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Salk’s Polio Vaccine Trials

NFIP 1954 Polio Vaccine Trials
Treatment Group: Children whose parents give consent
Control Group: Children whose parents do not consent
Results:

The randomized controlled
double-blinded experiment The NFIP study

Size Rate1 Size Rate
Treatment 200,000 28 Vaccine (consent) 225,000 25
Control 200,000 71
No Consent 350,000 46 No Vaccine/consent 125,000 44
a per 100,000

Rows are comparable between the studies.
Using No-Consent group as Control biases results.

Consent (treatment indicator) is correlated with polio
rates in the absence of treatment (potential outcome).
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Causal Inference in Observational Studies

1 The Rubin Causal Model:

Treatment Potential Outcomes
Covariates Group Control Treatment

1 X1 1 Y1(0) Y1(1)
2 X2 1 Y2(0) Y2(1)
3 X3 0 Y3(0) Y3(1)
...

...
...

...
...

Children with treatment more likely to contract polio in the absence of treatment.

2 E.g.: NFIP 1954 Polio Vaccine Trials

Higher risk of polio

Higher Income

More likely to consent to
vaccine and receive treatment

? The treatment is correlated
with the potential outcomes.

? Biases results.

? Key: Control for the (correct)
covariates.
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Formalizing Causal Inference

Causal effect: e.g., Y (tP
1 )− Y (tP

2 ).
? Y (tP) is potential outcome with potential treatment, tP ∈ T .

Problem: Treatment, T , correlated w/ potential outcomes.
? Yi (Ti = tP

1 )− Yj (Tj = tP
2 ) is not the causal effect.

Key assumption (Strong Ignorability of Treatment Assign.):

p{T |X} = p{T |Y (tP),X} ∀ tP ∈ T .

Under this assumption, we must adjust for the
covariates in our analysis
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Adjusting for Covariates in Causal Inference
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Standard regression: Y (tP) ∼ N(α + Xβ + tPγ, σ2).
? common assumptions, e.g. linearity, are often violated.
? leads to biased causal inferences.

Matching and Subclassification reduce bias:
? non/semi-parametric methods.
? but, difficult when the dimensionality of X is large.
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Propensity Score of Rosenbaum and Rubin (1983)

If the treatment is binary, the propensity score,

e(X ) = Pr(T = 1 | X ),

fully characterizes p(T | X ).
Key Theorems:

1 The propensity score is a balancing score:

Pr{T = 1 |X ,e(X )} = Pr{T = 1 |e(X )}.

2 Strong Ignorability of Treatment Assignment Given e(X ):

E{Y (tP) |e(X )} = E{Y (tP) |T = tP ,e(X )} for tP = 0,1.

Unbiased estimate of causal effect is possible given e(X ).
Match or subclassify on e(X ), a scalar variable.
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The Power of Conditioning on Propensity Scores

The problem with (non-randomized) observational studies:

Treatment assignment correlated with potential outcomes.

E.g., subjects who are more likely to respond well without
treatment are more likely to be in the control group.

The power of propensity scores:
In a subclass with the same value of the the propensity score,

Treatment is UNcorrelated with potential outcomes.

We can classify subjects based on their
propensity score, and analyze the data

separately in each class.
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Use of the Propensity Score in Observational Studies

The propensity score is unknown in observational studies.
Estimate e(X ), e.g., via logistic regression.
Advantages:

1 Diagnostics: check balance of X between treatment and
control groups after matching or subclassifying on e(X ).

p{X | T = 0,e(x)} = p{X | T = 1,e(x)}

2 Robust to misspecification of functional forms for estimating
propensity score (Drake, 1993; Dehejia and Wahba, 1999).

Disadvantage: vulnerable to unobserved confounders.
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Covariance Adjustment

In addition to matching and subclassification, Rosenbaum
and Rubin (1983) suggested covariance adjustment:

? Regress Y on e(X ) separately for treatment and control.
Contol: Y ∼ αC + βC e(X )

Treatment: Y ∼ αT + βT e(X )

? Average difference of fitted potential outcomes for each unit

1
n

n∑
i=1

[
αT + βT e(Xi )−

{
αC + βC e(Xi )

}]
= αT − αC + (βT − βC)

1
n

n∑
i=1

e(Xi )

Covariance Adjustment seems less robust than matching
of subclassifiation.

David A. van Dyk Causal Inference with Non-Binary Treatments



Causal Inference in Observational Studies
General Treatment Regimes

Improved Estimates of the Dose Response Function

The Propensity Function
The Generalized Propensity Score
Numerical Comparisons

Outline

1 Causal Inference in Observational Studies
Non Ignorability of Treatment Assignment
Propensity Scores

2 General Treatment Regimes
The Propensity Function
The Generalized Propensity Score
Numerical Comparisons

3 Improved Estimates of the Dose Response Function
GPS-Based Estimates of the DRF
P-Function Based Estimates of the DRF
Numerical Comparisons

David A. van Dyk Causal Inference with Non-Binary Treatments



Causal Inference in Observational Studies
General Treatment Regimes

Improved Estimates of the Dose Response Function

The Propensity Function
The Generalized Propensity Score
Numerical Comparisons

General Treatment Regimes

Goal: Generalize propensity score to non-binary treatment.
Propensity score is confined to binary treatment scenarios.
Researchers have no control over treatment in
observational studies.
? Continuous treatment: dose response function.
? Ordinal treatment: effects of years in school on income.
? Event-count, duration, semi-continuous, etc. . . .
? Multivariate treatments

Two highly-cited methods
1 Generalized Propensity Score (Hirano and Imbens, 2004)
2 The Propensity Function (Imai and van Dyk, 2004)
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The Propensity Function

Definition: Conditional density of the actual treatment given
observed covariates, e(·|X ) ≡ pψ(T |X ).

Uniquely Parameterized Propensity Function Assumption:
e(· |X ) depends on X only through θψ(X ).
θ = θψ(X ) uniquely represents e{· | θψ(X )}.

Examples:
1 Continuous treatment: T |X ∼ N(X>β, σ2).
ψ = (β, σ2) and θψ(X ) = X>β.

2 Categorical treatment: Multinomial probit for Pr(T |X ).
ψ = (β,Σ) and θψ(X ) = X>β.

3 Ordinal treatment: Ordinal logistic model for Pr(T |X ).
ψ = β and θψ(X ) = X>β.
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The Propensity Function in Practice

Properties:
1 Balance: p{T |e(· |X ),X} = p{T |e(· |X )}.
2 Ignorablity: p{Y (t) |T ,e(· |X )} = p{Y (t) |e(· |X )} ∀t

Estimation of Causal Effects:
Subclassification:

p{Y (t)} =

∫
p{Y (t) |T = t , θ}p(θ)dθ ≈

J∑
j=1

p{Y (t) |T = t , θ̂j}Wj .

? Subclassify observations into J subclasses based on θ̂.
? Regress Y (T ) on T (and θ̂) within each subclass.
? Average the within subclass average treatment effects.

David A. van Dyk Causal Inference with Non-Binary Treatments



Causal Inference in Observational Studies
General Treatment Regimes

Improved Estimates of the Dose Response Function

The Propensity Function
The Generalized Propensity Score
Numerical Comparisons

The Propensity Function in Practice

Estimation of Causal Effects:
Subclassification:

p{Y (t)} =

∫
p{Y (t) |T = t , θ}p(θ)dθ ≈

J∑
j=1

p{Y (t) |T = t , θ̂j}Wj .

Smooth Coefficient Model:

E(Y (t) | T = t , θ̂) = f (θ̂) + g(θ̂) · T .

? f (·) and g(·) are unknown smooth continuous functions.

? Average treatment effect: 1
n

∑n
i=1 ĝ(θ̂i )
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The Generalized Propensity Score

Definition: Conditional density of treatment given observed
covariates evaluated at observed treatment, R = r(T |X ).

Properties:
1 Balance: I{T = t} is conditionally indep. of X given r(t |X ).
2 Ignorability: pT{t |r(t ,X ),Y (t)} = pT{t |r(t ,X )} for every t .

Estimation of Dose Response Function:

E(Y (t)|T = t , R̂) = α0+α1 ·T +α2 ·T 2+α3 ·R̂+α4 ·R̂2+α5 ·T ·R̂.

Ê{Y (t)} =
1
n

n∑
i=1

(
α̂0+α̂1 ·t+α̂2 ·t2+α̂3 · r̂(t ,Xi)+α̂4 · r̂(t ,Xi)

2+α̂5 ·t · r̂(t ,Xi)
)
.

Note similarity with covariance adjustment.
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Comparing GPS with Covariance Adjustment

Covariance Adjustment with Binary Treatment:
Regress Y on e(X ) separately for treatment and control.

Contol: Y ∼ αC + βC e(X )
Treatment: Y ∼ αT + βT e(X )

Average difference of fitted potential outcomes

1
n

n∑
i=1

[
αT + βT e(Xi)−

{
αC + βC e(Xi)

}]
Estimation of Dose Response Function with GPS:

E(Y (t)|T = t , R̂) = α0+α1 ·T +α2 ·T 2+α3 ·R̂+α4 ·R̂2+α5 ·T ·R̂.

Ê{Y (t)} =
1
n

n∑
i=1

(
α̂0+α̂1 ·t+α̂2 ·t2+α̂3 · r̂(t ,Xi)+α̂4 · r̂(t ,Xi)

2+α̂5 ·t · r̂(t ,Xi)
)
.
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Dose Response Functions

Imai & van Dyk (2003) compute average treatment effect.
Subclassification: Weighted average of within subclass

coefficients of T .
SCM: Average of individual coefficients of T, ĝ(θ̂i).

Hirano & Imbens (2003) compute full Dose Response.

The subclassification formula of Imai and van Dyk,
however, gives a parametric Dose Response Function:

p{Y (t)} =

∫
p{Y (t) |T = t , θ}p(θ)dθ ≈

J∑
j=1

p{Y (t) |T = t , θj}Wj .
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Simulation 1

A very simple simulation:

X
indep.∼ N (0.5,0.25), T |X indep.∼ N (X ,0.25), and n = 2000

Y (t) | t ,X indep.∼ N (10X ,1) for all t ∈ T
Linear Regression Y ∼ T gives a treatment effect of 5.

Fits
Treatment model is correctly specified.
IvD: Linear regression (Y ∼ T ) within S subclasses.
Do not adjust for θ̂ in within subclass models.
Doing so would dramatically improve preformence.
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Simulation 1 Results
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Expect any method to work well in this simple setting
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Simulation 2

Frequency Evaluation:

X
indep.∼ N (0,1), T |X indep.∼ N (X + X 2,1), and n = 2000.

Generative model for Y (t):

Linear DRF: Y (t) | t ,X indep.∼ N (X + t ,9)

Quadratic DRF: Y (t) | t ,X indep.∼ N ((X + t)2,9)

Correctly specified treatment models used for all fits.
Linear and quadratic (in T ) response models used with
both methods.
Used 10 subclasses with IvD.

Entire procedure was replicated for 1000 simulated data sets.
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Simulation 2 Results

Generative Dose Response Function: Linear
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Generative Dose Response Function: Quadratic
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Covariance Adjustment for a Categorical Treatment

Estimating Dose Response using Covariance Adjustment:
Regress Y on R̂ = r̂(T = t ,X ) separately for units in each
treatment group:

Group t: Y ∼ αt + βt R̂ (??)

Average fitted potential outcomes of all units

Ê(Y (t)) =
1
n

n∑
i=1

[
α̂t + β̂t r̂(t ,Xi)

]
Pairwise differences are exactly Rosenbaum and Rubin’s
estimate of the average treatment effect.
Hirano and Imbens replace (??) with quadratic regression.
Y (t) ∼ α0 + α1 · T + α2 · T 2 + α3 · R̂ + α4 · R̂2 + α5 · T · R̂.
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Covariance Adjustment for a Continuous Treatment

Hirano and Imbens’ quadratic regression
? extends easily to continuous treatments,
? but is less robust than treatment-level specific regressions.

Solution: Discretize continuous treatment variable.
(Zhang, van Dyk, & Imai, 2013)

? Use quantiles of the treatment for discretization.
? Extreme categories tend to have wider range of T and thus

we expect more bias.
? Within subclass t , we fit e.g., Y ∼ αt + βt R̂
? Estimate Dose Response: ̂E(Y (t)) = 1

n

∑n
i=1

[
α̂t + β̂t r̂(t ,Xi)

]
Note: In contrast to standard methods, we subclassify on
the treatment rather than on the propensity score.
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Using a SCM with the GPS

Fitting Y ∼ αt + βt R̂ within each of several subclasses can
be viewed as a flexible regression of Y on R and T .
Flores et al. (2012) proposed another solution:
? Non-parametrically model Y ∼ f (R,T )

? Estimate Dose Response: ̂E(Y (t)) = 1
n

∑n
i=1

[
f̂
{

r(t ,Xi), t
}]

Flores et al. use a non-parametric kernel estimator.
We use a SCM to facilitate comparisons.
The three GPS-based methods vary only in the choice of
response model (quadratic regression, subclassification, or SCM)
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Importance of the Choice of Response Model

Fitted E(Y (t)|T = t ,R) for dataset in Simulation 1
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Covariance Adjustment GPS is much more
flexible than Quadratic Regression
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Using the Propensity Function to Estimate the DRF

Extend Imai and van Dyk (2003) to estimate Dose Response

Begin by writing the Dose Response Function as

E [Y (t)] =

∫
E [Y (t) | θ] p(θ)dθ =

∫
E [Y (T ) | θ,T = t ] p(θ)dθ

Use Smooth Coefficient Model for rightmost integrand

E [Y (T ) | θ,T = t ] = f (θ,T ),

Average over units to obtain fitted Dose Response

Ê [Y (t)] =
1
n

n∑
i=1

f̂ (θ̂i , t),
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The Problem with Extrapolation

Estimated Dose Response: Ê [Y (t)] =
1
n

n∑
i=1

f̂ (θ̂i , t).

Evaluating at t0 involves evaluating f̂ (θ̂i , t0) at every
observed value of θ̂i .
Invariably, the range of θ̂ among units with T near t0 is
smaller than the total range of θ̂, at least for some t0.
This estimate involves some degree of extrapolation!!
We can diagnose using a scatterplot of T vs θ̂.
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The Problem with Extrapolation

Similarly with the GPS: Ê [Y (t)] =
1
n

n∑
i=1

f̂
{

r(t ,Xi), t
}

.

This problem is more acute: The range of R among units
with T near t0 may not even overlap with range of r(t0,X ).
This is true for all three response models.
The estimate of the DRF at t0 may depend entirely on
extrapolation!!
We can diagnose by comparing scatterplots of T vs R and
T vs r(T ,X )
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Simulation 1: Revisit
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SCM(GPS) exhibits an odd cyclic pattern
SCM(P-Function) results in a much smoother fit.
As expected, covariance adjustment GPS is biased in
extreme subclasses.
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Simulation 2: Revisited

Linear Generative DRF
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Reduced bias without parametric specification
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Simulation 2: Revisited

Quadratic Generative DRF
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Example: Effects of Smoking on Medical Expenditure

Data: 9,708 smokers from 1987 National Medical
Expenditure Survey (Johnson et al., 2002).
Treatment variable, T A = log(packyear): continuous
measure of cumulative exposure to smoking:

packyear =
# of cigarettes per day

20
× # of years smoked.

? alternative strategy: frequency and duration of smoking as
bivariate treatment variable.

Outcome: self-reported annual medical expenditure.
Covariates: age at time of survey, age when the individual
started smoking, gender, race, marriage status, education level,
census region, poverty status, and seat belt usage.
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Model Specification of the Propensity Function

Model: T A |X indep.∼ N(X>β, σ2) and θ = X>β where X
includes some square terms in addition to linear terms.
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First panel: T-stats for predicting covariates from log(packyear).
Second panel: Same, but controlling for propensity funt’n.

The Balance is Improved
Balance serves as a model diagnostic for propensity function.
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Using the Method of Imai and van Dyk (2004)

Within each block, use a Two-Part model for the
semi-continuous response:

1 Logistic regression for Pr(Y > 0 |T A, θ̂j).

2 Gaussian linear regression for p{log(Y ) |Y > 0,T A, θ̂j).

Propensity Function
Direct Models 3 blocks 10 blocks

Logistic Linear Regression Model
coefficient for T A -0.097 -0.060 -0.065
standard error 3.074 3.031 3.074

Gaussian Linear Regression Model
average causal effect 0.026 0.051 0.053
standard error 0.016 0.017 0.018
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A Smooth Coefficient Model

In the subclassification-based analysis, we fit a separate
regression in each subclass, allowing for different
treatment effects in each subclass.
An alternate strategy allows the treatment effect to vary
smoothly with θ.
For example, in stage two

log(Y ) ∼ Normal(α(θ) + β(θ)T A + γX , σ2),

where α and β are smooth functions of θ.
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The Smooth Coefficient Model Fit
The Smooth Coefficient Model Fit
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• The propensity score is the linear predictor for log(packyears).

• Important covariates include age and age when began smoking.

• For older people the effect of smoking on medical expenses is greater.

24

Propensity funct’n is linear predictor for log(packyears).
Propensity function is hard to interpret.
Dose response function would be much more useful.
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Estimating the Dose Response Function

We begin with a simulation study:
Use observed X and T and simulate Y using each of

1 Quadratic DRF:

E [log(Yi (t))|X ] =
4
25
· t2 + [log(agei )]2

2 Piecewise Linear DRF:

E [log(Yi (t))|X ] =

{
−4− 0.5 · t + [log(agei )]2, t ≤ 2
−5 + 2.3 · (t − 2) + [log(agei )]2, t > 2

3 Hockey-Stick DRF:

E [log(Yi (t))|X ] =

{
−8.1 + [log(agei )]2, t ≤ 3
−8.1 + 1.5 · (t − 3)2 + [log(agei )]2, t > 3
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Extrapolation in Fitting the GPS-Based DRF

Recall: Y ∼ f (R,T ) and Ê(Y (t)) = 1
n
∑n

i=1

[
f̂
{

r(t ,Xi), t
}]
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Extrapoloation for:
Small t (r > 0.3), Midrange t (r < 0.2) and Large t (r < 0.1)
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Extrapolation in Fitting the P-Function based DRF

Recall:
Y ∼ f (θ̂,T )

Ê [Y (t)] =
1
n

n∑
i=1

f̂ (θ̂i , t).

We expect bias in
Ê [Y (t)] for t > 3.
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Results: Quadratic DRF
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1 Hirano and Imben’s estimate tends to follow unadjusted fit.
2 The two other GPS-based methods do better.
3 SCM(GPS) again exhibits a small cyclic pattern
4 SCM(P-Functions) does the best, at least for t < 3.
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Results: Piecewise Linear DRF
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1 Hirano and Imben’s estimate tends to follow unadjusted fit.
2 The two other GPS-based methods do better.
3 SCM(GPS) again exhibits a small cyclic pattern
4 SCM(P-Functions) does the best, at least for t < 3.
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Resuls: Hockey-Stick DRF
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1 Hirano and Imben’s estimate tends to follow unadjusted fit.
2 The two other GPS-based methods do better.
3 SCM(GPS) again exhibits a small cyclic pattern
4 SCM(P-Functions) does the best, at least for t < 3.
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The Estimated DRF: Using the Data
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Summary and Conclusions

Fitted Dose Response Function of Hirano and Imbens
seems unreliable.
Imai & van Dyk is more limited in scope but more reliable.
We aim to derive reliable estimates of dose response in
observational studies.
P-function based estimate appear to offer significant
improvement.
Nonetheless we advise caution.
? Large samples are required.
? In smaller studies, average treatment effect is preferable.
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