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1. (a) (i) The survivor function

STx(t) = P (Tx > t)

is the probability of an individual currently aged x surviving beyond time t.

The hazard function at age x

μ(x) = lim
h→0+

P (Tx ≤ h)

h
.

(ii) A realisation of Tx is right-censored at time t if we do not observe the exact value

of Tx and learn only that t provides a lower bound for Tx.

The probability of such an observation is given by

P (Tx > t) = STx(t).

(iii)

−
d

dt
STx(t) = − lim

h→0+

P (Tx > t+ h)− P (Tx > t)

h

= lim
h→0+

P (Tx > t)− P (Tx > t+ h)

h

= P (Tx > t) lim
h→0+

1− P (Tx > t+ h|Tx > t)

h

= P (Tx > t) lim
h→0+

1− P (Tx+t > h)

h

= P (Tx > t) lim
h→0+

P (Tx+t ≤ h)

h
= STx(t)μ(x+ t).

(iv)

d

dt
STx(t) = −STx(t)μ(x+ t)

⇒ STx(t) = exp

{

−
∫ t

0

μ(x+ u)du

}

+ C

for some positive constant C. Using the boundary condition at t = 0, STx(0) = 1

(the individual will survive a further time t = 0 with probability 1), we get C = 0

and

STx(t) = exp{−Mx(t)}.
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(b) (i) The Nelson-Aalen estimator is given by

M̃(t) =
∑

tj≤t

dj

nj
.

Death Time Censoring Time nj dj M̃(t)

0.1 9 0 0

0.3 8 2 0.25

0.5 6 0 0.25

0.6 5 1 0.45

0.9 4 2 0.95

1 2 0 0.95

1.4 1 1 1.95

Table 1: Nelson Aalen estimate.

Figure 1: Nelson Aalen estimate.
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(ii) The maximum likelihood estimate of the survivor function is given by the Kaplan-

Meier estimator

Ŝ(t) =
∏

tj≤t

(

1−
dj

nj

)

.

By the result of (a)(iv) this can be used to provide the maximum likelihood

estimate of the cumulative hazard function

M̂(t) = exp
{
−Ŝ(t)

}
.

(iii) A plot of M̂(t) or log(M̂(t)) against t or log(t) can be compared with the known

theoretical properties of M(t) for a particular parametric model. For example,

∙ M(t) vs. t is linear for the exponential distribution.

∙ logM(t) vs. log t is linear for the Weibull distribution.

∙ logM(t) vs. t is linear for the Gompertz-Makeham distribution.
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2. (a) The simple Binomial model assumes that each individual has the same probability qx
of death, so the ith life is a Bernoulli trial

P [Di = di] = qx
di(1− qx)

(1−di).

The lifetimes of the individuals are assumed independent and so defining D =
∑n

i=1Di

to be the number of individuals who died on the study, the Binomial model implies

D ∼ Binomial(n, qx).

That is,

P (D = d) =

(
n

d

)

qdx(1− qx)
(n−d).

To find the maximum likelihood estimator of qx, we differentiate the log-likelihood

log(P (D = d)) = log

{(
n

d

)}

+ d log(qx) + (n− d) log(1− qx)

d

dqx
log(P (D = d)) =

d

qx
−
n− d
1− qx

.

Finding the root of the equation

0 =
d

qx
−
n− d
1− qx

⇒ d− dqx = (n− d)qx

⇒ d = nqx

yielding the maximum likelihood estimator of qx

q̂x =
D

n
.

(b) Under the general assumption 0 ≤ ai < bi ≤ 1 the individual death probabilities will
depend on (ai, bi); individual i will die with probability bi−aiqx+ai

The ith life is therefore a Bernoulli trial

P [Di = di] = (bi−aiqx+ai)
di(1− bi−aiqx+ai)

(1−di).

To relate these individual probabilities to the unit interval probability qx, the equation

for the Balducci assumption can be used to derive formulae for the probabilities

bi−aiqx+ai in terms of qx. This enables us to proceed with estimation of the single

parameter qx.
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(c) We have tpx = 1 − tqx (and hence px = 1 − qx), which when substituted into the
equation for the Balducci assumption gives

1− 1−tpx+t = (1− t)(1− px) 0 ≤ t ≤ 1

⇐⇒ 1−tpx+t = t+ (1− t)px

We have the general identity s+tpx = tpxspx+t, so spx+t =
s+tpx

tpx
. Letting s = 1− t,

we get 1−tpx+t =
px

tpx
. Substituting into the Balducci equation

px

tpx
= t+ (1− t)px

⇐⇒
1

tpx
=

t

px
+ (1− t)

⇐⇒
1

tpx
=

t

1px
+
1− t

0px
, 0 ≤ t ≤ 1.

(d) Recall the hazard function is given by
d

dt
{− log(tpx)}. Then

1

tpx
=

t

px
+ (1− t)

= 1 + t

(
1

px
− 1

)

⇐⇒ − log(tpx) = log

(

1 + t

(
1

px
− 1

))

⇒
d

dt
{− log(tpx)} =

1
px
− 1

1 + t
(
1
px
− 1
) ,

a decreasing function of t as px is a probability and thus lies between 0 and 1.
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(e) From the Balducci assumption we have

1−tpx+t = 1− (1− t)qx

1−tqx+t = (1− t)qx

and from part (c) we have

tpx =

(
t

1− qx
+ (1− t)

)−1

tqx = 1−

(
t

1− qx
+ (1− t)

)−1

So the likelihood contributions for each individual are

1. 1− 0.9qx

2.
(
0.8
1−qx
+ 0.2

)−1

3. 0.8qx

4. 1−
(
0.4
1−qx
+ 0.6

)−1
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3. (a) The Chapman-Kolmogorov equations state that for s, t > 0

pij(t+ s) =
N∑

k=1

pkj(t)pik(s)

To verify these, we have

pij(t+ s) = P (X(t+ s) = j|X(0) = i)

=
N∑

k=1

P (X(t+ s) = j|X(s) = k)P (X(s) = k|X(0) = i)

(by the law of total probability)

=
N∑

k=1

P (X(t) = j|X(0) = k)P (X(s) = k|X(0) = i)

(by the homogeneity of the process)

=
N∑

k=1

pkj(t)pik(s).

(b) Considering a small positive increment dt, from (a) we have

pij(t+ dt) =
N∑

k=1

pik(dt)pkj(t)

pij(t+ dt) = (1 + μiidt)pij(t) +
∑

k 6=j

μijpjk(t)dt+ o(dt)

= pij(t) + dt
∑

k

μikpkj(t) + o(dt).

Rearranging and taking the limit as dt→ 0+,

d

dt
pij(t) =

N∑

k=1

μikpkj(t)

(c) (i) Use the Kolmogorov backward equations

d

dt
pij(t) =

3∑

k=1

μikpkj(t).

d

dt
p12(t) =

3∑

k=1

μ1kpk2(t)

= μ11p12(t) + μ12p22(t) + μ13p32(t)

= μ11p12(t) + μ12p22(t)

(since ∀t, p32(t) = 0)

= −(μ12 + μ13)p12(t) + μ12p22(t)

(since μ11 + μ12 + μ13 = 0).
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Similarly

d

dt
p13(t) = −(μ12 + μ13)p13(t) + μ12p23(t) + μ13

since ∀t, p33(t) = 1 (the state dead is absorbing), and

d

dt
p23(t) = μ22p23(t) + μ23

= −μ23p23(t) + μ23.

Solving the equation for p23(t) is straightforward

p23(t) = C exp(−μ23t) + 1

and using the boundary condition p23(0) = 0 we get C = −1 and

p23(t) = 1− exp(−μ23t)

Noting that p22(t) + p23(t) = 1 (can only go to states 2 or 3 from state 2), we

can substitute this result in to the differential equations for p12(t) and p13(t):

d

dt
p12(t) = μ12 exp(−μ23t)− (μ12 + μ13)p12(t)

d

dt
p13(t) = μ13 + μ12(1− exp(−μ23t))− (μ12 + μ13)p13(t)

(ii)

(μ12)10(μ13)(μ23)5 exp{−20(μ12 + μ13)} exp{−5μ23}.

(iii) The log likelihood is given by

10 log(μ12) + log(μ13) + 5 log(μ23)− 20(μ12 + μ13)− 5μ23.

Differentiating this equation with respect to one of the transition intensities and

setting equal to zero yields the corresponding maximum likelihood estimate. We

find
10

μ̂12
− 20 = 0

1

μ̂13
− 20 = 0

5

μ̂23
− 5 = 0

Hence the maximum likelihood estimates are

μ̂12 = 0.5

μ̂13 = 0.05

μ̂23 = 1

The holding time in state 2 follows an exponential distribution with parameter

μ23, which has been estimated to be 1. Therefore the probability of an individual

in state 2 surviving beyond one year is ≈ e−1.
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4. (a) Defining

ψ(z; β) = exp{zβ},

the proportional hazards model states μ(t; z) = μ0(t)ψ(z; β) and the accelerated

failure time model states S(t; z) = S0(tψ(z; β)).

Suppose we have observed event times t1, . . . , tn some of which are censored. Each

individual has associated covariates z1, . . . , zn. To make inference about β when

the baseline hazard function is unknown, we restrict attention to the ordering of the

survival/censoring times and ignore the exact event time values.

Assuming unique survival times, the partial likelihood for this reduced data set is given

by

L(β) =
∏

i∈U

ψ(zi; β)∑
j∈Rti

ψ(zj ; β)

(b) If T ∼ Weibull(α, η) then the survivor function for T is S(t) = exp{−(t/α)η}.

Let c > 0 be constant w.r.t T . Then the random variable T ′ = Tc has survivor

function exp{−(t/(cα))η}. This is the survivor function of a Weibull(cα, η) random
variable.

(c) Let the baseline model be Weibull(cα, η).

Consider the lifetime T of a random individual with covariates z. It follows immediately

from (b) that under the AFT model T ∼ Weibull(α/ψ(z; β), η).

Under PH, we have

S(t; z) = S0(t)
ψ(z;β)

= (exp{−(t/α)η})ψ(z;β)

= exp{−(t/α)ηψ(z; β)}

and hence T ∼ Weibull(α/ψ(z; β)1/η, η).

Since ψ(z; β) = exp{zβ}, ψ(z; β)1/η = exp{zβ/η} and thus we have an equivalence
with the AFT model with the regression coefficients simply rescaled by the Weibull

shape parameter η.

(d) (i)

(
e60β

3 + e40β + e60β + e100β

)(
e40β

2 + e40β + e100β

)(
e100β

2 + e100β

)

(ii) That the estimated value for β is positive suggests that an individuals risk of

death (hazard) increases with the number of cigarettes smoked.
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(iii) Under the null model we have a partial likelihood of

(
1

6

)(
1

4

)(
1

3

)

=
1

72

Hence the log partial likelihood without covariates is − log(72) = −4.227.
The likelihood ratio statistic is twice the difference in the maximised log partial

likelihoods, so W = 2(−3.439 + 4.227) = 1.675.
Since there is one covariate parameter to estimate we compare with χ21 which has

a 90th percentile point of 2.71, and thus we do not find the effect of the number

of cigarettes smoked by an individual significant at the 10% level.

Notice that the data we have collected appears fairly supportive a different

conclusion, that smoking cigarettes increases the hazard. (Looking at the death

times, these are strictly higher for the non smokers than for the smokers). We

could therefore conclude that the amount of data gathered was insufficient to gain

the statistical significance required, or that a simpler binary smoker/non-smoker

covariate would have been more effective.
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5. I would hope to see some or all of the following issues mentioned.

(a) Censoring in survival data.

∗ The mechanisms: Left, Right, Interval censoring.

∗ Types/study designs: Type I, Generalised Type I, Type II.

∗ Form of likelihood for observations under different censoring mechanisms.

(b) The Poisson model as a survival process.

∗ Models data over a unit time interval, [x; x + 1), with individual entry and exit
times from the study. An approximation to the two state Markov model assuming

a fixed total waiting time.

∗ Poisson formula for distribution of the number of deaths.

∗ Definition of a Poisson process and stating the link with the Poisson model.

∗ Exponentially distributed inter-arrival times.

∗ Maximum likelihood estimation of the intensity parameter.

(c) The Kaplan-Meier estimate and Greenwood’s formula.

∗ The Kaplan-Meier estimate (KM) is a non-parametric estimate of the survivor
function.

∗ The KM is an isotonic (monotone decreasing) step function with jumps at the
observed death times.

∗ The formula for the KM should be given.

∗ The KM is derived as the maximum likelihood estimate of the survivor function
over the space of all distributions.

(d) Comparison of the Binomial and 2-state Markov models.

∗ Both methods are used by actuaries to model mortality in the time interval, [x; x
+ 1).

∗ Binomial model estimates the mortality rate, the Markov model estimates the
force of mortality (hazard).

∗ The Binomial requires approximations to allow for inference when observations
are made on the sub-interval.

∗ The Markov model is easily extended to more complex scenarios involving multiple
decrements and increments while the Binomial model is not easily extended.

∗ The Binomial model uses an estimator crudely based on a method of moments to
estimate the mortality rate using the “Actuarial Estimate”. The Markov model

uses a probabilistic likelihood based approach.

M3S14/M4S14 (SOLUTIONS) Page 12 of 13



(e) Choosing a parametric model for survival data.

∗ Ad hoc approach of comparing the empirical cumulative hazard with known
distributional forms.

∗ Hypothesis testing approach between nested parametric models.

∗ Description of the likelihood ratio test.

∗ Description of the Wald test.

∗ Some comparison of Wald and likelihood ratio tests.
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