
UNIVERSITY OF LONDON

Course: M3S9/M4S9 (SOLUTIONS)

Setter: Adams

Checker: McCoy

Editor: Coleman

External: Kent

Date: December 7, 2004

BSc and MSci EXAMINATIONS (MATHEMATICS)

MAY–JUNE 2004

M3S9/M4S9 (SOLUTIONS)

STOCHASTIC SIMULATION

Setter’s signature Checker’s signature Editor’s signature

. .

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 1 of 13

seen ⇓1. (a) Congruential generators define a recursion. There are two cases. The mixed generator

is

Xn+1 = (aXn + b)modm

and the multiplicative generator is

Xn+1 = aXnmodm

where a is the multiplier, b is the shift, m is the modulus, and X0 is the seed, and

a, b,X0 < m . In either case, we obtain psuedorandom uniform variates U from

Ui =
Xi
m

A multiplicative generator is maximal if it has period m− 1. 5

seen ⇓
(b) (i) The frequency test compares the number of times each digit was observed with

the number of times expected under the null hyopthesis. In this case, we assume

uniformity, so the expected values are

E0 = E1 = . . . = Ek =
n

k + 1

and these are compared with observed values O0, O1, . . . , Ok.

The test statistic is
k∑

i=0

(Oi − Ei)2

Ei

and this is compared with a Chi-squared distribution with k degrees of freedom. 4

unseen ⇓
(ii) On the basis of this output, there is no evidence, at the 5% significance level, to

reject the hypothesis that the generator is not uniform.

2

unseen ⇓

(iii) The Frequency test does not consider the correlation structure of the data. An

example of data which would pass the test but which is not consistent with our

requirements for randomness is

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 ... 2

unseen ⇓
(iv) Could consider dividing (a, b) into k bins of equal width, and counting how

many variates fall in each bin. Then compare these observed counts with the

probabilities implied by the continuous distribution. 2

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 2 of 13

unseen ⇓(c) (i) By choosing a random seed on each processor, we run the risk of generating

overlapping sequences.
1

unseen ⇓

(ii) From an arbitrary seed X0, this results enables us to start the first processor with

X1, the second processor with Xn+1, the third processor with X2n+1 and so on.

for example, with M = 12 and three processors, each processor compute n = 4

random numbers as follows

X0 -> Processor 1 Processor 2 Processor 3

X1 X5 X9

X2 X6 X10

X3 X7 X11

X4 X8 X12

Thereby using exactly the same sequence as would be used on a single processor

starting with X0.

A problem with implementing this algorithm could by computing Xkn for large k. 4

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 3 of 13

seen ⇓2. (a) Want X ∼ exp(λ). So,

FX(X) = 1− e
−λX

Setting U = 1− e−λX ,

⇒ X =
−1
λ
log(1− U)⇒ F−1X (U) = −λ

−1log(1− U)

So an inversion algorithm for exponential variates is

1. Generate U = u ∼ U(0, 1)⇒ 1− U ∼ U(0, 1)

2. Set X = −λ−1log(U). Then X ∼ exp(λ)
5

unseen ⇓
(b) The moment generating function for an Exponential distribution is

MX(t) =

∫ ∞

0
etxλe−λx dx

= λ

∫ ∞

0
e−x(λ−t)

= λn

[
e−x(λ−t)

λ− t

]∞

0

=
λn

λ− t
, λ > t

The moment generating function for a Gamma distribution is

MX(t) =

∫ ∞

0
etx

λn

(n− 1)!
xn−1e−λx dx

=
λ

(n− 1)!

∫ ∞

0
xn−1e−(λ−t)x dx

But
∫∞
0 xke−λx dx = k!/λk+1

=
λ

(n− 1)!
(n− 1)!
(λ− t)n

=

[
λ

(λ− t)

]n

with n ≥ 1 and λ > t.
Now, the moment generating function of a sum of n independent random variables

is the product of the n moment generating functions, so for a sum of n exponential

variables we have [
λ

(λ− t)

]n

which is the moment generating function of the Gamma(n, λ) distribution. 5

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 4 of 13

unseen ⇓(c) Using the exponential algorithm as a basis, we have

1. Generate Ui = ui ∼ U(0, 1), i = 1, 2, . . . , n.

2. Set X = −λ−1log(
∏n
i=1 Ui). Then X ∼ Gamma(n, λ)

Note that in the second step, we only compute a logarithm once. 2

unseen ⇓
(d) We have

f(x) = kx
1
2 e−x and g(x) =

2

3
e−

2
3
x

where k = 2√
π
and x > 0.

Let y =
f(x)

g(x)
=
kx

1
2 e−x

2
3e
− 2
3
x

=
3kx

1
2 e−

x
3

2
Maximise y

dy

dx
=
3kx

1
2

2

(

−
1

3

)

e−
x
3 + e−

x
3
3k

4
x−

1
2 = 0

e−
x
3
3k

4
x−

1
2 =

kx
1
2

2
e−

x
3

so the maximum is obtained at x = 3
2 . Now,

M = sup
x

f(x)

g(x)
=
3k

2

(
3

2

) 1
2

e−
1
2 =

33/2

(2πe)1/2

Since k = 2/
√
π.

A rejection algorithm for generating Gamma(32 , 1) variates is

1. Generate U1 = u1 ∼ U(0, 1).

2. Set Y = −32 log(U1) (so Y ∼ Exp(2/3) (by inversion))

3. Generate U2 = u2 ∼ U(0, 1).

4. If U2 <
√
2
3e
1
2Y

1
2 e−

Y
3 , set X=Y, and X ∼ Gamma(3/2, 1).

5. Otherwise goto 1. 8

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 5 of 13

seen ⇓
3. (a) The formula for the Monte Carlo estimator is

θ̂ =
1

n

n∑

i=1

φ(Xi)

where X1, X2, . . . , Xn
ind
∼ f(∙). 1

The expected value is

Ef [θ̂] = Ef

[
1

n

n∑

i=1

φ(Xi)

]

=
1

n

n∑

i=1

Ef [φ(Xi)]

=
1

n
nEf [φ(Xi)]

=

∫
f(x)φ(x) dx = θ

2
and the variance is

var(θ̂) = var

(
1

n

n∑

i=1

φ(Xi)

)

=
1

n2
(nvar(φ(X))

=
1

n
var(φ(X))

=
1

n
E[{φ(X)− E(φ(X))}2]

=
1

n

∫
[φ(x)− θ]2f(x) dx =

c

n

So the variance of the estimator decreases as n increases. 2

unseen ⇓
(b) Like any computational approximation, Monte Carlo integration methods are

only appropriate when analytic solutions are unavailable. Typically, numerical

integration methods are faster and more accurate in low dimensions. In higher

dimensions numerical integration becomes more difficult, and it is in these

situations that Monte Carlo integration methods are most suitable. 2

seen ⇓
(c) For two unbiased estimators of θ, θ̂1 and θ̂2, with variances var(θ̂1) and var(θ̂2)

E

[
1

2

(
θ̂1 + θ̂2

)]

= θ

var

[
1

2

(
θ̂1 + θ̂2

)]

=
1

4
var(θ̂1) +

1

2
var(θ̂2) +

1

2
cov(θ̂1, θ̂2)

Now suppose

var(θ̂1) = var(θ̂2)

var

[
1

2

(
θ̂1 + θ̂2

)]

=
1

2
var(θ̂1)

[
1 + corr(θ̂1, θ̂2)

]

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 6 of 13

So if we can arrange for corr(θ̂1, θ̂2) to be large and negative, then

var
[
1
2

(
θ̂1 + θ̂2

)]
<< var(θ̂1). Antithetic variates try to exploit this by taking

the average of negatively correlated estimates to get variance reduction.

As a simple example, if we want to evaluate

θ =

∫ 1

0
φ(u)f(u) du

where f ∼ U(0, 1), and φ is monotonic, the the antithetic estimator is

θ̂ =
1

n

n∑

i=1

1

2
(φ(Ui) + φ(1− Ui))

4

unseen ⇓
(d) (i) The decomposition here is

f(x) = 30x2(1− x)2 φ(x) = I(x > Z) =

{
1 x > Z,

0 x ≤ Z.

Then

θ̂ =
Y

n

where Y is the number of Xi > Z, and Xi ∼ Beta(3, 3), for i = 1, 2, . . . , n.
Now

var(θ̂) =
1

n2
var(Y)

=
1

n2
nθ(1− θ)

=
1

n
θ(1− θ)

4

(ii) Another simple possibility is to consider both tails, that is, consider θ =

P (|X|) > Z. 1

unseen ⇓
(e) Note that this looks like E[X2cos(X2)], where X ∼ Exp(25). Thus, an

appropriate decomposition may by

φ(x) = x2cos(x2) f(x) = 25e−25x

In constructing a Monte Carlo algorithm to estimate I, we require to sample from

an exponential distribution, readily achieved by inversion (see previous question).

Monte Carlo Integration Algorithm

1. Obtain Ui ∼ Uniform(0, 1), independently for i = 1, 2, . . . , n.

2. Set Xi =
−1
25 loge(Ui), for i = 1, 2, . . . , n.

3. Set Ti = X
2
i cos(X

2
i), for i = 1, 2, . . . , n.

4. Set I = 1
n

∑n
i=1 Ti. 4

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 7 of 13

4. (a) Methods for Generating Normal random deviates

The N(μ, σ) distribution has density

fX(x) =
1

√
2πσ
exp

[
−(x− μ)2

2σ2

]

where −∞ ≤ x, μ ≤ ∞ and σ > 0. The standardising transformation

Z =
X − μ
σ

and its inverse allow us restrict attention to generating standard Normal deviates

Z = N(0, 1). The distribution function of a Normal random variable is not analytically

available, and hence the method of inversion cannot be used.

We can consider either general purpose methods for generating from arbitrary

distributions, or methods purpose built for the Normal distribution.

First, consider purpose built methods: the Box-Muller method, and the Polar-

Marsaglia algorithm.

Box-Muller Algorithm

1. Generate U1 ∼ U(0, 1), U2 ∼ U(0, 1).

2. Set R = (−2 logU2)1/2, A = 2πU1.

3. Set X = R cosA, Y = R sinA, then X,Y ∼ N(0, 1).

A possible disadvantage of this is that computing transcendental functions like sin and

cos can be expensive. The Polar-Marsaglia algorithm attempts to avoid this, albeit at

the cost of including a rejection step.

Polar-Marsaglia Algorithm

1. Generate Ui = ui ∼ U(0, 1) for i = 1, 2.

2. Set Vi = 2ui − 1

3. If S = V 21 + V
2
2 ≤ 1

Let

C =

√

−
2

S
logS set

X = CV1
Y = CV2

Then X,Y ∼ N(0,1).

4. Otherwise GOTO 1

Next, we consider general purpose methods. These include ratio-of-uniforms, and the

rejection method.

Ratio-of-Uniforms Algorithm

1. Find bounding rectangle for Ch (i.e find a, b and c).

2. Generate (U1, U2) ∼ U(0, 1).

3. Set U = aU1, V = b+ (c− b)U2.

4. if U ≤
√
h
(
V
U

)
, set X = V

U , otherwise GOTO 1

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 8 of 13

Alternatively, consider the general rejection algorithm

Rejection Algorithm

1. Generate Y = y ∼ g(.).

2. Generate U = u ∼ U(0, 1).

3. If u ≤ f(y)
Mg(y) set X = y.

4. Otherwise GOTO 1.

Where

M = sup
x

f(x)

g(x)

To generate Normal deviates, we might use a Cauchy envelope. In either case, we

might consider pre-test squeezes to reduce the number of times we have to compute

expensive tests.

Splus uses ratio-of-uniforms to generate Normal deviates. Ripley (1987) recommends

either the Polar algorithm, or a squeezed version of ratio of uniforms.

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 9 of 13

(b) Ratio of uniforms

If (U, V) is a uniformly distributed pair in the unit disc, the ratio U/V from the

polar algorithm has the distribution of the ratio of two independent Normal variates.

Kinderman and Monahan (1977) considered whether other distributions could be

sampled as U/V uniform for (U, V) uniform over some set.

h - function with h(∙) ≥ 0 and
∫
h <∞. Consider the region in (U, V) space defined

by:

Ch =

{

(U, V) | 0 ≤ U ≤

√

h

(
V

U

)}

We show that Ch has finite area, and that if (U, V) are uniform on Ch, then X =
V
U

has p.d.f. h∫
h
.

Proof

Area(Ch) =

∫ ∫

Ch

du dv
(
(u, v)→

(
u, x =

v

u

))

So,

v = xu ⇒
dv

dx
= u ⇒ dv = u dx,

and

0 ≤ u ≤

√

h
(v
u

)
⇒ 0 ≤ u ≤

√
h(x)

Giving,

Area(Ch) =

∫ [∫ √h(x)

0
udu

]

dx =
∫
1
2h(x)dx <∞

fU,V (u, v) =

{
1

Area(Ch)
(u, v) ∈ Ch

0 otherwise

fU,X(u, x) = fU,V (u, ux).u (u = |J |)

=
u

Area(Ch)

fX(x) =

∫

u

fU,X(u, x)du =

∫ √h(x)

0

u

Area(Ch)
du

=
1
2h(x)

1
2

∫
h(x)dx

=
h
∫
h

as required

Note: only need h up to proportionality.

We need to generate numbers within Ch, one way of doing this is to bound the Ch
region within a rectangle.

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 10 of 13

Ch =

{

(U, V) | 0 ≤ U ≤

√

h

(
V

U

)}

a 0 ≤ U ≤ supx
√
h(x) = a.

b, c x = V
U ,

V
x ≤

√
h(x).

x ≤ 0 V ≥ x
√
h(x)⇒ V ≥ infx≤0 x

√
h(x) = b.

x ≥ 0 V ≤ x
√
h(x)⇒ V ≤ supx≥0 x

√
h(x) = c.

So, set

a = supx
√
h(x) b = infx≤0 x

√
h(x) c = supx≥0 x

√
h(x)

Such a rectangle will always exist provided h(x) and x2h(x) are bounded in the domain

of x.

Algorithm

1. Find bounding rectangle for Ch (i.e find a, b and c).

2. Generate (U1, U2) ∼ U(0, 1).

3. Set U = aU1, V = b+ (c− b)U2.

4. if U ≤
√
h
(
V
U

)
, set X = V

U , otherwise GOTO 1

Can compute the probability of accepting a proposed point

Probability of accepting an X =
Area(Ch)

Area of bounding rectangle

=
1
2

∫
h(x) dx

a(c− b)

The method uses a membership test (U, V) ∈ Ch that can be slow to evaluate. These
tests will often be clearly passed or failed and a simple approximation to Ch should

suffice. We find sets Ci ⊂ Ch ⊂ Co with (u, v) ⊂ Ci and (u, v) 3 Co being easy top
determine. Such procedures are called pre-testing or squeezing.

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 11 of 13

(c) Metropolis hastings algorithm

Suppose, we want to obtain samples from some distribution π, which has a large

number of states and so cannot be sampled from directly.

Set up an irreducible, aperiodic Markov Chain (i.e. define a transition matrix P), with

stationary distribution π. Then run this chain until it settles down to π – states will

then be generated with the correct probabilities.

We construct P in the following way:

Choose any symmetric transition matrix Q, with elements qij .

Suppose at state i, select state j with probability qij .

Move to state j with probability min
{
1,
πj
πi

}
, otherwise stay at state i. So, if πj < πi,

we will not always move.

This defines P in the following way:

pij = min

{

1,
πj

πi

}

qij , i 6= j

pii = qii︸︷︷︸
prob. choose
state i

+
∑

j 6=i

max

{

0, 1−
πj

πi

}

︸ ︷︷ ︸
prob. not moving
to state j

qij

P defined in this way is certainly a transition matrix (as Q is), but will running the

chain for a long time give us π as the limiting distribution?

For this, we need to show that P is irrecucible, aperiodic and that π = πP .

To show π = πP , if suffices to show πipij = πjpji. As,

⇒
∑

j

πipij =
∑

j

πjpji

⇒ πi
∑

j

pij = (πP)i

⇒ πi = (πP)i (rows of P sum to 1)

⇒ π = πP

So, for the P associated with Metropolis, we have

πipij = πimin

{

1,
πj

πi

}

qij

= min {πi, πj} qij

= min {πi, πj} qji since Q symmetric

= πj min

{

1,
πi

πj

}

qji

= πjpji

⇒ π = πP

If we can now show that the chain is irreducible and aperiodic, π will be the unique

stationary distribution.

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 12 of 13

Irreducible?

If Q is irreducible, then so is P (eg pij > 0 iff qij > 0), so choose an irreducible Q.

Aperiodic?

If we can show pii > 0, then state i is aperiodic, and thus all states are aperiodic (as

there is only one class).

pii = qii +
∑

j 6=i

max

{

0, 1−
πj

πi

}

qij

so, pii > qii – easy condition to impose.

Basically, choose a Q which ensures irreducibility and aperiodicity.

c© 2004 University of London M3S9/M4S9 (SOLUTIONS) Page 13 of 13

