Unified Analyses of Populations of Sources Advantages of "Shrinkage Estimates" in Astronomy

David A. van Dyk

Statistics Section, Imperial College London

University of Birmingham April 2015

Populations of Sources

Estimating a property of each object in a population:

- Intrinsic (absolute) magnitudes of Type Ia Super Novae.
 Or more simply: apparent magnitudes.
- The ages of White Dwarfs in the galactic halo. Or more simply: ages of WDs in the galaxy.
- Measured distance to Large Magellanic Cloud
 - * With different methods, each with their own systematics methods

London

Estimating Source Characteristics

Typical Strategy: Estimate the magnitude, distance, or age for each source in a separate data analysis.

Another Possibility: Preform unified analysis, modeling dist'n of magnitudes, distances, or ages among sources.

- Relative advantages depends on *quality of individual* estimates and degree of homogeneity in population.
- Discuss from Frequntist and Bayesian perspectives.

All Roads Lead to Rome

Example 1: Using SNIa to Fit Cosmological Models Example 2: Ages of White Dwarfs in the Galactic Halo

Outline

Frequentist origins of shrinkage estimates Bayesian hierarchical models

All Roads Lead to Rome

- Frequentist origins of shrinkage estimates
- Bayesian hierarchical models
- Example 1: Using SNIa to Fit Cosmological Models
 Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff
- Example 2: Ages of White Dwarfs in the Galactic Halo
 Joint work with Ted von Hippel & Shijing Si

Outline

Frequentist origins of shrinkage estimates Bayesian hierarchical models

All Roads Lead to Rome

- Frequentist origins of shrinkage estimates
- Bayesian hierarchical models
- Example 1: Using SNIa to Fit Cosmological Models
 Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff
- Example 2: Ages of White Dwarfs in the Galactic Halo
 Joint work with Ted von Hippel & Shijing Si

Frequentist origins of shrinkage estimates Bayesian hierarchical models

The Sample Mean

Suppose we wish to estimate a parameter, θ , from repeated measurement or a single source:

$$y_i \overset{\text{indep}}{\sim} \mathsf{N}(\theta, \sigma^2) \text{ for } i = 1, \dots, n$$

Eg: calibrating detector from *n* measures of known source.

An obvious estimator:

$$\hat{\theta}^{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

What is not to like about the arithmetic average?

Frequentist origins of shrinkage estimates Bayesian hierarchical models

Frequency Evaluation of an Estimator

• How far off is the estimator?

$$(\hat{\theta} - \theta)^2$$

• How far off do we expect it to be?

$$MSE(\hat{\theta}|\theta) = E\left[(\hat{\theta} - \theta)^2 \mid \theta\right] = \int \left(\hat{\theta}(y) - \theta\right)^2 f(y \mid \theta) dy$$

- This quantity is called the Mean Square Error of $\hat{\theta}$.
- An estimator is said to be inadmissible if there is an estimator that is uniformly better in terms of MSE:

$$MSE(\hat{\theta}|\theta) < MSE(\hat{\theta}^{naive}|\theta)$$
 for all θ .

Frequentist origins of shrinkage estimates Bayesian hierarchical models

Inadmissibility of the Sample Mean

Suppose we wish to estimate more than one parameter:

$$y_{ij} \stackrel{\text{indep}}{\sim} \mathsf{N}(\theta_j, \sigma^2)$$
 for $i = 1, \dots, n$ and $j = 1, \dots, G$

The obvious estimator:

$$\hat{\theta}_{j}^{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} y_{ij}$$
 is inadmissible if $G \ge 3$.

The James-Stein Estimator dominates θ^{naive} :

$$\begin{split} \hat{\theta}_{j}^{\text{JS}} &= \left(1 - \omega^{\text{JS}}\right) \hat{\theta}_{j}^{\text{naive}} + \omega^{\text{JS}} \nu \text{ for any } \nu \\ \text{with } \omega^{\text{JS}} &\approx \frac{\sigma^2/n}{\sigma^2/n + \tau_{\nu}^2} \text{ and } \tau_{\nu}^2 = \text{E}[(\theta_j - \nu)^2]. \\ \text{Specifically, } \omega^{\text{JS}} &= (G - 2)\sigma^2/n \sum_{j=1}^{G} (\hat{\theta}_{j}^{\text{naive}} - \nu)^2 \text{London} \end{split}$$

All Roads Lead to Rome

Example 1: Using SNIa to Fit Cosmological Models Example 2: Ages of White Dwarfs in the Galactic Halo Frequentist origins of shrinkage estimates Bayesian hierarchical models

Shrinkage Estimators

James-Stein Estimator is a shrinkage estimator:

 $\hat{\theta}_{j}^{\mathrm{JS}} = \left(1 - \omega^{\mathrm{JS}}\right)\hat{\theta}_{j}^{\mathrm{naive}} + \omega^{\mathrm{JS}}\nu$

Frequentist origins of shrinkage estimates Bayesian hierarchical models

To Whence To Shrink?

James-Stein Estimators

- Dominate the sample average for any choice of ν.
- Shrinkage is mild and $\hat{\theta}^{JS} \approx \hat{\theta}^{naive}$ for most ν .
- Can we choose ν to maximize shrinkage?

$$\hat{\theta}_{j}^{\rm JS} = (1 - \omega^{\rm JS}) \hat{\theta}_{j}^{\rm naive} + \omega^{\rm JS} \nu$$
with $\omega^{\rm JS} \approx \frac{\sigma^2/n}{\sigma^2/n + \tau_{\nu}^2}$ and $\tau_{\nu}^2 = {\rm E}[(\theta_j - \nu)^2]$.

• Minimize τ_{ν}^2 .

The optimal choice of ν is the average of the θ_i .

Illustration

Suppose:

•
$$y_j \sim N(\theta_j, 1)$$
 for $j = 1, ..., 10$

θ_j are evenly distributed on [0,1]

Frequentist origins of shrinkage estimates Bayesian hierarchical models

Illustration

Frequentist origins of shrinkage estimates Bayesian hierarchical models

Suppose:

•
$$y_j \sim N(\theta_j, 1)$$
 for $j = 1, ..., 10$

θ_j are evenly distributed on [-4,5]

Intuition

Frequentist origins of shrinkage estimates Bayesian hierarchical models

- It you are estimating more than two parameters, it is always better to use shrinkage estimators.
- Optimally shrink toward average of the parameters.
- Most gain when the naive (non-shrinkage) estimators
 - * are noisy (σ^2 is large)
 - * are similar (τ^2 is small)
- Bayesian versus Frequentist:
 - * From frequentist point of view this is somewhat problematic.
 - * From a Bayesian point of view this is an opportunity!
- James-Stein is a milestone in statistical thinking.
 - * Results viewed as paradoxical and counterintuitive.
 - * James and Stein are geniuses.

Outline

Frequentist origins of shrinkage estimates Bayesian hierarchical models

All Roads Lead to Rome

- Frequentist origins of shrinkage estimates
- Bayesian hierarchical models
- 2 Example 1: Using SNIa to Fit Cosmological Models
 - Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff
- Example 2: Ages of White Dwarfs in the Galactic Halo
 Joint work with Ted von Hippel & Shijing Si

Frequentist origins of shrinkage estimates Bayesian hierarchical models

Bayesian Statistical Analyses: Likelihood

<u>Likelihood Functions</u>: The distribution of the data given the model parameters. E.g., $Y \sim \text{Poisson}(\lambda_S)$:

likelihood(
$$\lambda_{\mathcal{S}}$$
) = $e^{-\lambda_{\mathcal{S}}}\lambda_{\mathcal{S}}^{\mathcal{Y}}/\mathcal{Y}!$

<u>Maximum Likelihood Estimation</u>: Suppose Y = 3

Imperial College

Bayesian Analyses: Prior and Posterior Dist'ns

Prior Distribution: Knowledge obtained prior to current data.

Bayes Theorem and Posterior Distribution:

 $\mathsf{posterior}(\lambda \mid \mathbf{Y}) \propto \mathsf{likelihood}(\lambda; \mathbf{Y}) \times \mathsf{prior}(\lambda)$

Combine past and current information:

Bayesian analyses rely on probability theory Imperial College

Frequentist origins of shrinkage estimates Bayesian hierarchical models

Bayesian Perspective

Back to shrinkage

Frequentists tend to avoid quantities like:

E(θ_j) and Var(θ_j)
 E[(θ_i - ν)²]

From a Bayesian point of view it is quite natural to consider

- the prior distribution of a parameter or
- Ithe common distribution of a group of parameters.

Models that are formulated in terms of the latter are Hierarchical Models.

Frequentist origins of shrinkage estimates Bayesian hierarchical models

A Simple Bayesian Hierarchical Model

Suppose

$$y_{ij}|\theta_j \overset{\text{indep}}{\sim} \mathsf{N}(\theta_j, \sigma^2)$$
 for $i = 1, \dots, n$ and $j = 1, \dots, G$

with

$$\theta_j \stackrel{\text{indep}}{\sim} \mathsf{N}(\mu, \tau^2).$$

Let
$$\phi = (\sigma^2, \tau^2, \mu)$$

 $E(\theta_j \mid \mathbf{Y}, \phi) = (1 - \omega^{HB})\hat{\theta}^{\text{naive}} + \omega^{HB}\mu \text{ with } \omega^{HB} = \frac{\sigma^2/n}{\sigma^2/n + \tau^2}.$

The Bayesian perspective

- automatically picks the best ν ,
- provides model-based estimates of ϕ ,
- requires priors be specified for σ^2, τ^2 , and μ .

Color Correction Parameter for SNIa Lightcurves

SNIa light curves vary systematically across color bands.

- Measure how peaked the color distribution is.
- Details in the next section!!
- A hierarchical model:

$$\hat{c}_j | c_j \overset{\text{indep}}{\sim} \mathsf{N}(c_j, \sigma_j^2)$$
 for $j = 1, \dots, 288$

with

$$c_j \stackrel{\text{indep}}{\sim} N(c_0, R_c^2)$$
 and $p(c_0, R_c) \propto 1$.

- The measurement variances, σ_i^2 are assumed known.
- We could estimate each c_i via $\hat{c}_i \pm \sigma_i$, or...

All Roads Lead to Rome

Example 1: Using SNIa to Fit Cosmological Models Example 2: Ages of White Dwarfs in the Galactic Halo Frequentist origins of shrinkage estimates Bayesian hierarchical models

Shrinkage of the Fitted Treatment Effects

Simple Hierarchical Model for c

Pooling may dramatically change fits.

All Roads Lead to Rome Example 1: Using SNIa to Fit Cosmological Models

Example 2: Ages of White Dwarfs in the Galactic Halo

Frequentist origins of shrinkage estimates Bayesian hierarchical models

Standard Deviation of the Fitted Treatment Effects

0.35 Likelihood Fit Conditional Posterior Standard Deviation of ci 95% Credible Interval 0.30 0.25 0.20 + 0.15 0.10 0.05 0.0 0.0 0.1 0.2 0.3 0.4 0.5 R

Simple Hierarchical Model for c

Borrowing strength for more precise estimates.

Frequentist origins of shrinkage estimates Bayesian hierarchical models

The Bayesian Perspective

Advantages of Bayesian Perspective:

- The advantage of James-Stein estimation is automatic. James-Stein had to find the estimator!
- Bayesians have a method to generate estimators. Even frequentists like this!
- General principle is easily tailored to any problem.
- Specification of level two model *may* not be critical.
 James-Stein derived same estimator using only moments.

Cautions:

• Results can depend on prior distributions for parameters that reside deep within the model, and far from the data.

Frequentist origins of shrinkage estimates Bayesian hierarchical models

The Choice of Prior Distribution

Suppose

$$y_{ij}|\theta_j \overset{\text{indep}}{\sim} \mathsf{N}(\theta_j, \sigma^2)$$
 for $i = 1, \dots, n$ and $j = 1, \dots, G$

with

$$\theta_j \stackrel{\text{indep}}{\sim} \mathsf{N}(\mu, \tau^2).$$

- Std non-informative prior for normal variance: $p(\sigma^2) \propto 1/\sigma^2$.
- Using this prior for the level-two variance,

$$p(\tau^2) \propto 1/\tau^2$$

leads to an improper posterior distribution:

$$p(\tau^2|\mathbf{y}) \propto p(\tau^2) \sqrt{\frac{\operatorname{Var}(\mu|\mathbf{y},\tau)}{(\sigma^2+\tau^2)^G}} \exp\left\{\sum_{j=1}^G -\frac{(\bar{\mathbf{y}}_j - \operatorname{E}(\mu|\mathbf{y},\tau^2))^2}{2(\sigma^2+\tau^2)}\right\}$$

Outline

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

All Roads Lead to Rome

- Frequentist origins of shrinkage estimates
- Bayesian hierarchical models

Example 1: Using SNIa to Fit Cosmological Models

- Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff
- Example 2: Ages of White Dwarfs in the Galactic Halo
 Joint work with Ted von Hippel & Shijing Si

Outline

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

All Roads Lead to Rome

- Frequentist origins of shrinkage estimates
- Bayesian hierarchical models

Example 1: Using SNIa to Fit Cosmological Models Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Example 2: Ages of White Dwarfs in the Galactic Halo
 Joint work with Ted von Hippel & Shijing Si

Type la Supernovae as Standardizable Candles

If mass surpasses "Chandrasekhar threshold" of $1.44M_{\odot}$...

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Due to their common "flashpoint", SN1a have similar absolute magnitudes:

$$M_j \sim N(M_0, \sigma_{int}^2).$$

Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics of the explosion / light curve:

- x_i: rescale light curve to match mean template
- c_j: describes how flux depends on color (spectrum)

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Phillips Corrections

• Recall:
$$M_j \sim N(M_0, \sigma_{int}^2)$$
.

• Regression Model:

$$M_j = -\alpha x_j + \beta c_j + M_j^{\epsilon},$$

with $M_j^{\epsilon} \sim N(M_0, \sigma_{\epsilon}^2)$.

- $\sigma_{\epsilon}^2 \leqslant \sigma_{\text{int}}^2$
- Including x_i and c_i reduces variance and increases precision of estimates.

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Brighter SNIa are slower decliners over time.

Distance Modulus in an Expanding Universe

Apparent mag depends on absolute mag & distance modulus:

$$m_{Bj} = \mu_j + M_j = \mu_j + M_j^{\epsilon} - \alpha x_j + \beta c_j$$

Relationship between μ_i and z_i

For nearby objects,

 $z_j = \text{velocity}/c$ velocity = H_0 distance.

(Correcting for peculiar/local velocities.)

• For distant objects, involves expansion history of Universe:

$$\mu_j = g(z_j, \Omega_{\Lambda}, \Omega_M, H_0)$$

= 5 log_10(distance[Mpc]) + 25

• We use peak B band magnitudes.

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Accelerating Expansion of the Universe

- 2011 Physics Nobel Prize: discovery that expansion rate is increasing.
- Dark Energy is the principle theorized explanation of accelerated expansion.
- Ω_Λ: density of dark energy (describes acceleration).

• Ω_M : total matter.

A Hierarchical Model

Level 1: c_j , x_j , and m_{Bj} are observed with error.

$$\begin{pmatrix} \hat{c}_j \\ \hat{x}_j \\ \hat{m}_{Bj} \end{pmatrix} \sim \mathsf{N} \left\{ \begin{array}{c} c_j \\ x_i \\ m_{Bj} \end{pmatrix}, \ \hat{C}_j \end{array} \right\}$$

with $m_{Bj} = \mu_j + M_j^{\epsilon} - \alpha x_j + \beta c_j$ and $\mu_j = g(z_j, \Omega_{\Lambda}, \Omega_M, H_0)$

Level 2:

 $\begin{array}{l} \bullet \quad c_j \sim \mathsf{N}(c_0, R_c^2) \\ \bullet \quad x_j \sim \mathsf{N}(x_0, R_x^2) \\ \bullet \quad M_j^\epsilon \sim \mathsf{N}(M_0, \sigma_\epsilon^2) \end{array}$

Level 3: Priors on α , β , Ω_{Λ} , Ω_{M} , H_{0} , c_{0} , R_{c}^{2} , x_{0} , R_{x}^{2} , M_{0} , σ_{ϵ}^{2}

Imperial College

London

Other Model Features

Results are based on an SDSS (2009) sample of 288 SNIa.

In our full analysis, we also

- account for systematic errors that have the effect of correlating observation across supernovae,
- 2 allow the mean and variance of M_i^{ϵ} to differ for galaxies with stellar masses above or below 10¹⁰ solar masses,
- include a model component that adjusts for selection effects, and
- use a larger JLA sample¹ of 740 SNIa observed with SDSS, HST, and SNLS.

Imperial College London

¹Betoule, et al., 2014, arXiv:1401.4064v1

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Shrinkage Estimates in Hierarchical Model

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Shrinkage Errors in Hierarchical Model

Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by

$$M_j^{\epsilon} = m_{Bj} - \mu_j + \alpha x_j - \beta c_j$$
 with $\mu_i = g(z_j, \Omega_{\Lambda}, \Omega_M, H_0)$

Setting

• $\alpha, \beta, \Omega_{\Lambda}$, and Ω_M to their minimum χ^2 estimates,

2) $H_0 = 72 km/s/Mpc$, and

• m_{Bj}, x_j , and c_j to their observed values we have

$$\hat{M}_{j}^{\epsilon} = \hat{m}_{Bi} - g(\hat{z}_{j}, \hat{\Omega}_{\Lambda}, \hat{\Omega}_{M}, \hat{H}_{0}) + \hat{\alpha}\hat{x}_{j} - \hat{\beta}\hat{c}_{j}$$

with error

$$\approx \sqrt{\operatorname{Var}(\hat{m}_{Bj}) + \hat{\alpha}^2 \operatorname{Var}(\hat{x}_j) + \hat{\beta}^2 \operatorname{Var}(\hat{c}_j)}$$

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Comparing the Estimates

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Comparing the Estimates

Offset estimates even without shrinkage.

Fitting a simple hierarchical model for c_i

Simple Hierarchical Model for c

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Additional shrinkage due to regression

Full Hierarchical Model

David A. van Dyk Unified Analyses of Populations of Sources

London

Errors under simple hierarchical model for c_i

Simple Hierarchical Model for c

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

London

Reduced errors due to regression

Full Hierarchical Model

Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff

Comparing the Estimates of c_i and x_i

Outline

All Roads Lead to Rome

- Frequentist origins of shrinkage estimates
- Bayesian hierarchical models
- Example 1: Using SNIa to Fit Cosmological Models
 Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff
- Example 2: Ages of White Dwarfs in the Galactic Halo
 Joint work with Ted von Hippel & Shijing Si

Outline

Joint work with Ted von Hippel & Shijing Si

All Roads Lead to Rome

- Frequentist origins of shrinkage estimates
- Bayesian hierarchical models
- Example 1: Using SNIa to Fit Cosmological Models
 Joint with Roberto Trotta, Xiyun Jiao, & Hikmatali Shariff
- Example 2: Ages of White Dwarfs in the Galactic Halo
 Joint work with Ted von Hippel & Shijing Si

Visitors from the Galactic Halo

- Age of galactic halo or disk can be estimated with their older stars.
- Halo stars pass through the galactic disk as they orbit the central bulge.

 Kilic et al. (ApJ, 2010) identified three nearby old halo white dwarfs in the SDSS; we have a sample of five.

We would like to model the white dwarf colors to estimate their age and the age of galactic halo.

Fitting Dist'n of Stellar Ages in Galactic Halo

We observe seven photometric magnitudes for each WD:

$$(X_{1j},\ldots X_{7j}) \sim \mathrm{MVN}\Big(G(\theta_j),V\Big)$$

where $\theta_j = (\log_{10}(age_j), distance_j, mass_j)$ and

$$\log_{10}(\text{age}_j) \sim N(\mu, \tau^2).$$

- If the WD are a representative sample, μ and τ² are the population mean and variance for galactic halo.
- Even if sample is not representative, hierarchical model produces estimators with better statistical properties.

Computer Model for Main Sequence (& RG) Evolution

- Computer model predicts how the emergent and apparent spectra evolve as a function of input parameters.
- We observe photometric magnitudes, the apparent luminosity in each of several wide wavelength bands.

Joint work with Ted von Hippel & Shijing Si

White Dwarfs Physics

- White dwarf spectra are not predicted from MS/RG models
- Different physical processes require different models:
 - Computer Model for White Dwarf Cooling
 - 2 Computer Model for White Dwarf Atmosphere
 - Initial Final Mass Relationship (IFMR)

A parametric model for the IFMR forms a bridge between the computer models.

Joint work with Ted von Hippel & Shijing Si

Complex Posterior Distributions

David A. van Dyk Unified Analyses of Populations of Sources

Joint work with Ted von Hippel & Shijing Si

Complex Posterior Distributions

Joint work with Ted von Hippel & Shijing Si

Fitting Each WD Individually (Kilic's sample)

Posterior distributions exhibit similar structure and similar fitted parameter values.

Fitting the Population Distribution of Halo WDs

Model:

$$(X_{1j},\ldots X_{7j}) \sim \mathrm{MVN}\Big(G(\theta_j),V\Big)$$

where $\theta_j = (\log_{10}(age_j), distance_j, mass_j)$ and

$$\log_{10}(\text{age}_j) \sim N(\mu, \tau^2).$$

Maximum a posterior estimates:

- $\hat{\mu} = 10.065$ (11.6 gigayears)
- $\log_{10} \tau = \log_{10}(0.053)$
- 95% range: (9.1, 14.8) gigayears

Joint work with Ted von Hippel & Shijing Si

Suppose $sd(log_{10}(age)) = 0.009$

Individual Fit

Hierarchical Fit

Effect of Shrinkage for one halo WD.

Imperial College London

Here we exaggerate the shrinkage by using $\tau = 0.009 < \hat{\tau}$.

David A. van Dyk Unified Analyses of Populations of Sources

Shrinkage in the Posterior of Age (with fitted τ)

Hierarchical and individual fittings of Star 1

Imperial College

London

Shrinkage in the Posterior of Age (with fitted τ)

Shrinkage in the Posterior of Age (with fitted τ)

Sensitivity of Results to Var(log₁₀(age))

Joint work with Ted von Hippel & Shijing Si

Sensitivity of Results to Var(log₁₀(age))

Gaia will provide photometric magnitudes for hundreds of galactic halo WDs.

David A. van Dyk Unified Analyses of Populations of Sources

Discussion

- Estimation of groups of parameters describing populations of sources is not uncommon in astronomy.
- These parameters may or may not be of primary interest.
- Modeling the distribution of object-specific parameters can dramatically reduce both error bars and MSE ...
- ... especially with noisy observations of similar objects.
- Shrinkage estimators are able to "borrow strength".
- May be little cost of freeing object-specific parameters (e.g., metallicity or distance of stars in a cluster).

Don't throw away half of your toolkit!! (Bayesian and Frequency methods)

Shrinkage Estimates of c_i in Hierarchical Model

David A. van Dyk

Full Hierarchical Model

Unified Analyses of Populations of Sources

Shrinkage Errors of *c_i* in Hierarchical Model

Full Hierarchical Model

Joint work with Ted von Hippel & Shijing Si

Shrinkage Estimatesof x_i in Hierarchical Model

Joint work with Ted von Hippel & Shijing Si

Shrinkage Errors of *x_i* in Hierarchical Model

A Non-Astronomical Example

The Educational Testing Service studied the effects of coaching programs on SAT-V scores in eight US high schools:²

$$y_j | \theta_j \overset{\text{indep}}{\sim} \mathsf{N}(\theta_j, \sigma_j^2) \text{ for } j = 1, \dots, 8$$

with

$$\theta_j \stackrel{\text{indep}}{\sim} N(\mu, \tau^2) \text{ and } p(\mu, \tau) \propto 1.$$

The y_i are estimated treatment effects

- based on preliminary analyses
- adjust for PSAT (V and M) scores
- standard errors on estimated treatment effects are regarded as known

Imperial College London

²From Gelman et al. (2013), Bayesian Data Analysis, 3rd Edition, §5.5.

Joint work with Ted von Hippel & Shijing Si

Shrinkage of the Fitted Treatment Effects

Pooling may dramatically change fitted effects.

Joint work with Ted von Hippel & Shijing Si

Standard Deviation of the Fitted Treatment Effects

Pooling results in more precise estimates.

Posterior distribuiton

Fitting the Standard Deviation of the Treatment Effects

Fitted τ determines the degree of pooling.

David A. van Dyk Unified Analyses of Populations of Sources