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Background

Sunspots appear as dark areas on the photosphere—the region of the Sun that emits the light
that we see. They are formed when powerful magnetic fields inhibit convection, cooling the
associated surface area which then appears as a dark spot in optical (white) light. In
magnetograms—images of magnetic fields on the Sun—sunspots appear as areas of high
magnetic flux. Energetic solar events such as solar flares and coronal mass ejections are related
to sunspots through the complexity of associated magnetic active regions [1].

Currently, sunspot classification is performed manually via visual inspection by experts [2].
However, manual classification suffers from human observer bias stemming from the
subjective and often ambiguous morphology of active regions [1]. That is, two experts
looking at the same sunspot group may disagree as to the “correct” classification.
Furthermore, with the advent of new scientific missions such as NASA’s Solar Dynamics
Observatory (SDO), manual classification is quickly becoming impractical. Sophisticated,
robust, and automatic analysis procedures are required for handling the enormous volume of
high cadence solar data that is soon to be available.

MountWilson Classification

The Mount Wilson classification scheme groups sunspots into four classes based on the
complexity of magnetic flux distribution in associated active regions [1]:

I α class: groups dominated by a single unipolar sunspot
I β class: a pair of sunspots of opposite magnetic polarity, but with a simple and distinct

spatial division between the polarities
I βγ class: a bipolar group sufficiently complex that a single polarity inversion line cannot

divide the two polarities
I βγδ class: a βγ group with umbrae of different polarity inside a single penumbra
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Magnetograms (top row) and white light images (bottom row) for the four sunspot classes.
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Science-Driven Feature Selection
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The original βγ white light image (a) is cleaned (b) and thresholded to produce a binary
representation of the sunspot group (c). This image is then dilated (d) and has a convex hull
placed around the result (e) and the area inside the hull becomes the sunspot area (f) in the
magnetogram. Then, in the βγ magnetogram (g), morphological opening followed by
thresholding on both the image and inverse image yields the representation of the active
region in (h). Region growing gives the separating boundary in (h). Convex hulls are utilized
to measure polarity mixture in (j). We smooth the white light image in (k) and apply
thresholding iteratively in (l) to produce a representation of the umbrae and penumbrae that
can be used to detect delta spots.

Classification

Numerical summaries are calculated based on morphological representations of active
regions:

I the ratio of pixels of opposite polarities
I the amount of scattering of the pixels for each polarity
I polarity inversion line curvature
I area of opposite polarity mixture for the convex hulls around each polarity region
I the number of delta spots detected

These summaries serve as features to a supervised learning algorithm based on a random
forest—a state-of-the-art nonparametric classifier that utilizes an ensemble of individual
decision trees [6]. To evaluate and illustrate our automatic classifier, we use a dataset
consisting of 119 magnetogram and white light images capturing individual sunspot groups
that have been manually classified according to the Mount Wilson scheme.

Results and Discussion

Actual Class
α β βγ βγδ

Predicted α 8 2 0 0
Class β 2 21 2 0

βγ 0 0 2 1
βγδ 0 0 2 4

Classification results on the test set with a random forest of 250 trees.

In our numerical results we split the data into 65% training and 35% testing data. The results
of our random forest classifier on the test set are presented in the above table, and we notice
that the the test sunspots are classified into either the correct class or an adjacent class. Since
the classification “by eye” is prone to errors and inconsistencies, the true performance of our
classifier is difficult to judge. A perfect classification rate is not necessarily the gold standard
when automating a manual classification that is artificial and subjective. While manual
classification schemes must necessarily rely on a discrete number of classes, the true
morphology of active regions is continuous and sunspot groups can evolve smoothly from
one class to another in short periods of time. As a result, there is often ambiguity as to the
“true” classification of a particular sunspot group at a particular point in time. Thus, a
misclassification by the random forest with respect to the manual classification may not
actually be incorrect if the true class is indeterminate.

References
1. J. Ireland, C.A. Young, R.T.J. McAteer, C. Whelan, R.J. Hewett, and P.T. Gallagher, “Multiresolution analysis of active region

magnetic structure and its correlation with the mt. wilson classification and flaring activity,” Solar Physics, 2008.
2. Tufan Colak and Rami S. R. Qahwaji, “Automated mcintosh-based classification of sunspot groups using mdi images,” Solar

Physics, vol. 248, no.2, pp. 277-296, 2009.
3. Jean Serra, Image Analysis and Mathematical Morphology, Academic Press, 1982.
4. Pierre Soille, Morphological Image Analysis: Principles and Applications, Springer, Berlin, second edition, 2003.
5. D. Stenning, V. Kashyap, T.C.M Lee, D.A. van Dyk, and C.A. Young, “Morphological image analysis and its application to sunspot

classification,” in Statistical Challenges in Modern Astronomy V, In Press.
6. Leo Breiman, “Random forests,” Mach. Learn., vol. 45, pp.5-32, October 2001.

http://hea-www.harvard.edu/AstroStat/ dstennin@uci.edu


