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David A. VAN DYK and Xiao-Li MENG

Responding to such a diverse collection of comments is both enjoyable and challeng-
ing. The discussions vary from insightful theoretical explorations, to impressive technical
investigations, to imaginative potential applications. To address this range in a coherent
fashion, our rejoinder responds to each discussion in turn. We highlight each of the com-
ments with a thematic adjective, which we hope the authors would � nd accurate if not most
complimentary. Since we obviouslyaim for an informative rejoinder, we cannot agree fully
with every discussant. Nonetheless, we are thankful to all of the discussants for their valu-
able time and thoughts. Our heartfelt thanks also goes to the editor, Andreas Buja, for his
lightning speed in handling our submission, and for his effort in organizing the discussion.

1. LEVINE: INSIGHTFUL!

We thoroughly enjoyed Levine’s concerto even as we tried to be the most critical of
critics. Early in the compositionwe identi� ed a slight cacophony(passing some of the effort
of designing to the user), only to discover later, pleasantly, that it was simply a proleptic
contrasting note to dramatize the grand � nale (emphasis on trading the designer’s effort for
the user’s time). Bravo!

Few composers can conceal, privately or publicly, their excitement when a critic high-
lights every key note in their composition, especially the subtle ones (e.g., violation of the
Markovian property). We are thus grateful to Levine for such an insightful discussion. We
particularly appreciate Levine’s attempt to establish a quantitativeframework for analyzing
intricate issues such as computational complexity and implementability versus statistical
ef� ciency, and the tradeoff between the designer’s and the user’s time. For computational
complexity and implementability, there is indeed a huge literature in computer science,
numerical analysis, and several other related � elds. The proceedings volumes of the Inter-
national Conference on Monte Carlo and Quasi Monte Carlo methods (Niederreiter 1995,
1998, 1999, 2001) are good resources to sample some of the most recent development in
these topics. Statisticians’ contributions have been quite limited so far, but we generally
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share Levine’s optimism that more can and will be done statistically, especially regarding
the issue of Monte Carlo ef� ciency.

For example, producing and/or analyzing simulated data poses an intriguing modeling
issue that statisticians seem to be uniquely quali� ed to address. On the one hand, with
simulated data, there is no issue of model uncertainty, since we know exactly how the
data were generated (at least in principle). On the other hand, depending on the degree
to which we “take advantage of speci� c structures or characteristics of the distribution or
model of interest,” as Levine recognized, we can construct more and more ef� cient Monte
Carlo methods with the same simulation size or, equivalently, the same computational
effort, excluding the computational effort needed for using these speci� c structures and
characteristics.

Therefore, the issue of model uncertainty with simulated data has a different charac-
ter than that of statistical design and inference with real data. The question is not which
model is true or approximately true, since all models that can link the simulated data to our
estimand are true and known. The question is rather which model represents the best com-
promise among computational complexity, human effort, and statistical ef� ciency. For DA
algorithms, all augmented-data models, as de� ned by (1.1) or (1.2), are correct and known
by construction. But as we demonstrated in the article, a good (not necessarily optimal)
choice of the augmented-data model can lead to substantially more ef� cient algorithms.
Meng and Schilling (in press) provide another striking example, in the context of analyzing
simulated data (i.e., computing normalizing constants from MCMC output), where by con-
structing a better analysis model one can achieve orders of magnitude of improvement in
Monte Carlo ef� ciency with relatively little increase in computational load. The construc-
tion there, however, like that in the current article, has an “artistic” aspect. Whereas we,
like Levine, believe the “artistic” aspect can never be completely removed, we do hope that
Levine’s decision theoretic framework will provide a more coherent way of gaining insight
into and guidelines for better MCMC designs and analysis in general.

A key in our methods, as well as in Levine’s more general framework, is to � nd
an effective objective function. By “effective” we mean an objective function that can be
optimized or nearly optimized easily and that this optimizingvalue is a good approximation
of the optimizer of the ideal objective function. Perhaps the most exciting message from
Meng and van Dyk (1999) and our current article is that it is entirely possible to � nd such
an effective objective function (e.g., our EM criterion (2.5)) even when the ideal objective
function (e.g., the geometric rate (2.2)) cannot even be evaluated. This is very much in the
same spirit of the EM algorithm, which can maximize an observed-data likelihoodfunction
that cannot be evaluated directly. The key is to transfer the desired optimizer to that of a
simpler function, which itself may not even be a rough approximation to the ideal objective
function. One can easily see this by picturing two functions that do not resemble each other
at all except that their “deep valleys” occur in practically the same location. Incidentally,
the use of this powerful “optimizer transfer” method for statistical applications was the
topic of a discussion article by Lange, Hunter, and Yang (2000) that appeared a year ago
in this journal. Our problem is somewhat easier than those studied by Lange, Hunter, and
Yang or in the EM literature because in order to balance algorithmic optimality and human
effort we seek only reasonable approximations to the ideal optimizer. Although the EM
criterion is motivated by the maximum lag-1 autocorrelationover linear functionals,we use
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it because we wish to limit complexity, not because we believe in the linearity or that (2.3)
is a good approximation to (2.2). The effectiveness of this much simpler objective function
is evident from the � rst two applications we presented, since in each case it led to Haar
measure, which is the theoretically optimal prior under the speci� c group-theoretic setting
of Liu and Wu (1999). In the third case, it led to right Haar measure, which is a natural
generalization of the Haar measure when the transformation group is not unimodular (Liu
and Sabatti 2000) even though currently there is no mathematical proof of the theoretical
optimality of the right Haar measure.

We conclude our reply to Levine by emphasizing that in the course of searching for
optimal or near optimal methods/algorithms, one should not lose sight of the “robustness”
of certain common methods. For example, while the random scan Gibbs sampler may not
be optimal in most applications, it generally performs well compared to a badly estimated
“optimal” order. Furthermore, it does not depend on the function of interest. In practice
we are often interested in several functions and the optimal order for one function can be
seriously suboptimal for another, as alluded to by Levine. These issues are quite similar
to those involved with the optimal allocation of sample sizes in strati� ed sampling (e.g.,
Neyman 1934; Kish 1965). It is well-known that the “optimal” sample size allocation
can provide a much worse estimator than simple proportionate sampling when the strata
variances used for the optimal allocation are badly estimated or are based on a different
estimator. Incidentally, the issues of step orderings within the Gibbs sampler and within
its deterministic counterpart, the ECM algorithm (Meng and Rubin 1993), appear to be
less related than one might expect given the well-known intrinsic connections between the
Gibbs sampler and EM-type algorithms; see van Dyk and Meng (1997) and the rejoinder of
Meng and van Dyk (1997). Within the framework of the random scan Gibbs sampler, there
is much exibility that may be exploited for computational gain. In addition to Levine’s
strategy of more frequently visiting slow-mixing components (Liu, Wong, and Kong 1995)
we suggest more frequently visiting components that require less complex computation
(van Dyk 2000) or a combination of both strategies.

2. HOBERT: IMPRESSIVE!

Like Levine’s composition,Hobert’s opéra seria is a pleasure to read, at least for those
who indulge in rigor, intricacy, and elegance.The only “complaint”we could offer is that we
might have just lost a publication in The Annals of Statistics because Hobert’s contribution
covers some theoretical investigation we were planning to do!

Our � rst reaction to Hobert’s impressive theoretical bound for the (limiting) marginal
DA algorithm is that the corresponding bound for the standard DA algorithm must be much
larger. Indeed, using the same technique and notation as Hobert we were able to obtain the
following (best) bound for the standard DA algorithm when ¸ > 3 and n = 2:

D(tj ³ 0) ² jjP (t)[(· 0; ¶ 0); ¢] º (¢jy)jj
µ (:9944037)t + (7:714286) £ (:9868403)t; (R.1)

see the Appendix to this rejoinder for details. Consequently,we need t ¶ 824 for the bound
to be less than .01, in contrast to Hobert’s t ¶ 335 for the (limiting) marginal DA algorithm.
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Although having a larger upper bound does not logically imply slower convergence, it is
another strong indicationthat the (limiting)marginal DA algorithm is superior. Incidentally,
we surmise that when the sample size n is larger than 2, the bounds, althoughmore dif� cult
to calculate analytically, should tend to be smaller because, for larger n, the joint posterior
surface of the parameter and augmented-data suf� cient statistics should tend to be smoother
(e.g., exhibits fewer “bumps”), and thus the chain should mix more rapidly.

Our second reaction is that, although these bounds are practical, they must be very
conservative, as suggested by the empirical results presented by Meng and van Dyk (1999)
and in the current article. To check this we need to compute the actual total variation (TV)
distance D(tj ³ 0) as a function of t. For arbitrary t, the analytical calculation of the exact
value of D(tj ³ 0) is very dif� cult for either algorithm even with n = 2, but we can easily
estimate the distance by replicating each algorithm with given t and ³ 0.

2.1 A SUBTLETY OF MARGINAL DA WITH AN IMPROPER WORKING PRIOR

Before we describe the Monte Carlo estimation of the TV distance, we point out a
subtletyof the marginal DA algorithmwith improper working prior that was revealed during
our study of the TV distance. Take the univariate t model as an illustration. The standard
DA (SDA) algorithm uses ~q = f ~q1; : : : ; ~qng as missing data, and thus has a joint stationary
density p( ³ ; ~q) (suppressing the conditioning on Yobs; ³ = ( · ; ¶ ) under Hobert’s notation).
The marginal DA (MDA) algorithm uses q = ¬ ~q as the missing data when the prior on ¬ is
proper, and it has a joint stationary distribution p( ³ ; ¬ ; q). By the de� nition of ~q (= q=¬ ),
the ( ³ ; ~q) margin of this joint stationary distributionis the same as the stationary distribution
from SDA, p( ³ ; ~q), even though the subchain f( ³ (t); ~q(t) ² q(t)=¬ (t)); t = 1; : : :g of MDA
is not a Markov chain in general.

In the (optimal) limiting case when the hyper working parameter ® = 0 (and ­ = 0),
MDA effectively gets rid of ¬ because of the invariance property (2) of Lemma 1 (p. 10).
Consequently,as is made clear by the explicit stochastic mapping given in Section 6, under
Scheme 1 and with ® = 0, this limiting MDA (LMDA), which is the one underlying
Hobert’s theoretical investigation, can be implemented directly using the same ~q as with
SDA. Starting from ³ (0) = ³ 0, LMDA � rst samples from p( ~q(t + 1)j³ (t)) exactlyas with SDA,
and then samples from some p ¤ ( ³ (t + 1)j~q(t + 1)). This p ¤ ( ³ j~q), however, has to be different
from the p( ³ j~q) of SDA; otherwise the two algorithms would be identical. Consequently,
the joint chain from LMDA, f( ³ (t); ~q(t)); t = 1; : : :g does not have the same joint stationary
distribution as that of SDA, p( ³ ; ~q) = p( ³ j~q)p( ~q). Rather, its joint stationary distribution is
p ¤ ( ³ j~q)p( ~q). The reason that LMDA maintains the same marginal stationary density p( ~q) as
SDA is that both algorithms maintain the marginal stationary density p( ³ ), as we proved in
this article. (This margin is often of primary interest.) Consequently, since both algorithms
draw ~q from p( ~qj³ ), their ~q marginal stationary densities must also be the same because
p( ~q) =

R
p( ~qj ³ )p( ³ )d³ .

We emphasize that LMDA is not an MDA in its usual sense, since (3.2) no longer
de� nes a proper marginal augmentation model when p( ¬ ) is improper. Consequently, the
fact that f( ³ (t); ~q(t)); t = 1; : : :g has the same joint stationary density under any proper
working prior on ¬ , yet has a different joint stationary density when the working prior
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becomes improper as ® ! 0 is not paradoxical. As ® ! 0, there is no joint limiting
distribution for ( ³ ; ¬ ; q). Therefore, without further conditions, we do not even know if the
“marginal distribution” of ( ³ ; ~q = q=¬ ) is proper. This again shows the caution one needs
to exercise when dealing with nonpositive recurrent chains, as one is certainly tempted to
guess the joint stationary density for ( ³ ; ~q) would remain unchanged as ® ! 0, especially
given the fact that both marginal stationary densities do remain unchanged.

For a user, this subtlety is not of any concern when the purpose of using LMDA is
to obtain draws from p( ³ ), and thus ~Ymis (e.g., ~q) and Ymis (e.g., q) are auxiliary variables
introduced purely for constructing the algorithm. When the joint distribution of ( ³ ; ~Ymis)

is of interest because ~Ymis corresponds to “real” missing data or latent variables, as possi-
ble in the mixed effect model where ~Ymis represents the random effects, a user can easily
obtain MCMC draws from the desired joint target density p( ³ ; ~Ymis) by using the one-step
shifted joint draws f( ³ (t 1); ~Y

(t)
mis ); t = 1; : : :g from LMDA. This is because ³ (t 1) has

the desired limiting marginal distribution p( ³ ) and ~Y
(t)

mis was drawn from the desired con-
ditional distribution p( ~Ymisj ³ = ³ (t 1)). Apparently, this slight complication with LMDA
is a consequence of its fast mixing. This suggests that it can be bene� cial, in terms of
mixing, to consider generalizations of the Gibbs sampler which use sampling distribu-
tions that are not the full conditionals from the target distribution but preserve the desired
marginal stationary distribution(s). In the current setting this means p¤ ( ³ j ~Ymis) must satisfyR

p¤ ( ³ j ~Ymis)p( ~Ymis) · (dYmis) = p( ³ ); details will be given in Meng and van Dyk (2001).

2.2 ESTIMATING MARGINAL AND JOINT TOTAL VARIATION DISTANCE

Having generalized the standard DA setting to include LMDA, we now describe our
methods for estimating the TV distance. Speci� cally, suppose we have a DA chain on the
joint space (u; v) which is equipped with a dominating product measure ¶ £ · . Starting
from u = u0, each iterationof DA � rst samples from p(vju) and then samples from p ¤ (ujv),
where p ¤ (ujv) may or may not be the same as p(ujv), as explained above. The marginal
total variation (MTV) distance between the target marginal density p(u) and p(t)(u), the
density of u(t) given the initial value u0, can be expressed as

DMTV(t) =
1
2

sup
| f | 1

Z
f (u)[p(t)(u) p(u)]¶ (du) =

1
2

Z
jp(t)(u) p(u)j ¶ (du)

=
1
2

Z ­­­­1
p(u)

p(t)(u)

­­­­p(t)(u) ¶ (du)

=
1
2

Z ­­­­1
p(u)R

p ¤ (ujv)p(t)(v) · (dv)

­­­­p(t)(u) ¶ (du):

(The factor 1=2 is needed for consistency with the TV distance used by Hobert.) Conse-
quently, we can estimate DMTV(t) by

ªDMTV(t) =
1

2K

KX

i = 1

­­­­­1
p(u

(t)
i )

1
K

PK
j = 1 p ¤ (u

(t)
i jv(t)

j )

­­­­­=
1
2

KX

i = 1

­­­­­
1
K

p(u
(t)
i )

Pk
j = 1 p ¤ (u

(t)
i jv(t)

j )

­­­­­;

where f(u
(t)
k ; v

(t)
k ); k = 1; : : : ; Ng are iid realizations of (u(t); v(t)) obtained by running

the DA chain independently K times with the same starting value, u0.
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Figure A. The JTV Distance Between the Sampling and Stationary Distributions. We use Hobert’s model speci� -
cation and plot ªD JTV( t ) for t = 1,. . ., 5 for the SDA (long dashed line) and LMDA (dotted line) algorithms; the
solid line represents Hobert’s threshold of .01 and the + signs represent the Monte Carlo replications. The dashed
line near .10 is a Monte Carlo estimate of the JTV distance between p( t ) ( ³ , ~q) of the LMDA algorithm and the
joint stationary distribution of SDA.

A potential dif� culty with ªDMTV(t) is that it requires the evaluation of p ¤ (ujv), which
can be somewhat complicatedwhen it is inducedby LMDA (e.g., with the t model).One way
to avoid this problem is to estimate the joint totalvariation(JTV) distancebetweenp(t)(u; v)

and the joint stationary density ~p(u; v) = p ¤ (ujv)p(v), where p(v) =
R

p(vju)p(u) ¶ (du).
We can then use JTV as an upper bound for MTV because DJTV(t) ¶ DMTV(t) for all
t. Since p(t)(u; v) = p ¤ (ujv)

R
p(vju0)p(t 1)(u0) ¶ (du0), we have ~p(u; v)=p(t)(u; v) =

p(v)=
R

p(vju0)p(t 1)(u0) ¶ (du0), and thus

DJTV(t) =
1
2

Z Z
jp(t)(u; v) ~p(u; v)j ¶ (du) · (dv)

=
1
2

Z ­­­­1
p(v)R

p(vju)p(t 1)(u) ¶ (du)

­­­­p(t)(v) · (dv):

We thus can estimate DJTV(t) by

ªDJTV(t) =
1
2

KX

i = 1

­­­­­
1
K

p(v
(t)
i )

Pk
j = 1 p(v

(t)
i ju(t 1)

j )

­­­­­;

where f(u
(t 1)
k ; v

(t)
k ); k = 1; : : : ; Ng are iid realizations of (u(t 1); v(t)), again obtained

by running K independent DA chains with the same starting value, u0.
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Figure B. Fast Convergence. The histograms show 200,000 independent draws obtained with 200,000 DA chains
of length one, all using Hobert’s starting values and model speci� cation. The solid curves are the exact posterior
obtainedby numerical integration.Theplots in the second column compare residuals (observed count less expected
count in each bin of the histograms under the target distribution) with twice the standard error of the observed
counts under the target distribution. Although both algorithm perform very well in this setting, LMDA is faster.
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We can use ªDJTV(t) to check the conservativeness of the theoretical bounds for the
LMDA algorithmand for the SDA algorithm.Figure A shows the results for bothalgorithms;
LMDA is represented by the dotted line and SDA by the long dashed line. It is seen that both
SDA and LMDA obtain a JTV distance of less than .01 in only two iterations; the solid line
corresponds to a JTV distanceof .01.At the second iteration, the JTV distancecorresponding
to SDA is about � ve times as large as that of LMDA. The theoretical boundsof 335 and 824
iterations, respectively, for LMDA and SDA are clearly exceedingly conservative! Here,
each evaluation of ªDJTV(t) is based on K = 20;000 Monte Carlo draws and we replicated
� ve times for each algorithmand each chain length.The replicationsare represented by plus
signs and indicate minimal Monte Carlo variation. The short dashed line near .10 shows
the TV distance between p(t)( ³ ; ~q) from LMDA and the target joint posterior distribution
of SDA, which con� rms that this quantity does not converge to zero. Figure B further
illustrates the quick convergenceof both algorithmsfor this problem, by comparing200,000
independentdraws of the model parameters based on chains of length one. The � rst column
compares the draws with the target posterior distribution and the second column shows the
residual (from the expected count) for each bin in the histograms. The residuals can be
compared with twice the standard error of the bin counts, under the assumption that the
draws are actually from the posteriordistribution,as indicatedby the solid lines. This shows
again that LMDA is superior to SDA, albeit both algorithms perform very well in this case.

3. HIGDON: INSPIRING . . .

Higdon’scomparisonof theDA algorithmand the “unaugmented”Metropolis–Hastings
(MH)algorithminspiredus tomake a comparisonof the twomethodsat an abstract level.The
DA algorithm is obviouslya special case of MH, since it is a special case of the Gibbs sam-
pler, which in turn is a particular applicationof MH that always accepts the proposed move
(e.g., Gelman 1992). Perhaps less realized, however, is that MH itself is an applicationof the
auxiliary variable method, and hence is itself a form of data augmentation.At the (t + 1)st
iteration, the MH algorithm � rst samples from a proposal density: Y (t + 1) ¹ q(Y jX(t)).
We then let X(t + 1) = Y (t+ 1) or X (t+ 1) = X(t) according to the MH acceptance ratio
criterion, which depends only on X(t), Y (t + 1), and a random number. Clearly this de� nes
a joint Markov chain f(X(t); Y (t)); t = 1; : : :g, with the subchain fX (t); t = 1; : : :g being
the MH chain. In other words, choosing a proposal density q(yjx) is equivalent to choosing
an auxiliary variable Y , which in turn is equivalent to choosing an augmented-data model
p(x; y) whose X margin is our target distribution p(x). The difference between this and
Tanner and Wong’s DA algorithm is that MH does not alternate between X jY and Y jX
in general; indeed, q(yjx) can even be free of x, as with the so-called independent MH
sampler (e.g., Tierney 1994).

Higdon’s spatial modeling application also inspired us to consider the more dif� cult
problem where the missing data/latent variable is a stochastic process Z. Although we do
not have enough details of Higdon’s speci� c application to assess whether our suggestion
is sensible, it seems to us that one can try a positive working variable ¬ to form a randomly
scaledprocess ¬ Z, anduse theHaar workingpriorp( ¬ ) / ¬ 1. This should improvemixing
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according to Liu and Wu’s (1999) theoretical optimality result, which does not depend on
the underlying target distribution as long as ¬ Z is an admissible stochastic process for the
underlyingproblem for any ¬ > 0. If one has to restrict the range of ¬ in order for ¬ Z to be
admissible, then the Haar measure for the scale group may no longerbe optimaland one may
need to invoke the approximatemethods in this article to seek a good choice of the (possibly
improper) working prior. More complicated transformations such as a random rotation of a
spatial process could also be tried as long as the transformed process is admissible for any
transformation of a given transformation group. We fully agree with Higdon, however, that
when the dimension of the underlyingvariable is large, this may require too much additional
computation to be useful. Incidentally, the multiresolution approach Higdon used can be
viewed as a form of data augmentation with the resolution level acting as the auxiliary
variable; see Goodman and Sokal (1989) and Liu and Sabatti (2000).

4. LIU: INTRIGUING!

Liu made the intriguingobservation that the marginal DA algorithmnot only is fast, but
also can be simpler than the standard DA algorithm.By � rst drawing a covariancematrix and
then obtaining the implied correlation matrix, one avoids the problem of directly dealing
with the unit-diagonal restriction of the correlation matrix. By moving in the space of
covariance matrices, we can also move faster from one correlation matrix to another than
is possible when we restrict ourselves to the space of correlation matrices. This is very
much like simplifying movement from one point in a curved two-dimensional space to
another point in the same space by allowing ourselves to leave the two-dimensional space
along the way. Not only can the move be faster, it can also be much simpler—we can move
along a straight line in the three-dimensional space that links the two points. In the curved
two-dimensional space the shortest path could be much more complicated.

Incidentally, in his discussion of Meng and van Dyk (1997), Liu made another in-
triguing suggestion using covariance matrices. This suggestion is worth mentioning here
because it is closely related to Levine’s discussion on quantifying implementability. In the
context of normal regression with a patterned covariance matrix, Liu suggested that one
can mathematically formulate simplicity by requiring the augmented-data model to have
a covariance matrix that allows closed-form (conditional) maximization. This requirement
led to an explicit form of the augmented-data covariance matrix, which then de� nes a class
of augmented-datamodels. We can then search this class for the augmented-datamodel that
minimizes the augmented Fisher information (i.e., the EM criterion). These suggestions are
valuable not only because they provide some theoretical insight, but also because they have
direct practical implication in the dif� cult and important problem of modeling covariance
matrices; see Barnard, McCulloch, and Meng (2000) and the references therein.

Liu’s idea of using component-based software to exibly combine different parts of
DA algorithms is also intriguing. We certainly look forward to its full development.
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5. HUERTA, JIANG, AND TANNER: INVITING . . .

Huerta, Jiang, and Tanner’s discussion is an article in its own right, focusing on a study
of the so-called hierarchical mixtures-of-experts (HME) model in the context of time series
analysis. As with many other data-� tting methods initially advanced by nonstatisticians,
HME has a catchy name that statisticalexpertsmay � nd more invitingthan the method itself.
If one is not concerned with the sense in which an AR(1), GARCH(1,1), or EGARCH(1,1)
is an “expert” or what the compelling reasons to mix these models might be, then it is
not dif� cult to accept Huerta, Jiang, and Tanner’s invitation to consider more ef� cient
deterministic or stochastic algorithms for � tting the HME model. In particular, since HME
is a � nite mixture model with covariate-dependentweights, the data augmentation scheme
developed by Pilla and Lindsay (in press) for ef� cient � tting of � nite mixture models might
suggest a strategy in this setting. Pilla and Lindsay’s method uses an alternating data-
augmentation scheme [i.e., an AECM algorithm in the terminology of Meng and van Dyk
(1997)] to signi� cantly improve the standard EM implementation for � tting the weights of
a � nite mixture model where the components themselves are assumed known.

6. WU AND ZHU: IMAGINATIVE . . .

It may take a reader some imagination to see the link between Wu and Zhu’s discussion
and our article. But imagination is exactly what Wu and Zhu aim for, both � guratively
and literally. Modeling vision is a fascinating and challenging subject; we share Wu and
Zhu’s vision that the missing data framework can play an important role, both conceptually
and methodologically. Indeed, Wu and Zhu considered DA as a modeling rather than a
computational framework. This view is helpful for dealing with complex missing data
problems or problems that can be formulated as such (e.g., latent variable modeling). In
fact, an important reason for the popularity of data-augmentation based methods such as
the EM algorithm and multiple imputation (Rubin 1987) is that these methods allow a data
analyst to separate the task of dealing with missing data from that of modeling the complete
data.

Incidentally, we view Wu and Zhu’s “bottom-up” and “top-down” modeling strategies
as another example of the difference in emphasis between the frequentist approach and the
Bayesian method. The “bottom-up” strategy is consistent with frequentist thinking, which
focuses on sampling statistics (e.g., Wu and Zhu’s features). In contrast, the “top-down”
framework focuses on the estimand (e.g., Wu and Zhu’s Summary), a standard Bayesian
philosophy. For complex problems such as modeling vision, both strategies are useful at
the methodological level, but we agree with Wu and Zhu that at the conceptual level the
Bayesian way of thinking can be far more fruitful.

7. MIRA AND GREEN: INTRACTABLE?

Some readers might � nd parts of Mira and Green’s discussion “intractable” in the
sense that they may be overwhelmed by the attempted“structure analysis” without knowing
where the argument is heading. Indeed, we got dizzy reading Mira and Green’s recasting
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of our conditional and marginal DA methods! Of course, the real intractability is not in our
methods,butwith the goal implicitlyunderlyingMira and Green’s attempt.Namely, to unify
the MCMC “culinary art” with a single or a few standard recipes. It is indeed tempting to
seek uni� cation given the apparent “general ability”and “commonality”of methods like the
MH algorithm, and given the great simpli� cation uni� cation might bring.On the other hand,
the fact that so much effort has been devoted in recent years by statisticians—Mira, Green,
and us included—to develop ef� cient MCMC algorithms for various real data analysis
problems is a strong indication that such a uni� cation is simply beyond reach. As we have
shown in the article and in the response to Higdon, choosing an ef� cient auxiliary variable,
including the MH proposal variable, is generally as dif� cult a task as choosing an ef� cient
data augmentation scheme—there is as little indication in the MH algorithm itself of how
to choose the proposal variable as there is in (2.1) or (3.1) of how to choose the augmented-
data model p(Yaugj ³ ; ¬ )! Consequently, the sophistication required for the latter is not in
any sense “contrasting” the generality of the former, but rather is an honest reection of the
dif� culty inherent in the subject. Standard recipes do exist, as with Chinese cooking one
can always follow the stir-fry-with-soy-sauce or stir-fry-with-soy-sauce-and-MSG recipes
no matter what one is cooking, but of course such a “simpli� ed Chinese culinary art” could
hardly thrill any chef or diner.

Mira and Green’s information identity is a re-expression of the well-known “missing
information principle”: complete information = observed information + missing informa-
tion (e.g., Orchard and Woodbury1972;Dempster, Laird, and Rubin 1977;Meng and Rubin
1991). The “missing information” is the expected Fisher information for ³ contained in the
conditional model p(YaugjYobs; ³ ; ¬ ) (evaluated at the observed-data posterior mode of ³

and with ¬ given), and it is well-known that the expected Fisher information can also be
written as the variance of the score function under the same model. This yields Mira and
Green’s identity because the difference between the score function from the conditional
model p(YaugjYobs; ³ ; ¬ ) for ³ and the � rst derivative with respect to ³ of the log of the
augmented-data posterior density does not depend on the unobserved part of Yaug. In prac-
tice, it is somewhat easier to deal with Iaug( ¬ ) of (2.5) than the variance expression of Mira
and Green because the former allows one to directly take advantage of the linearity of the
complete-data observed Fisher information in a set of suf� cient statistics (when they exist).
Although Mira and Green’s variance expression is mathematically equivalent, in speci� c
problems it is typically evaluated by converting to (2.5) to simplify algebra.

We concludeour reply to Mira and Green, as well as our rejoinder, by emphasizing that
we use the word “art” in its engineering sense. Successful engineering is a combination of
scienti� c principles, good intuition, some experiences, a bit of sweat, and a touch of luck.
Having worked on statistical algorithms for a number of years, we � nd that the construction
of ef� cient statistical algorithms requires a similar combination. By statistical algorithms
we mean not only those algorithms that are useful for statistical computation, but more
importantly those algorithms that are motivated from statistical principles, such as the EM
algorithmand the DA algorithm.The adjectiveef� cient describes the “three S” requirement:
simplicity, stability, and speed. It is our desire to achieve all three S’s simultaneously that
brings out the artistic aspect of the construction process. We hope that our article, together
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with the discussions and rejoinder, makes it clear that being “artistic” is fundamentally
important for achieving the state-of-the-art in MCMC cookery.

APPENDIX TO REJOINDER

A.1 THE MINORIZATION AND DRIFT CONDITIONS FOR SDA UNDER THE t MODEL

Here we adaptHobert’s minorizationand drift conditionsfor SDA for � ttinga univariate
t model. Many of the required calculations follow directly from Hobert’s discussion; the
differences are outlined below.

We use the same drift function, V ( · ; ¼ 2), and begin with the minorization condition.
(We use ¼ 2 in place of Hobert’s ¶ to be consistent with Meng and van Dyk (1999) and
Section 6.) By Hobert’s argument with º ¤ ( · ; ¼ 2; ¬ jq; y) and º ¤ (qj · 0; ( ¼ 2)0; ¬ 0; y) replaced
with p( · ; ¼ 2j ~q; y), and p( ~qj· 0; ( ¼ 2)0; y) respectively, it is suf� cient to show Hobert’s (2.5)
holds. Because the draw of ~q is identical for both algorithms (Hobert’s q is the same as ~q

as he took ¬ 0 = 1), Hobert’s (2.5) can be established for SDA almost exactly as argued
by Hobert for LMDA using the same notational substitution. In particular, we have the
following proposition.

Proposition A.1. The Markov transitiondensity k( · ; ¼ 2j · 0; ( ¼ 2)0) for SDA under the
univariate t model satis� es the following condition

k( · ; ¼ 2j· 0; ( ¼ 2)0) ¶ ° h( · ; ¼ 2) for all ( · 0; ( ¼ 2)0) 2 S;

where h( · ; ¼ 2) is a density on R £ R + given by

h( · ; ¼ 2) =

Z
p( · ; ¼ 2jq; y)

"
nY

i = 1

g(qi)R 1
0 g(x)dx

#

dq;

and ° =
R 1

0 g(x)dx
¢n

. The function g(¢) is as given in Proposition 1 of Hobert.

The drift condition differs more signi� cantly between SDA and LMDA. For SDA, the
drift condition is given by

Proposition A.2. Let V ( · ; ¼ 2) =
Pn

i= 1(Yi · )2=¼ 2. If n = 2 and ¸ > 1, then

E
£
V ( · ; ¼ 2)j · 0; ( ¼ 2)0¤ =

2
¸ 1

V ( · 0; ( ¼ 2)0) +
4 ¸

¸ 1
:

Note that 0 < 2=( ¸ 1) < 1 if ¸ > 3.
Proof: As in Hobert’s calculation, the required expectation is calculated using itera-

tive expectation;we suppress conditioningon the observed data throughout.Also following
Hobert, we begin with general n. Namely,

E

"
nX

i= 1

(yi · )2
­­­¼ 2; q; · 0; ( ¼ 2)0

#

=
n¼ 2

Pn
i = 1 qi

+

nX

i = 1

(yi ª· )2 ;
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and

E

"
1
¼ 2

nX

i = 1

(yi · )2
­­­q; · 0; ( ¼ 2)0

#

=
nPn

i = 1 qi
+ (n 1)

Pn
i = 1 (yi ª· )2

Pn
i= 1 qi (yi ª· )2 :

Thus, we need to evaluate

E

"
nPn

i = 1 qi
+ (n 1)

Pn
i = 1 (yi ª· )2

Pn
i= 1 qi (yi ª· )2

­­­· 0; ( ¼ 2)0

#

;

which simpli� es to

E

µ
1
q1

+
1
q2

­­­· 0; ( ¼ 2)0
¶

=
2

¸ 1
V ( · 0; ( ¼ 2)0) +

4̧
¸ 1

when n = 2.
&

Inequality (R.1) follows from Propositions A.1 and A.2 along with Theorem 12 of
Rosenthal (1995) using d = 16:45 and r = :0775.
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