Embedding the Big Bang Cosmological Model into a Bayesian Hierarchical Model

David A. van Dyk

Statistics Section, Imperial College London

Joint work with Roberto Trotta, Xiyun Jiao, and Hikmatali Shariff

Joint Statistical Meetings August 2014

Themes

The Accelerating Expansion of the Universe

- The role of Dark Energy are Dark Matter in the evolutionary history of the Universe remain mysterious.
- Charting the expansion history is key to testing physical theories for Dark Matter and Dark Energy.
- To do this, we embed cosmological models into a Bayesian hierarchical model.
- Principled handling of data and model complexity.
- Gain better astronomical measurements along the way.

A Hierarchical Statistical Model

3 Shrinkage Estimates of Absolute Magnitudes

The Expanding Universe

Redshift

http://www.noao.edu/image_gallery/html/im0566.html

For "nearby" objects, z = velocity/c $\text{velocity} = H_0 \text{ distance.}$

Hubble's Famous Diagram

Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion using the nebulae individually; the circles and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.

Hubble (1929)

The Big Bang!

Distance Modulus in an Expanding Universe

Apparent magnitude - Absolute magnitude = Distance modulus:

$$m - M = \mu = 5 \log_{10}(\text{distance}[\text{Mpc}]) + 25$$

Computing absolute magnitudes, relationship between μ and z

• For nearby objects,

distance = zc/H_0 .

(Correcting for peculiar/local velocities.)

• For distant objects, involves expansion history of Universe:

$$\mu = \boldsymbol{g}(\boldsymbol{z}, \Omega_{\Lambda}, \Omega_{\boldsymbol{M}}, \boldsymbol{H}_{0})$$

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp Imperial College London

Accelerating Expansion of the Universe

Recall: $m - M = \mu = g(z, \Omega_{\Lambda}, \Omega_{M}, H_{0})$

- 2011 Physics Nobel Prize: discovery that expansion rate is increasing.
- Dark Energy is principle theorized explanation of acceleration.
- Ω_Λ: density of dark energy (describes acceleration).
- Ω_M: total matter.

If we observe both m and M we can infer μ and the cosmological parameters.

Type la Supernovae as Standardizable Candles

If mass surpasses "Chandrasekhar threshold" of $1.44 M_{\odot}$...

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Common "flashpoint" \rightarrow similar absolute magnitudes

$$M_i \sim N(M_0, \sigma_{int}^2).$$

Non-linear Regression: $m_{Bi} = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0) + M_i$

Photometric Light Curves: The Raw Data

We use peak B band magnitudes $(apparent magnitude = -2.5 log_{10}(flux))$

Imperial College

Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics of the explosion / light curve:

- x_i: rescale light curve to match mean template
- c_i: describes how flux depends on color (spectrum)

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Cite: SALT and SALT II (Guy et al. 2005 and 2007).

Phillips Corrections

• Recall:
$$m_{Bi} = \mu_i + M_i$$

 $M_i \sim N(M_0, \sigma_{int}^2).$

- Regression:
 - $$\begin{split} M_i &= -\alpha x_i + \beta c_i + M_i^{\epsilon}, \\ m_{Bi} &= \mu_i \alpha x_i + \beta c_i + M_i^{\epsilon}, \\ M_i^{\epsilon} &\sim \mathsf{N}(M_0, \sigma_{\epsilon}^2). \end{split}$$
- $\sigma_{\epsilon}^2 \leqslant \sigma_{\text{int}}^2$
- Including x_i and c_i reduces variance and increases precision of estimates.

Brighter SNIa are slower decliners over time.

Mandel et al (2011)

Two samples:

- An Sloan Digital Sky Survey (2009) sample of 288 SNIa.¹
- A larger JLA sample² of 740 SNIa observed with SDSS, Hubble Space Telescope, SNLS (Canada-France-Hawaii Telescope), and several other telescopes for low z SNIa.

¹Kessler et al., 2009, arXiv:0908.4274 ²Betoule, et al., 2014, arXiv:1401.4064v1

2 A Hierarchical Statistical Model

3 Shrinkage Estimates of Absolute Magnitudes

The Baseline Hierarchical Model

Level 1: c_i , x_i , and m_{Bi} are observed with error.

$$\begin{pmatrix} \hat{c}_i \\ \hat{x}_i \\ \hat{m}_{Bi} \end{pmatrix} \sim \mathsf{N} \left\{ \begin{array}{c} c_i \\ x_i \\ m_{Bi} \end{pmatrix}, \Sigma_i \right\}$$

with $m_{Bi} = \mu_i + M_i^{\epsilon} - \alpha x_i + \beta c_i$ and $\mu_i = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0)$

Level 2:

 $\begin{array}{l} \bullet \quad c_i \sim \mathsf{N}(c_0, R_c^2) \\ \hline & \mathbf{z}_i \sim \mathsf{N}(x_0, R_x^2) \\ \hline & \mathbf{M}_i^\epsilon \sim \mathsf{N}(M_0, \sigma_\epsilon^2) \end{array}$

Level 3: Priors on α , β , Ω_{Λ} , Ω_{M} , H_{0} , c_{0} , R_{c}^{2} , x_{0} , R_{x}^{2} , M_{0} , σ_{ϵ}^{2} Im

Imperial College

Accounting for Systematic/Instrumental Effects

- Systematic errors: differences among telescopes, their components, and observational conditions.
- Total Variance: $\Sigma = \Sigma_{stat} + \Sigma_{sys}$
- Blocks: SNLS, HST, SDSS, low z.
- Similar to random effect for telescope.

Effect on Fitted Cosmological Parameters

Adjusting for Galactic Masses

Can we further reduce the residual error by adjusting for the mass of the host galaxy?

Adjusting for Galactic Masses

- The distribution of M^ε_i appears to depend on host galaxy mass = w.
- Only observe $\hat{w}_i \sim N(w_i, \sigma_{wi})$.
- We separate the population:

 $M_i^{\epsilon} \sim N(M_{01}, \sigma_{\epsilon 1}^2)$ if galaxy mass = $w_i < 10$ $M_i^{\epsilon} \sim N(M_{02}, \sigma_{\epsilon 2}^2)$ if galaxy mass = $w_i \ge 10$.

- This reduces residual variance.
- Better strategies:
 - * $M_i^{\epsilon} \sim N(M_0 + \psi w_i, \sigma_{\epsilon}^2)$
 - * $m_{Bi} = \mu_i + M_i^{\epsilon} \alpha x_i + \beta c_i + \psi w_i$ with $w_i \sim N(w_0, R_w^2)$
- Non-linearity / interaction?

Effect on Fitted Cosmological Parameters

Checking the Cosmological Model

We model:

$$m_{Bi} = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0) - \alpha x_i + \beta c_i + M_i^{\epsilon}$$

How good of a fit is the cosmological model, $g(z_i, \Omega_{\Lambda}, \Omega_M, H_0)$?

We can check the model by adding a cubic spline term:

$$m_{Bi} = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0) + h(z_i) + M_i^{\epsilon} - \alpha x_i + \beta c_i + M_i^{\epsilon}$$

where, $h(z_i)$ is cubic spline term with K knots.

Checking the Cosmological Model

Fitted cubic spline, h(z), and its errors:

Can use similar methods to compare with competing cosmological models.

Imperial College

Statistical Computation

MH within Gibbs:	Decondition:	Permute:	Trim:
1: $p(\mu, X \Omega, \beta, T)$	1: $p(\mu, X \Omega, \beta, T)$	1: $\mathcal{M}(\Omega, \mu, X \beta, T)$	1: $\mathcal{M}(\Omega \beta, T)$
2: $\mathcal{M}(\Omega \mu, X, \beta, T)$	2: $\mathcal{M}(\Omega, \boldsymbol{\mu}, \boldsymbol{X} \beta, T)$	$ 2: \mathcal{M}(\beta, \mu, X \Omega, T) $	2: $\mathcal{M}(\beta \Omega, T)$
3: $p(\beta \mu, X, \Omega, T)$	3: $\mathcal{M}(\beta, \boldsymbol{\mu}, \boldsymbol{X} \Omega, T)$	3: $p(\mu, X \Omega, \beta, T)$	3: $p(\mu, X \Omega, \beta, T)$
4: $p(T \mu, X, \Omega, \beta)$	4: $p(T \mu, X, \Omega, \beta)$	4: $p(T \mu, X, \Omega, \beta)$	4: $p(T \mu, X, \Omega, \beta)$

Baseline Hierarchical Model:

- Let X represent the random effects
 - \star μ and T their means and variances, respectively
 - $\star \beta$ the regression coefficients
 - $\star~\Omega$ the cosmological parameters
- Final sampler is an MH with Partially Collapsed Sampler.³
- Steps 1-2 analytically marginalize out X and μ .
- Construct with care: permuting steps may change the stationary distribution of the chain.

³van Dyk and Jiao (2014). The MH within PCG Sampler, JCGS, to appear.

Improved Mixing

New ASA Interest Group!

New! Astrostatistics Interest Group New!

At the JSM:

- Sunday at 4 PM: Bayesian Astrostatistics
- Wednesday at 8:30 AM: Big Data in Astrostatistics
- Wednesday at 10:30 AM: Informal Meeting outside the "Big Data in Astrostatistics" session room
- Wednesday at 2:00 PM: Analysis of Kepler Data at SAMSI
- Thursday at 8:30 AM: IOL: Astrostatistics

For more information:

http://community.amstat.org/astrostats/home Imperial College

2 A Hierarchical Statistical Model

Shrinkage Estimates of Absolute Magnitudes

Shrinkage Estimates in Hierarchical Model

A statistical byproduct: low MSE estimates of M_i^{ϵ} .

Shrinkage Errors in Hierarchical Model

Reduced standard errors

Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by

$$M_i^{\epsilon} = m_{Bi} - \mu_i + \alpha x_i - \beta c_i$$
 with $\mu_i = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0)$

Setting

- $\alpha, \beta, \Omega_{\Lambda}$, and Ω_M to their minimum χ^2 estimates,
- 2 $H_0 = 72 km/s/Mpc$, and
- m_{Bi}, x_i , and c_i to their observed values we have

$$\hat{M}_{i}^{\epsilon} = \hat{m}_{Bi} - g(\hat{z}_{i}, \hat{\Omega}_{\Lambda}, \hat{\Omega}_{M}, \hat{H}_{0}) + \hat{\alpha}\hat{x}_{i} - \hat{\beta}\hat{c}_{i}$$

with error

$$\approx \sqrt{\operatorname{Var}(\hat{m}_{Bi}) + \hat{\alpha}^2 \operatorname{Var}(\hat{x}_i) + \hat{\beta}^2 \operatorname{Var}(\hat{c}_i)}$$

Comparing the Estimates

Comparing the Estimates

Bayes estimates are offset even without shrinkage.

Imperial College

Fitting a simple hierarchical model for c_i

Model: $\hat{c}_i \sim N(c_i, \sigma_{ci})$ with $c_i \sim N(c_0, R_c^2)$.

Simple Hierarchical Model for c

Additional shrinkage due to regression

Full Hierarchical Model

Errors under simple hierarchical model for c_i

Simple Hierarchical Model for c

Rc

Reduced errors due to regression

Full Hierarchical Model

 R_{c}

Shrinkage Estimates of Absolute Magnitudes

Comparing the Estimates of c_i and x_i

Discussion

- *Bayesian science-driven hierarchical model* provides a platform for honest handling of model & data complexity.
- Sophisticated computation allows for effecient model fitting.
- Estimation of groups of parameters describing populations of sources not uncommon in astronomy.
- These parameters may or may not be of primary interest.
- Modeling the distribution of object-specific parameters can dramatically reduce both error bars and MSE ...
- ... especially with noisy observations of similar objects.

