M3S4/M4S4: Applied probability: 2007-8
 Problems 3: Pgfs and branching processes

1. If

$$
Y=a X+b \quad a, b \in\{0,1,2,3, \ldots\}
$$

show that

$$
\Pi_{Y}(s)=s^{b} \Pi_{X}\left(s^{a}\right)
$$

2. Prove that if $X \sim \operatorname{Poisson}(\mu)$ then,

$$
\Pi_{X}(s)=\exp (-\mu(1-s))
$$

3. A gambler keeps placing bets until he wins once and then he stops. What is the pgf of the total number of bets he places if each bet has probability p of winning?
4. Use the probability generating function to find the mean and variance of a Poisson distribution with mean μ.
5. Use pgfs to find the distribution of the sum of n independent Poisson distributions with parameters $\mu_{i}, \quad i=1, \ldots, n$.
6. A Poisson process runs for a time t. Each event has a probability p of being observed and a probability $q=1-p$ of being missed. What is the distribution of the number of events which are observed in time t ?
7. If $X_{i} \sim \operatorname{Binomial}(n, p)$ and $N \sim \operatorname{Poisson}(\mu)$ use probability generating function arguments to derive the mean of $Z=\sum_{i=1}^{N} X_{i}$.
8. In a branching process, if the number of offspring of an individual has a geometric distribution $G_{0}(p)$, find the mean and variance of the number of individuals in the nth generation. Calculate their values when $n=5$ and
(a) $p=1 / 3$
(b) $p=1 / 2$
(c) $p=2 / 3$.
9. If, in a branching process, the number of offspring of an individual is Poisson(0.5), find the probability that extinction has occurred by the 1st, 2nd, 3rd, 4th, and 5th generations.
10. If, in a branching process, the number of offspring of an individual has a $G_{0}(0.6)$ distribution,
(a) Calculate the probability that the process becomes extinct by the 6th generation.
(b) Calculate the probability that the process becomes extinct at the 6th generation.
11. Suppose each individual in a branching process can have only 0,1 , or 2 offspring, with respective probabilities r, q, and p. Show whether extinction is certain if
(a) $p>r$
(b) $p=r$
(c) $p<r$.

In any case in which extinction is not certain, give the probability that it will occur.
12. Suppose the number of offspring of each individual in a branching process has a $G_{0}(p)$ distribution. Calculate the probability of ultimate extinction.

