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Comment on Article by Vernon et al.

David A. van Dyk∗

This paper tackles the computationally challenging task of comparing the predictions
of the sophisticated Galform computer model for Galaxy Formation to observed light
curves—data on the number of galaxies observed per unit volume in a given bin of
luminosity for a particular band of light. The authors are to be commended for their
clearly careful and diligent model-checking of this complex computer model. Judging
from Figures 12 and 13 they where able to find parameter values that agree much
more closely with the observed luminosity functions then what was previously available.
(Although when comparing with data for which the model was not tuned, as in Figure
14, the results are more ambiguous.) By exploring the distribution of the parameters
that result in acceptable model fits, the authors are able to draw conclusions about the
complex relationships among the parameters of scientific interest. This appears to be an
important step forward in our understanding of the formation and evolution of galaxies
and at the same time demonstrates the power of the authors’ sequential strategy for
searching an enormous space for increasingly likely parameter values.

It may be helpful to illustrate my understanding of the authors’ strategy in terms
of standard statistical methodology using a simple problem. Suppose Yi ∼ N(µi(θ), σ2

i )
are independent for i = 1, . . . , n, with each σ2

i known. The loglikelihood function is
L(θ|Y ) = −

∑n
i=1(Yi − µ(θ))2/2σ2

i . If µ(θ) is not overly complex, we can maximize L
and consider its curvature or contours to make inference and learn about θ. We can also
evaluate L(θ|Y ) at its maximizer, θ̂, or values of θ near θ̂ to check whether the proposed
Gaussian model is adequate for the data. If L(θ̂|Y ) is significantly smaller than we would
expect we conclude that the model is inadequate. The authors consider a problem
in which µ(θ) is very complex, the likelihood can only be evaluated with substantial
numerical effort, and standard optimization, quadrature, and sampling techniques are
apparently impossible or impractical. Instead they search the parameter space by simply
evaluating the objective function, L(θ|Y ) in my simple example, at numerous values of
θ. The evaluation points are then culled by thresholding on L(θ|Y ). A new set of values
of θ are selected in the newly discovered highest-likelihood region of the parameter
space, the likelihood is reevaluated at these points, and the evaluation points are culled
again using a more stringent threshold. This is repeated until a set of parameter values
is obtained that adequately predict the observed data or until all possible value of θ
have been eliminated by the likelihood threshold. Although the authors do not refer
to the Gaussian loglikelihood function, the actual objective functions that they employ
bare a remarkable resemblance to it. Using my notation, the implausibility function
defined in (13) replaces the sum over i in L(θ|Y ) by a maximization over i and the
function in (16) would reduce to L(θ|Y ) in the independent case. In both cases µ(θ)
involves emulation and the implausibility functions differ from the loglikelihood by a
factor of −1/2. Thus, the authors aim to reduce implausibility as I aim to increase the
likelihood. Having identified the set of parameter values that adequately predicts the
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data, the authors graphically compared the corresponding predicted light curves with
observed light curves and draw conclusions about the likely relationships among the
parameters.

Employing the Common Statistical Framework for Computer Modeling. It is impor-
tant to emphasize that the authors’ strategy differs from standard statistical methods
mainly from a computational point of view. Because the Galform computer model is
highly complex, optimizing the objective or likelihood function (or sampling from the
posterior) is apparently infeasible. As in a typical statistical problem, however, they aim
to find the values of the parameter that result in the best fit to the data, being mindful
that the best fit may not be good enough if the model is inadequate. These are the
standard model fitting and model checking tasks that are a part of any sensible analysis,
although they may be sliced and diced differently in different settings. Of course unique
complications do arise with complex computer models. In many settings, for example,
researchers aim to experiment with computer models. This involves first calibrating
(i.e., fitting) the model by comparing its predictions with actual data and then using
the calibrated model—often with the help of emulation and properly accounting for
uncertainty in the fitted parameters—for prediction under alternate values of certain
covariates. When collecting actual data under different experimental conditions is ex-
pensive or impossible researchers may use the calibrated computer model in place of
actual experiments. Even this more complicated situation is analogous to prediction (or
extrapolation!) in standard statistical terminology.

The computer modeling community’s habit of employing different terminology tends
to obfuscate the relationship between their techniques and standard tried-and-true sta-
tistical techniques. Rather than using ubiquitous terms like “likelihood function” or
“discrepancy measure” they use “implausibility measure”; “model checking” and “model
fitting” are referred to as “history matching” and “calibration”; and both “parameters”
and “covariates” are simply called ”inputs”. This clash of terminology is certainly not
unique to this paper. It appears in many computer modeling papers published in the
statistical literature. Certainly there are many computer modelers who are not or are
not primarily statisticians. But this can be said for Bayesians and other methodological
groupings which do a better job of maintaining a unified basic framework for discus-
sion. The lack of such a framework in computer modeling is a shame not only because
it makes it much more difficult for the uninitiated statistician to learn about the sophis-
ticated statistical techniques developed for these complex models, but also because it
obscures the relationship between our rich library of statistical methods and their poten-
tial application to problems involving computer models. For example, the implausibility
measure in (16) seems a much more natural choice than that in (13) when we realize
that it is the objective function used to identify likely values of the parameter. Except
for the sign, (16) is a likelihood function while minimizing the maximum descrepancy
in (13) is employing a minimax criterion for parameter fitting. Of course, there may be
computational reasons to prefer (13) - (15) when exploring the parameter space, but in
the final analysis, on the face of things, (16) seems the better choice.

An even better case for bringing computer modeling terminology in line with that
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of statistics is that computer models are not always treated in isolation. A modern
Bayesian statistician readily combines model components for different observed or latent
quantities through hierarchical or multi-level models. These components may include
parametric, non-parametric, multi-scale, and computer models, that are strung together
into a unified model for a coherent statistical analysis. This job is made much easier
if we focus on a common framework for working with these different models at least as
much as we emphasize their subtle differences. And I emphasize that I am not saying
that there are no differences, but rather that the commonalities are more important—
certainly enough to justify use of common notation and vocabulary.

What Does it Mean to be Bayesian? In my first reading of the article, it was not clear
to me why the word “Bayesian” appears in the title. Many of the standard hallmarks
of a Bayesian analysis are absent. There is no specification of a prior distribution or
computation of the posterior distribution. The Bayes Linear approach is based on Bayes
Theorem, but by avoiding specification of the distributions involved, the authors miss
what I believe to be one of the biggest benefits of a Bayesian analysis: a principled
analysis that fully accounts for the complexities of the underlying distributions and
avoids the old and often unrealistic Gaussian assumptions. Of course, this requires
us to make certain assumptions about the distributions, but these assumptions are no
more arbitrary than Gaussian assumptions and are clear for all the world to see and to
evaluate for themselves.

The authors take a different approach. They take advantage of the ability of a
Bayesian analysis to account for information from outside the data, such as the opinions
of experts. Indeed much of their model is justified solely in terms of expert judgements.
For example, they “judge” the experimental error to be uncorrelated with “true” phys-
ical system values. The model discrepancy, that is the difference between the “true
physical system values” and the Galform model evaluated at the “actual” parameters,
is judged to be uncorrelated with Galform evaluated at the “actual” parameters. Ex-
pert judgement is used to quantify the likely size of the model discrepancy along with
its “rich covariance structure”. This judgement is critical to the final analysis because
it determines how large the residuals may be without bringing the overall model into
question. Thus whether the parameter values from Wave 5 match the data sufficiently
well to conclude that Galfrom is an adequate model of Galaxy Formation is determined
by expert judgement on the model discrepancy.

Of course any statistical analysis requires subjective assessments. When non-Bayes-
ians complain about our use of prior distributions, we rightly point to the assumptions
involved in their specification of the likelihood function. In many ways it is a matter
of art to weigh the subjective assumptions in a statistical model. Nonetheless, most
Bayesians and non-Bayesians alike work hard to be cognizant of the assumptions inher-
ent in their models, to employ careful model checking, and to investigate the sensitivity
of their final analysis to their assumptions. In this case the authors use multiple runs
of the Galform model with the help of the Millennium Simulation to access the effect
of the fixed parameters and the necessary “specification of the arrangement of Dark
Matter at all times in the development of the universe”. The magnitude of further
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model discrepancy is judged with the help of an elicitation tool. While the authors are
certainly going to great lengths to carefully quantify these subjective quantities, there
is too much expert judgement for me to find the final results convincing. I worry that
the expert assessments determine the final outcome. It seems that the magnitude of
the model discrepancy alone is enough make or break the model checking and this is
ultimately decided by an expert turning the knobs of an elicitation tool.

While I agree with the authors that “a Bayesian analysis has value largely because...it
is an appropriate way to combine expert judgement and observations to give appropriate
posterior judgements,” in my view even a Bayesian analysis must work hard to minimize
its assumptions and must be absolutely upfront about the impact of its subjective
assessments on the final analysis.

If it Looks Like a Duck.... The authors justify their use of a Bayes Linear Analysis
by noting that it allows them to avoid distributional assumptions and to base inference
on the first two moments alone. They argue that it is much easier to specify these
moments and that the posterior distribution may be “highly non-robust” to aspects of
the distributions other than the first two moments and that these aspects cannot be
“specified with confidence”. They go on to note that “a full Gaussian specification for
all of the relevant quantities would lead to similar updating formulae” and to evaluate
the Bayesian linear analysis in terms of the best linear fit under squared error loss. The
objective functions used to identify plausible values of the parameter given in (13)–
(16) are all based on squared error loss and the Gaussian loglikelihood. The model
forms given in (1) and (2) rely on additive uncorrelated error. Perhaps this is simple
minded on my part, but I’m far less concerned with theoretical considerations such
as the “infinite number of further joint orthogonality constraints as required by full
probabilistic independence” over the authors’ assumptions of no correlation than I am
with what happens in the actual analysis. That is, how would the final analysis differ if
a Gaussian distribution where specified for the full joint distribution? That there would
likely be little or no difference is troubling because, as the authors note, the likelihood
function under computer models of this sort typically exhibits an “extremely complex,
multi-modal form”. How then should we interpret the results of a seemingly Gaussian
analysis?

The scientific objective. In my work with astronomers the ultimate goal is always to
learn about the likely values of physical parameters of scientific interest. They are
interested in the precise location, age, metal content, or distance of a particular source.
Thus, I was quite puzzled by the authors’ statement that

Achieving an acceptable match, for a particular input choice x, does not
mean that the model is “correct” or that a parameter choice which achieves
the match corresponds to the “true” value of the parameters, but simply
that this version of the model will have met the challenge of reproducing an
important observational aspect of the galaxy formation study...
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Of course all models are parsimonious summaries and are not meant to capture all of
the complexity of the physical system. But we do hope that they capture enough of the
important features of the system so that we have some capacity to meet our scientific
objectives. In many statistical analyses the ultimate goal is prediction, and, in this case
a black box that bears no resemblance to the actual generative system but nonetheless
predicts well will meet the statistical objectives. I find this rarely if ever to be the case
in astronomy. The goal is not to predict new universes, but to understand our own. If
the authors really don’t believe the model will shed light onto the actual physical world,
what is the ultimate goal of this analysis?

The Final Analysis. In their careful analysis, the authors obtain a set of parameter
values that adequately predict the observed light curves. These are used to learn about
likely relationships among the parameters. The authors provide matrices of scatter plots
using coloring to indicate the value of the objective function for each acceptable param-
eter value. (I believe they use the function in (16) that corresponds to a multivariate
Gaussian loglikelihood.) A final step would be to weight each of the parameter values
by its posterior density or perhaps likelihood and resample according to the weights.
This would provide an approximate Monte Carlo sample form the posterior distribu-
tion. Alternatively, kernel density estimation could be used to construct a proposal
distribution for use in an independence Metropolis-Hasting sampler. In either case, the
resulting Monte Carlo sample should provide an adequate approximation to the pos-
terior distribution if a Gaussian model is used in its formulation. On the other hand,
if the more realistic model that the authors allude to as resulting in an “extremely
complex multi-modal” likelihood is used, the approximation may not be as good. This
may be detected in a highly skewed set of weights of a poorly mixing Markov chain
and would indicate that the Gaussian-like assumptions of the article are critical. If the
Gaussian-like assumption proves to be benign, the authors may be very closer to a fully
Bayesian analysis.
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