M3S4/M4S4: Applied probability: 2007-8

Solutions 1: Introduction

1.

$$
\begin{aligned}
\mathrm{E}(X)=\int_{0}^{\infty}[1-F(x)] d x & =\int_{0}^{\infty} \int_{x}^{\infty} f(y) d y d x=\int_{0}^{\infty} \int_{0}^{y} f(y) d x d y \\
& =\int_{0}^{\infty} f(y) \int_{0}^{y} d x d y=\int_{0}^{\infty} f(y) y d y=E(X) .
\end{aligned}
$$

2. $T>t$ if and only if $T_{i}>t$ for $i=1, \ldots, n$. Thus the event $[T>t]$ is the same as the joint event $\left[T_{1}>t\right] \cap\left[T_{2}>t\right] \cap \ldots \cap\left[T_{n}>t\right]$. Since the T_{i} are independent, we have that

$$
\begin{aligned}
\mathrm{P}[T>t] & =\prod_{i=1}^{n} \mathrm{P}\left[T_{i}>t\right]=\prod_{i=1}^{n} e^{-\lambda_{i} t} \\
\Rightarrow F(t) & =1-\mathrm{P}[T>t]=1-\exp \left(-t \sum_{i=1}^{n} \lambda_{i}\right) \\
\Rightarrow f(t) & =\left(\sum_{i=1}^{n} \lambda_{i}\right) \exp \left(-t \sum_{i=1}^{n} \lambda_{i}\right)
\end{aligned}
$$

That is, T has an exponential distribution with parameter $\sum_{i=1}^{n} \lambda_{i}$.
3. T_{k} has a geometric $G_{1}(p)$ distribution, where p is the probability of success in each trial.
4. After $(n-1)$ births there are n individuals alive, each of which is independently giving birth at according to a Poisson process at rate β. Thus, for each individual, the time to the next birth is exponential with parameter β. Thus, overall, the time to the next birth is the time to the minimum of n exponential variates with parameter β. We have already seen (Q2 above) that this is an exponential distribution with parameter $n \beta$. The mean of such a distribution is $1 / n \beta$.
5. If there are x individuals at time t in a simple birth process, then the probability of one birth in interval $[t, t+\delta t]$ is $\beta x \delta t+o(\delta t)$, and the probability of no births is $1-\beta x \delta t+o(\delta t)$, so that the expected number of births in this interval is $\beta x \delta t+o(\delta t)$. So,

$$
\begin{aligned}
x(t+\delta t) & =x(t)+\beta x \delta t+o(\delta t) \\
\Rightarrow \frac{x(t+\delta t)-x(t)}{\delta t} & =\beta x+\frac{o(\delta t)}{\delta t} .
\end{aligned}
$$

Letting $\delta t \rightarrow 0$ gives

$$
\frac{d x}{d t}=\beta x
$$

Solving this gives

$$
\ln (x)=\beta t+c
$$

using $x(0)=1$ leads to

$$
x=\exp (\beta t)
$$

6. Letting $D(t)$ be the number of drops by time t, we have

$$
D(t+\delta t)=D(t)+\frac{5}{1+10 t} \delta t+o(\delta t)
$$

yielding

$$
\frac{d D}{d t}=\frac{5}{1+10 t}
$$

so that
(a)

$$
D(t)=\int_{0}^{1} \frac{5}{1+10 t} d t=[0.5 \ln (1+10 t)]_{0}^{1}=0.5 \ln 11 .
$$

(b)

$$
D(t)=\int_{4}^{5} \frac{5}{1+10 t} d t=[0.5 \ln (1+10 t)]_{4}^{5}=0.5(\ln 51-\ln 41) .
$$

7. (a)

$$
x_{n}=s x_{n-1}+b .
$$

(b)

$$
x_{n}=s\left(s x_{n-2}+b\right)+b=b+s b+s^{2} b+\ldots s^{n-1} b+s^{n} .
$$

