>>><
>>>:

g0 if tk � x0

gi + (tk � xi)
gi+1�gi
xi+1�xi

if xi � tk � xi+1

gn�1 if tk � xn�1,

(2)

wheregi = g(xi) andk = 0; : : : ; N�1, although they admit that higher order interpolants

or other reweighting schemes might also be of some use. Writing the original and inter-

polated data as vectorsy = (y0; : : : ; yN�1) andg = (g0; : : : ; gn�1) the linear transform

described by (2) can be written in matrix form by

y = Rg;

where the interpolation matrixR depends ont andx. Each row ofR always contains either

one or two non-zero entries which always sum to one. Interpolation to a grid is a useful

technique but certainly not new see, for example, Jones and Lotwick (1983) or Silver-

man (1986). Kovac and Silverman (2000) then apply wavelet shrinkage to the interpolated

data,y, which first involves taking the DWT by

w =WV y;

whereWV is theN � N orthogonal matrix associated with Daubechies’ extremal phase

wavelet withV vanishing moments (in practice Mallat’s fast algorithm is used but the

matrix multiplication representation is mathematically convenient).

Given model (1) above and in particular the i.i.d. assumption on the noise the covariance

matrix,�Y of the interpolated data is given by

�Y = �2RRT :

Kovac and Silverman (2000) exploit the fact that for the linear interpolation scheme de-

scribed above�Y is actually a band matrix. After applying the DWT toy Kovac and

Silverman (2000) show that the variances of the individual wavelet coefficients can be
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computed exactly, up to knowledge of�2 which has to be estimated from the data, using

a fast algorithm of computational orderO(b2J) whereb = max(bY ; NhV ) andbY is the

bandwidth of the matrix�Y . A useful consequence of Kovac and Silverman’s work is that

the variance of all the wavelet coefficients can be computed with no more effort than com-

puting the wavelet coefficients themselves, which isO(NhV 2
J) and also fast. Vannucci

and Corradi (2000) also present a fast algorithm to compute the variance-covariance matrix

of the wavelet coefficients and link it to the two-dimensional DWT.

Kovac and Silverman (2000) show how knowledge of the wavelet coefficient variances

permits extension of the universal and SURE thresholds of Donoho and Johnstone (1994;

1995) to their interpolated data situation. We are also interested in choosing the threshold,

but by cross-validation, and also simultaneously selecting good values for the number of

vanishing moments,V , and primary resolution,p. The next section shows that it is possible

to apply full leave-one-out cross-validation to the Kovac-Silverman set-up and still retain a

fast algorithm.

2 Leave-one-out cross-validation

Cross-validation is a well-established technique for assessing model prediction error and,

in our situation, selecting good choices of the threshold, number of vanishing moments,

and primary resolution. In the following sections we describe how to obtain a leave-one-

out estimate of the prediction error. That is, our wavelet shrinkage estimator,f̂t;V;p(x) with

thresholdt, number of vanishing moments,V , and primary resolutionp aims to minimize

the mean integrated squared error (MISE)

M(t; V; p) = E

Z 1

0

n
f̂t;V;p(x)� f(x)

o2
dx:

With the methodology below we could easily choose another form of loss function. In par-

ticular, with wavelet shrinkage, we might be interested in doing better near known discon-

tinuities or inhomogeneities for example. However, using MISE for now, we can estimate

M by

M̂(t; V; p) = n�1
n�1X
i=0

n
f̂�it;V;p(xi)� gi

o2
;

where f̂�it;V;p is an estimate off constructed from all the data except theith point. To

find good values of(t; V; p) we minimizeM̂ . However, we do not believe that the first

minimizer we come across is in any sense “optimal”. Unlike, say, the cross-validation

score developed in Nason (1996) the scoreM̂ has multiple minima and as many as possible
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should be investigated further. The next few sections describe the construction and efficient

computation of the leave-one-out predictorf̂�it;V;p(xi) which estimatesf(xi) using all the

original data points apart from(xi; gi). The key to the efficiency is that removing theith

original data point only changes grid points and thus only wavelet coefficients local toxi.

2.1 Leave-one-out and interpolation

Removing theith original data point only has a very local effect on the interpolated data

points because with linear interpolation only those grid points that lie in an interval with

theith point as one of the end points are affected. For these points the interpolated pointtk

is either to the left or the right ofxi. If i = 0 andx0 is removed (ori = n� 1 andxn�1 is

removed) then new grid points to the left ofx1 are updated to take the valueg1 (or those to

the right ofxn�2 take the valuegn�2).

Assume thatxi�1 � tk � xi. We can compute the value of the updated interpolated

points�yk from the old onesyk by the simple formula

�yk = yk + (tk � xi�1)Li;

where

Li =
gi+1 � gi�1
xi+1 � xi�1

� gi � gi�1
xi � xi�1

:

For each removed point,Li only has to be computed once and only�yk local to theith

original point have to be recomputed. IfN is chosen well then only a fewyk need to be

updated. We record the indices of thosetk whoseyk value has been updated and pass them

onto the next stage.

2.2 Updating the wavelet transform

The previous section tells which of theyk; k = 0; : : : ; N � 1 have changed. The Mal-

lat (1989) DWT algorithm is a recursive algorithm which takes thefykgN�1k=0 as input and

computes coarser versions (called father wavelet coefficients) and detail coefficients be-

tween successive levels of coarse coefficients. For the father wavelet coefficients the for-

mula for computing a coarser approximation to the datacj�1 from a finer approximation

cj is given by

cj�1` =
X
k

hV (k � 2`)cjk: (3)

The finest scale approximation ofcJk = yk initializes the algorithm and then coarser ap-

proximations,cJ�1; cJ�2; : : : ; c1; c0 are generated using successive applications of (3).
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The mother wavelet coefficients,dj�1 represent the detail lost when moving from a finer

scalecj to a coarser scalecj�1 and are computed by a similar formula to (3) except that

the smoothing filterhV is replaced by a “detail extraction” filtergV , we refer to Nason and

Silverman (1994) or Vidakovic (1999) for further details.

The key point for efficiency is that changing a singleyk only affects those wavelet

coefficients which are derived from theyk and only those coefficients local totk will be

changed. In summary, changing ayk changes very few wavelet coefficients.

More specifically, if the single father wavelet coefficientcjk is changed then only the

coarser father wavelet coefficientscj�1` where

lk �NhV + 1

2

m
� ` �

jk
2

k
(4)

need to be recomputed (heredxe is the smallest integer greater than or equal tox, andbxc
is the largest integer less than or equal tox). Recall that the DWT is recursive starting with

thefykgN�1k=0 as the input so formula (4) shows which coefficients need to be recomputed

at a coarser resolution level and then supplies the indices of those changed recursively to

the same routine for the next coarsest level.

Further efficiency gains can be achieved by noting the range of the changedcjk coeffi-

cients and only recomputing those coarsercj�1 that are involved. For example, ifcjk has

changed forkmin � k � kmax then we only need to recomputecj�1` for

lkmin �NhV + 1

2

m
� ` �

jkmax

2

k

in other words1
2
(kmax�kmin+NhV +1) coarser coefficients at resolution levelj�1 need to

be computed fromkmax�kmin+1 coefficients at levelj. Since each coefficient computation

takesO(NhV ) the recursive update of wavelet coefficients is effectivelyO(NhV J) and

hence extremely fast (i.e. effectivelyO(1) with respect toN andn). Note that a similar

algorithm can be developed for the DWT inversion.

2.3 Updating the wavelet coefficient variance factors

Given the covariance matrix�Y of y the wavelet coefficients’ covariance matrix is given

byWV �YW
T
V . Removing theith point alters the covariance matrix�Y = RRT because

theN � n matrixR changes to aN � (n � 1) matrix �R. Let rk denote thekth row ofR.

DefineRi = fk : rk has a non-zero entry at positionig. Then rows not inRi in bothR

and �R will be the same except that those in�R will be one entry missing where there was a

zero inR. However, rowsk 2 Ri will be different inR and �R. Therefore, the difference

7



Di between�Y and��Y = �R �RT will be zero apart from a cross-shaped region where any

row or column ofDi in Ri can, in general, be non-zero. However, since both�Y and��Y

are band matrices most of the entries in the cross-shaped region inDi, except those close

to the main diagonal (less thanb away from the main diagonal) will be zero.

Summarizing we can compute the covariance matrix��Y for the interpolated data from

�Y using

��Y = �Y +Di;

whereDi is almost all zero apart from some of the rows/columns near the main diago-

nal and inRi. To compute the wavelet coefficient variance for the new interpolated data

we only need to considerWVDiW
T
V since we already knowWV �YW

T
V from the Kovac-

Silverman algorithm. Computation ofWVDiW
T
V can be easily performed using the updat-

ing wavelet transform described in the previous section since multiplication byW orW T

is simply an application of the DWT. Since most of the entries in rows or columns ofDi

are zero the updating algorithm can be executed first with a zero transform, and then with

those non-zero entries in each row/column ofDi. Again application of such a transform is

extremely fast:O(NhV J).

2.4 Thresholding, inversion and optimisation

Using the above information about which wavelet coefficients’ variance change one can

identify those coefficient positions where the quantity�jk = d̂jk=�̂jk has changed (where

�̂2jk = �̂2
jk are the updated variances of the wavelet coefficients,
jk are the variance

factors as in Kovac and Silverman (2000),�̂2 is some estimate of�2 andd̂jk are the up-

dated empirical coefficients.) In wavelet shrinkage an estimate of� is typically computed

by using a robust estimator such as the median absolute deviation (MAD) of the wavelet

coefficients at the finest level, divided by 0.6745. The estimate�̂ can itself be updated

quickly by keeping track of which coefficients in the finest resolution level change.

For thresholding after point removal we only need note which�jk have changed. If all

of those�jk that changed were previously thresholded, and if after pointi removal they

are subsequently all smaller in absolute size than the threshold then the estimate does not

change. This means that inversion does not have to be performed and the prediction error

simply taken from the non-removed point estimate. However, if any�jk have changed their

status since last time the estimatef̂t;V;p(xi) has to be recomputed using the efficient inverse

algorithm described in section 2.2.

For optimisation we have found that a grid search algorithm works extremely effectively

for finding minimal values ofM̂ . We also have used a golden section search method but
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Table 1: Table showing values of̂M (�1000 to 3 s.f.) with t � 3:11 fixed for various
values of the primary resolution,p, and number of vanishing moments,V .

Number of vanishing moments,V
p 1 2 3 4 5 6 7 8 9 10
0 328 204 228 192 260 167 195 117 133 217
1 320 160 138 196 165 167 143 127 133 160
2 221 165 112 151 130 132 152 98 133 126
3 148 102 122 133 115 131 129 107 118 116
4 154 102 127 131 119 119 134 124 109 103
5 142 121 121 126 129 124 117 115 111 102
6 135 138 138 127 130 139 143 142 135 121

this tends to get stuck in one of the multiple minima. Another strategy that we adopt is

to condition on the universal thresholdt� =
p
2 logN and then optimiseM̂(t�; V; p) to

find good values of(V; p). Then using the good values of(V; p) we optimise over the

thresholdt. This strategy is effective in practice because the universal threshold makes a

useful starting value for the optimiser as its value is independent of(V; p).

3 Example: the ethanol data

Before we describe a simulation study we present an applied example in detail. The well-

studiedethanol data from Brinkman (1981) has been analysis by Clevelandet al.(1993)

and Hastie (1993) but more importantly for our purposes by Kovac and Silverman (2000).

The data consist ofn = 88 measurements from an experiment where ethanol was burned

in a single cylinder engine. The concentration of the total amount of nitric oxide and

nitrogen dioxide in engine exhaust, normalized by work done by the engine is related to

the “equivalence ratio”, a measure of the richness of the air ethanol mixture. Note that the

range of thex-axis or “Equivalence ratio” variable is(0:535; 1:232) so this was linearly

shifted to(0; 1). Theethanol data are plotted in the top left-hand corner of Figure 1.

For the purposes of this example we fixed the threshold valuet to be equal to the

universal threshold value of Donoho and Johnstone (1994). The default Kovac-Silverman

method choosesN = 128 equally-spaced grid points to interpolate the original data. Thus

the universal threshold computed wast =
p
2 logN � 3:11. With this threshold fixed

Table 1 shows our computed value of̂M for all values of the primary resolution ranging

from 0 to 6 and for numbers of vanishing moments (smoothness) ranging from 1 to 10 from

the Daubechies “extremal phase” series. From the table it is clear that the lowest value of

M̂ occurs forV = 8; p = 2 whereM̂ = 98. However,V = 10; p = 5 andV = 2, p = 3

or 4 might also be of interest (one could continue to higher values ofM̂).

Next, we conditioned on the three different pairs of(V; p) and optimized over the
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Figure 1: Top left: ethanol data withNOx emission versusEquivalence ratio .
Clockwise from top right: estimateŝft;V;p(x) for (t; V; p) equal to(3:11; 8; 2), (3:13; 10; 5)
and(2:88; 2; 3).

threshold value to minimizêM . In the cases(8; 2), (10; 5) and (2; 3) the minimizing

thresholds were3:11, 3:13 and2:88 all of which are not actually too far from the universal

threshold. The estimated curveŝft;V;p(x) are shown in Figure 1. The top-right plot in

Figure 1 shows our “best” estimate for the underlying curve.

Kovac and Silverman (2000) use Daubechies’ “extremal phase” wavelet withV = 5

vanishing moments and a primary resolution of 3. Referring to Table 1 again one can

see that in terms of minimizingM this combination is only ranked 31st out of all the

60 combinations tried. Therefore we obtain an approximate 25% improvement on Kovac

and Silverman by using our best combination. The improvement using our search method

is also demonstrated by comparing the plot for our best estimate and their two best in

their bottom row in Figure 1 of Kovac and Silverman (2000). Both of their plots use a

(V; p) combination of(5; 3) with the universal threshold. Their bottom-left uses aglobal

estimate of variance, their bottom-right uses alocal estimate of variance by noticing that

the variance of theNOxvariable decreases withEquivalence ratio . Their use of the

more complex local variance estimate is motivated by the fact that their estimate with the

global variance contains a small spike at about 0.8 (like the one in our bottom-left plot of
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Figure 1). However, after examining our top-right plot of Figure 1 which tracks the double

bump and does not have a spike at 0.8 we claim that actually Kovac and Silverman (2000)

need not go to the trouble of forming a local variance estimate but merely need change the

number of vanishing momentsV to 8 and their primary resolution to2. We repeated the

Kovac-Silverman (2000) analysis with the new number of vanishing moments and primary

resolution and the resulting estimate is significantly better than theirs and looks more like

our top-right plot in Figure 1 (note it is not exactly the same since they use soft thresholding

and chooset to be exactly the universal threshold, whereas we use hard thresholding and

optimize the value oft).

In no way are we trying to denigrate Kovac and Silverman (2000). Indeed, this paper is

based on their extremely useful methodology. However, we have used the above example

to stress that choice of number of vanishing moments and primary resolution is extremely

important, probably as important as choice of threshold but considerably neglected by much

of the literature and available software.

4 Simulation study

We performed several simulations that show that once the number of vanishing moments

and primary resolution are correctly selected that our cross-validation method produces

broadly similar results toGlobalSURE type thresholding (and also universal thresholding,

although the goal of universal thresholding is not MISE minimisation). TheGlobalSURE

thresholding method was introduced by Nason (1996) and is a single threshold version

of the level-dependent technique based on Stein’s unbiased risk estimation for wavelet

shrinkage introduced by Donoho and Johnstone (1995).

However, as theethanol example demonstrates in the previous section it is impor-

tant to show that methodology can adapt to features such as the smoothness of the under-

lying function or the scale of the features (which require particular choices of numbers

of vanishing moments or primary resolution). The first simulation (“adapting to primary

scale”) concentrates on choice of primary resolution, the next three simulations (“adapting

to smoothness”) concentrate on choice of number of vanishing moments.

The “adapting to smoothness” simulations fix the threshold to be the universal thresh-

old using sample sizes ofn = 100; 200 and500 and for each sample size perform 10

simulations to find the best combinations of number of vanishing moments and primary

resolution. In each case we use Gaussian noise with zero mean and the variance,�2, is

specified in each section below. The “adapting to smoothness” simulations demonstrate

how the primary resolution is most influenced by discontinuities in lowest-order deriva-
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tives and that the number of vanishing moments chosen by the cross-validation algorithm

is influenced by the underlying smoothness of the true function. However, these results are

not hard and fast and occasionally the cross-validation technique gets it wrong.

4.1 Adapting to primary scale

The underlying true function for this simulation is the Walsh functionW (p; x) defined on

x 2 (0; 1) which is a piecewise constant function taking only the values0 or 1 starting at0

and then switching to1 and then back to0 and so on. The number of switches in the interval

is parametrised byp and the distance between each switch is1=p. A convenient way to

think about Walsh functions is as a sine wave that has been “blocked”! The parameterp is

more formally known as thesequencynumber of the Walsh function and it is akin to the

frequency parameter of a sine wave, but not exactly the same as the Walsh function is not

always periodic on(0; 1). See Stoffer (1991) for further information on Walsh functions

and their applications in statistics.

Table 2 demonstrates that the selected primary resolution increases with the fineness of

the true Walsh function although there appears to be quite some variability in the selected

primary resolution values atp = 2 2
3
. However, notice that for (e.g.)p = 8 �2 2

3
the width of

the Walsh peaks is3=64 and so a primary resolution matching this of 4 or 5 (corresponding

to nearest widths of 8/256 or 4/256 of the Haar wavelet at this resolution level) might

have been expected. However, our algorithm chooses primary resolution of 7, and indeed

the other primary resolutions also “over-estimate” in this way. This effect is presumably

because of the addition of noise which causes the procedure to be conservative and use

finer scale wavelets. Conceptually, the best wavelet basis for representing this set of Walsh

functions should be the Haar basis. Table 3 shows that our cross-validation method nearly

always selects Haar to be the best basis in this situation.

The ten simulations in Tables 2 and 3 are based on sample sizes ofn = 200 with noise

variance of�2 = 0:0012. The deliberately large signal to noise ratio in this simulation

is to verify that in low-noise situations the cross-validation procedure chooses reasonable

values of the primary resolution and number of vanishing moments. Clearly as the signal

to noise ratio decreases our procedure will choose the “best” values far less often. We leave

to further work the interesting questions: for which values of the signal to noise ratio does

it become very hard to select good parameters and whether competitors such as SURE can

do a better job.
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Table 2: Best primary resolution for Walsh functionW (p; x) at sequency numberp = q2 2
3
.

Simulation Number
q 1 2 3 4 5 6 7 8 9 10
1 1 0 0 1 2 6 0 3 3 2
2 5 4 6 4 4 4 4 4 4 7
4 6 6 6 6 6 6 6 7 6 6
8 7 7 7 7 7 7 7 7 7 7

Table 3: Best number of vanishing moments for Walsh functionW (p; x) at sequency num-
berp = q2 2

3
.

Simulation Number
q 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 4 1 1
8 1 1 1 1 1 1 8 1 1 1

4.2 Adapting to smoothness: no derivatives

The underlying true function for this example is

f0(x) =

8>>><
>>>:

x for x 2 [0; 1
2
);

1� x for x 2 [ 1
2
; 1]

0 elsewhere.

This function is continuous on[0; 1] but is not differentiable everywhere (the first derivative

has a discontinuity at1
2
). The variance of the noise for these simulations�2 = 0:012. The

best primary resolutions and numbers of vanishing moments for each simulation/sample

size combination are shown in Tables 4 and 5. Over all sample sizes the modal number

of vanishing moments is 3 and the associated approximate wavelet smoothness is3� =

3 � 0:2 = 0:6. However, at smaller sample sizes the wavelet with 7 vanishing moments

is selected 4 times out of 10, as many times as theV = 3 wavelet. The modal primary

resolution appears to be 4 butp = 3 is also often chosen.

Table 4: Best primary resolution for function with no derivatives at different sample sizes.
Simulation Number

Sample Size 1 2 3 4 5 6 7 8 9 10
100 3 4 3 3 3 4 4 4 2 4
200 3 2 3 4 4 3 4 4 5 3
500 4 4 4 4 4 4 4 5 3 4
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Table 5: Best number of vanishing moments for function with no derivatives at different
sample sizes.

Simulation Number
Sample Size 1 2 3 4 5 6 7 8 9 10

100 7 3 3 2 3 8 7 7 7 3
200 7 3 3 2 6 3 3 3 9 3
500 2 3 3 7 2 3 3 9 2 7

Table 6: Best primary resolution for function with one derivative at different sample sizes.
Simulation Number

Sample Size 1 2 3 4 5 6 7 8 9 10
100 3 2 2 2 2 2 2 0 2 2
200 2 2 2 2 2 3 2 2 2 2
500 2 2 2 2 4 2 2 4 2 2

4.3 Adapting to smoothness: one derivative

The underlying true function for this example is

f1(x) =

8>>>>>><
>>>>>>:

x2

2
for x 2 [0; 1

4
);

�x2

2
+ x

2
� 1

16
for x 2 [ 1

4
; 3
4
);

x2

2
� x+ 1

2
for x 2 [ 3

4
; 1]

0 elsewhere.

This function is continuous on[0; 1], its first derivative is continuous on[0; 1] but the first

derivative is not differentiable everywhere (the second derivative has discontinuities at1

4

and 3

4
). The variance of the added noise for these simulations was�2 = 0:0012. The best

primary resolutions and numbers of vanishing moments for each simulation/sample size

combination are shown in Tables 6 and 7. Over all sample sizes the modal number of van-

ishing moments is 9 and the associated approximate wavelet smoothness is approximately

9� = 9 � 0:2 = 1:8. However, at smaller sample sizes the wavelet with 10 vanishing

moments is selected 5 times out of 10. It is interesting to note that the smoothness of the

wavelets selected for the example with one derivative is approximately twice that in the ex-

ample with no derivatives, which is what one would expect. The modal primary resolution

Table 7: Best number of vanishing moments for function with one derivative at different
sample sizes.

Simulation Number
Sample Size 1 2 3 4 5 6 7 8 9 10

100 8 10 9 10 10 9 10 8 10 9
200 9 9 9 9 9 9 10 9 9 9
500 9 9 9 9 9 9 9 10 9 9
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Table 8: Best primary resolution for function with mixed derivatives at different sample
sizes.

Simulation Number
Sample Size 1 2 3 4 5 6 7 8 9 10

100 4 4 4 3 4 4 4 4 4 5
200 4 4 4 4 5 4 4 4 4 4
500 5 4 5 5 5 5 5 5 5 5

Table 9: Best number of vanishing moments for function with mixed derivatives at different
sample sizes.

Simulation Number
Sample Size 1 2 3 4 5 6 7 8 9 10

100 8 8 8 8 7 7 3 8 4 8
200 7 7 10 8 3 8 7 7 7 4
500 6 3 3 7 3 7 6 10 3 8

is 2.

4.4 Adapting to smoothness: mixed derivatives

The underlying true function for this example mixes the two functions,f0(x) andf1(x)

from the previous two examples.

fmixed(x) = f0(2x) + f1(2x� 1):

This function is continuous on[0; 1] but the first derivative has a discontinuity at1

4
and

the second derivative has a discontinuities at5

8
and 7

8
. The variance of the added noise

for these simulations was�2 = 0:012. The best primary resolutions and numbers of

vanishing moments for each simulation/sample size combination are shown in Tables 8

and 9. The modal primary resolution is 4 for the smaller sample sizes (agreeing with the

primary resolution for the “no” derivative case in section 4.2) but 5 for then = 500 sample

size. The primary resolution is most greatly influenced by the lowest-order derivative,

as one might expect from the work of Hall and Patil (1995). The number of vanishing

moments at then = 500 sample size is 3 for four simulations and around 6/7 for most of

the others. At lower sample sizes the number of vanishing moments is generally larger than

the ones selected for thef0(x) example, but not as high as for thef1(x) example which

indicates that maybe some sort of compromise is being made.
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5 Conclusions and further work

In this article we have introduced a fast cross-validation method that performs wavelet

shrinkage on data sets of irregular design and arbitrary size and also selects good values of

the number of vanishing moments and primary resolution.

Our cross-validation method has been shown to work well on theEthanol data set

and on simulated data where the scale (primary resolution) and smoothness (vanishing mo-

ments) of the underlying true function can be controlled. Further work could be performed

to investigate the conditions under which our method would break down both in terms of

diminishing signal to noise ratio and in non-Gaussian and correlated noise situations. Our

method could easily be extended to use level-dependent thresholds which would be of use

with correlated data. It would also be interesting to see how well a MISE estimator such as

GlobalSURE would perform in place of the cross-validation estimate.

Herrick (1999) uses cross-validation with the Kovac-Silverman (2000) algorithm in the

two-dimensional case, although not using the fast version described above and as such

the implementation is slow. It remains to be seen whether a fast version is plausible: the

fast point insertion/deletion techniques of Green and Sibson (1978) for the Voronoi dia-

gram/Delaunay triangulation used for data interpolation would certainly be of value.
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