Embedding the Big Bang Cosmological Model into a Bayesian Hierarchical Model

David A. van Dyk

Statistics Section, Imperial College London
Joint work with Roberto Trotta, Xiyun Jiao, and Hikmatali Shariff

Joint Statistical Meetings
August 2014

Themes

The Accelerating Expansion of the Universe

- The role of Dark Energy are Dark Matter in the evolutionary history of the Universe remain mysterious.
- Charting the expansion history is key to testing physical theories for Dark Matter and Dark Energy.
- To do this, we embed cosmological models into a Bayesian hierarchical model.
- Principled handling of data and model complexity.
- Gain better astronomical measurements along the way.

Outline

(1) Measuring the Expansion of the Universe
(2) A Hierarchical Statistical Model
(3) Shrinkage Estimates of Absolute Magnitudes

Imperial College

The Expanding Universe

Redshift

http://www.noao.edu/image_gallery/html/im0566.html
For "nearby" objects,

$$
z=\text { velocity } / c
$$

velocity $=H_{0}$ distance .

Hubble's Famous Diagram

Velocity-Distance Relation among Extra-Galactic Nebulae.
Radial velocities, corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion using the nebulae individually; the circles and broken line represent the solution comblning the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.
Hubble (1929)

Distance Modulus in an Expanding Universe

Apparent magnitude - Absolute magnitude = Distance modulus:

$$
m-M=\mu=5 \log _{10}(\text { distance }[\mathrm{Mpc}])+25
$$

Computing absolute magnitudes, relationship between μ and z

- For nearby objects, distance $=z c / H_{0}$.
(Correcting for peculiar/local velocities.)
- For distant objects, involves expansion history of Universe:

$$
\mu=g\left(z, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right)
$$

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp Imperial College London

Accelerating Expansion of the Universe

Recall: $m-M=\mu=g\left(z, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right)$

- 2011 Physics Nobel Prize: discovery that expansion rate is increasing.
- Dark Energy is principle theorized explanation of acceleration.
- Ω_{Λ} : density of dark energy
(describes acceleration).
- Ω_{M} : total matter.

If we observe both m and M we can infer μ and the cosmological parameters.

Type la Supernovae as Standardizable Candles

If mass surpasses "Chandrasekhar threshold" of $1.44 M_{\odot} \ldots$

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html
Common "flashpoint" \rightarrow similar absolute magnitudes

$$
M_{i} \sim \mathrm{~N}\left(M_{0}, \sigma_{\mathrm{int}}^{2}\right)
$$

Non-linear Regression: $m_{B i}=g\left(z_{i}, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right)+M_{i}$

Photometric Light Curves: The Raw Data

We use peak B band magnitudes ${ }_{\text {(apparent magnitud }=}=-2.5 \log _{10}(f(\mathrm{lux}))$

Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics of the explosion / light curve:

- x_{i} : rescale light curve to match mean template
- c_{i} : describes how flux depends on color (spectrum)

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Cite: SALT and SALT II (Guy et al. 2005 and 2007).

Phillips Corrections

- Recall: $m_{B i}=\mu_{i}+M_{i}$

$$
M_{i} \sim \mathrm{~N}\left(M_{0}, \sigma_{\mathrm{int}}^{2}\right) .
$$

- Regression:

$$
\begin{aligned}
M_{i} & =-\alpha x_{i}+\beta c_{i}+M_{i}^{\epsilon} \\
m_{B i} & =\mu_{i}-\alpha x_{i}+\beta c_{i}+M_{i}^{\epsilon} \\
M_{i}^{\epsilon} & \sim \mathrm{N}\left(M_{0}, \sigma_{\epsilon}^{2}\right) .
\end{aligned}
$$

- $\sigma_{\epsilon}^{2} \leqslant \sigma_{\mathrm{int}}^{2}$
- Including x_{i} and c_{i} reduces variance and increases precision of estimates.

Low-z calibration sample

Brighter SNla are slower decliners over time.

Data

Two samples:

© An Sloan Digital Sky Survey (2009) sample of 288 SNIa. ${ }^{1}$
(2) A larger JLA sample ${ }^{2}$ of 740 SNIa observed with SDSS, Hubble Space Telescope, SNLS (Canada-France-Hawaii Telescope), and several other telescopes for low z SNla.

[^0]
Outline

(1) Measuring the Expansion of the Universe

(2) A Hierarchical Statistical Model

(3) Shrinkage Estimates of Absolute Magnitudes

The Baseline Hierarchical Model

Level 1: c_{i}, x_{i}, and $m_{B i}$ are observed with error.

$$
\left(\begin{array}{c}
\hat{c}_{i} \\
\hat{x}_{i} \\
\hat{m}_{B i}
\end{array}\right) \sim \mathrm{N}\left\{\left(\begin{array}{c}
c_{i} \\
x_{i} \\
m_{B i}
\end{array}\right), \Sigma_{i}\right\}
$$

with $m_{B i}=\mu_{i}+M_{i}^{\epsilon}-\alpha x_{i}+\beta c_{i}$ and $\mu_{i}=g\left(z_{i}, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right)$

Level 2:

(1) $c_{i} \sim \mathrm{~N}\left(c_{0}, R_{c}^{2}\right)$
(2) $x_{i} \sim \mathrm{~N}\left(x_{0}, R_{x}^{2}\right)$
(3) $M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{0}, \sigma_{\epsilon}^{2}\right)$

Level 3: Priors on $\alpha, \beta, \Omega_{\Lambda}, \Omega_{M}, H_{0}, c_{0}, R_{c}^{2}, x_{0}, R_{x}^{2}, M_{0}, \sigma_{\epsilon}^{2}$

Accounting for Systematic/Instrumental Effects

- Systematic errors: differences among telescopes, their components, and observational conditions.
- Total Variance: $\Sigma=\Sigma_{\text {stat }}+\Sigma_{\text {sys }}$
- Blocks: SNLS, HST, SDSS, low z.
- Similar to random effect for telescope.

Effect on Fitted Cosmological Parameters

Imperial College
London

Adjusting for Galactic Masses

Can we further reduce the residual error by adjusting for the mass of the host galaxy?

Comparing $\mathrm{E}\left(M_{i}^{\epsilon} \mid Y\right)$ with estimated mass $\left[\log _{10} M_{\odot}\right]$ of host galaxy.

Adjusting for Galactic Masses

- The distribution of M_{i}^{ϵ} appears to depend on host galaxy mass $=w$.
- Only observe $\hat{w}_{i} \sim N\left(w_{i}, \sigma_{w i}\right)$.
- We separate the population:
$M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{01}, \sigma_{\epsilon 1}^{2}\right)$ if galaxy mass $=w_{i}<10$
$M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{02}, \sigma_{\epsilon 2}^{2}\right)$ if galaxy mass $=w_{i} \geqslant 10$.
- This reduces residual variance.
- Better strategies:

$$
\begin{aligned}
& \star M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{0}+\psi w_{i}, \sigma_{\epsilon}^{2}\right) \\
& \star m_{B i}=\mu_{i}+M_{i}^{\epsilon}-\alpha x_{i}+\beta c_{i}+\boldsymbol{\psi} \boldsymbol{w}_{\boldsymbol{i}} \\
& \quad \text { with } w_{i} \sim \mathrm{~N}\left(w_{0}, R_{w}^{2}\right)
\end{aligned}
$$

- Non-linearity / interaction?

Effect on Fitted Cosmological Parameters

Imperial College London

Checking the Cosmological Model

We model:

$$
m_{B i}=g\left(z_{i}, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right)-\alpha x_{i}+\beta c_{i}+M_{i}^{\epsilon}
$$

How good of a fit is the cosmological model,

$$
g\left(z_{i}, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right) ?
$$

We can check the model by adding a cubic spline term:

$$
m_{B i}=g\left(z_{i}, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right)+h\left(z_{i}\right)+M_{i}^{\epsilon}-\alpha x_{i}+\beta c_{i}+M_{i}^{\epsilon}
$$

where, $h\left(z_{i}\right)$ is cubic spline term with K knots.

Checking the Cosmological Model

Fitted cubic spline, $h(z)$, and its errors:

Cubic Spline Curve Fitting ($K=9$)

Can use similar methods to compare with competing cosmological models.

Statistical Computation

```
MH within Gibbs:
1: p( }\mu,X|\Omega,\beta,T
2: \mathcal{M }(\Omega|\mu,X,\beta,T)
3: p(\beta|\mu,X,\Omega,T)
4: p(T| \mu,X,\Omega,\beta)
```

Decondition:
1: $p(\mu, X \mid \Omega, \beta, T)$
2: $\mathcal{M}(\Omega, \mu, X \mid \beta, T)$
3: $\mathcal{M}(\beta, \mu, X \mid \Omega, T)$
4: $p(T \mid \mu, X, \Omega, \beta)$

Permute:
1: $\mathcal{M}(\Omega, \mu, X \mid \beta, T)$
2: $\mathcal{M}(\beta, \mu, X \mid \Omega, T)$
3: $p(\mu, X \mid \Omega, \beta, T)$
4: $p(T \mid \mu, X, \Omega, \beta)$

Trim:

1: $\mathcal{M}(\Omega \mid \beta, T)$
2: $\mathcal{M}(\beta \mid \Omega, T)$
3: $p(\mu, X \mid \Omega, \beta, T)$
4: $p(T \mid \mu, X, \Omega, \beta)$

Baseline Hierarchical Model:

- \quad Let X represent the random effects
* μ and T their means and variances, respectively
* β the regression coefficients
$\star \Omega$ the cosmological parameters
- Final sampler is an MH with Partially Collapsed Sampler. ${ }^{3}$
- Steps 1-2 analytically marginalize out X and μ.
- Construct with care: permuting steps may change the stationary distribution of the chain.

Improved Mixing

MH within Gibbs Sampler

MH within PCG Sampler

New ASA Interest Group!

New! Astrostatistics Interest Group New!

At the JSM:

- Sunday at 4 PM: Bayesian Astrostatistics
- Wednesday at 8:30 AM: Big Data in Astrostatistics
- Wednesday at 10:30 AM: Informal Meeting outside the "Big Data in Astrostatistics" session room
- Wednesday at 2:00 PM: Analysis of Kepler Data at SAMSI
- Thursday at 8:30 AM: IOL: Astrostatistics

For more information:
http://community.amstat.org/astrostats/home Imperial College

Outline

(1) Measuring the Expansion of the Universe

(2) A Hierarchical Statistical Model

(3) Shrinkage Estimates of Absolute Magnitudes

Shrinkage Estimates in Hierarchical Model

A statistical byproduct: Iow MSE estimates of M_{i}^{ϵ}.

Imperial College
London

Shrinkage Errors in Hierarchical Model

Reduced standard errors

Imperial College
London

Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by

$$
M_{i}^{\epsilon}=m_{B i}-\mu_{i}+\alpha x_{i}-\beta c_{i} \text { with } \mu_{i}=g\left(z_{i}, \Omega_{\Lambda}, \Omega_{M}, H_{0}\right)
$$

Setting
(1) $\alpha, \beta, \Omega_{\Lambda}$, and Ω_{M} to their minimum χ^{2} estimates,
(2) $H_{0}=72 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, and
(3) $m_{B i}, x_{i}$, and c_{i} to their observed values
we have

$$
\hat{M}_{i}^{\epsilon}=\hat{m}_{B i}-g\left(\hat{z}_{i}, \hat{\Omega}_{\Lambda}, \hat{\Omega}_{M}, \hat{H}_{0}\right)+\hat{\alpha} \hat{x}_{i}-\hat{\beta} \hat{c}_{i}
$$

with error

$$
\approx \sqrt{\operatorname{Var}\left(\hat{m}_{B i}\right)+\hat{\alpha}^{2} \operatorname{Var}\left(\hat{x}_{i}\right)+\hat{\beta}^{2} \operatorname{Var}\left(\hat{c}_{i}\right)}
$$

Comparing the Estimates

Imperial College
London

Comparing the Estimates

Bayes estimates are offset even without shrinkage.
Imperial College London

Fitting a simple hierarchical model for c_{i}

Model: $\hat{c}_{i} \sim N\left(c_{i}, \sigma_{c i}\right)$ with $c_{i} \sim \mathrm{~N}\left(c_{0}, R_{c}^{2}\right)$.
Simple Hierarchical Model for c

Additional shrinkage due to regression

Imperial College
London

Errors under simple hierarchical model for c_{i}

Simple Hierarchical Model for c

Imperial College
London

Reduced errors due to regression

Full Hierarchical Model

Imperial College
London

Comparing the Estimates of c_{i} and x_{i}

Imperial College
London

Discussion

- Bayesian science-driven hierarchical model provides a platform for honest handling of model \& data complexity.
- Sophisticated computation allows for effecient model fitting.
- Estimation of groups of parameters describing populations of sources not uncommon in astronomy.
- These parameters may or may not be of primary interest.
- Modeling the distribution of object-specific parameters can dramatically reduce both error bars and MSE ...
- ... especially with noisy observations of similar objects.

[^0]: ${ }^{1}$ Kessler et al., 2009, arXiv:0908.4274
 ${ }^{2}$ Betoule, et al., 2014, arXiv:1401.4064v1

